Lessons from the European island territory decarbonization:

The role of Flexibility to ensure a High Renewable Energy integration

IAEE 1st Online conference 2021

Sandrine SELOSSE
Sophie CHLELA
Nadia MAIZI

08 June 2021 – Concurrent session 58
Outline

1: Project Background
2: Islands’ energy systems
3: Flexibility & the project’s solutions
4: Long-term prospective modelling: TIMES modelling
5: Case Studies
6: Conclusion & lessons learned
Project Goals

The main objective of the GIFT (Geographical Islands FlexibiliTy) project is to **decarbonise the energy mix of islands**.

- 1: Allow a high level of **local renewable energy** sources penetration
- 2: Provide visibility of the energy grid to better manage its **flexibility and plan its evolutions**
- 3: Develop **synergies** between the electricity, heating, cooling, water and, transport networks
- 4: **Reduce** the use of **hydrocarbon-based energies**
- 5: Ensure the **sustainability** of the solutions and their **replicability** in other islands
Why are we interested in energy systems of islands?

- **Challenges**
 - Energy supply, Economic,
 - Vulnerability towards Climate Change

- **Opportunities**
 - Policy support (EU Clean energy for EU islands),
 - Endowment in RE sources,
 - Cost competitiveness of RE,
 - International commitments

→ Developing island specific energy system models
Flexibility of the energy system

Grid flexibility

- Operation of the energy system with instantaneous stability and long-term security of supply
- Reliability and cost-effectiveness
- Management of the variability and uncertainty of renewable energies
- Ensure the balance between supply and demand

→ Develop synergies between the sectors constituting the energy system
The project’s solutions

- **Grid IT platform** for KPI visualisation, geographic visualisation, grid observability, **prospective modelling** and **long-term assessment**.

- **VPS system**, a decentralised automatic demand response trading platform

- **Prosumers** or smart energy consumers that postpone energy demanding tasks or select alternate sources for energy to reduce the load on the power grid, thus providing flexibility.
Long-term prospective modelling

Define an energy plan that ensures a reliable system in the long term

• What type of energy technologies to choose?
• How much capacity should be installed?
• When should new capacities be installed and scrapped?
• Where to install new capacities?

Long-term prospective modeling of island systems by considering different evolution scenarios

Techno-economic optimization of the energy system over time

+ Environmental, social & political constraints

TIMES
The Integrated MARKAL-EFOM System

Advice policy makers and authorities to make knowledge-based decisions in the implementation of their energy planning
TIMES modelling

- Partial equilibrium linear programming, bottom-up, technology rich, and demand driven optimization model
- Minimizes the total discounted system cost or more generally maximizes the social surplus
- Exogenous inputs related to the projection of service demands in the different sectors, one can use the GDP and population growth as inputs to predict future demands

\[
\text{min}(\text{NPV}) = \min \left(\sum_{r \in R} \sum_{y \in Y} (1 + d_{r,y})^{T_0 - y} \cdot \text{ANNCOST}(r, y) \right)
\]

The Demonstration sites

Procida Island (IT)

- Smallest island in the Gulf of Naples, Area = 4.26 km²
- Density = 2449 inhabitants/km²
- Challenges: Grid congestions, High seasonality of demand (tourism)

Hinnøya Island Cluster (NO)

- Fourth largest island in Norway: cluster of large and small islands, Area = 2240 km²
- Density = 14.52 inhabitants/km²
- Challenges: Limited possibilities of new grid connections, Fish farms using diesel generators
Hinnøya Island Cluster

GIFT Flexibility solutions

Ship/Harbour EMS
EV + Charging station
BMS - Storage mng. (HBr storage)
Factory EMS

Geographical locations of Hinnøya island cluster

GIFT DigitalTwin, 2019
Electricity in Norway 96% from Hydro, used in the economic sectors except fish farming.

High reliance on the transportation in Norway and main source of emission on the island since Fossil fuel is mostly used.
EV deployment on the long-term

1) Policy enablers for EVs in Norway

- Targets to reach 35-40% emission cuts from the transport sector compared to 2005 (White paper, Meld. St. 41 (2016–2017))

- New cars and light vans must be zero emission vehicles by 2025 (Norway’s National Transport Plan, 2018-2019)

- Incentives like Tax Exemption on registration of the new vehicles, traffic insurance and the re-registration, road usage (Norway's Fourth Biennial Report 2020, Framework Convention on Climate Change)

- Gradual increase of taxation on ETS and non-ETS emissions (White paper Norway's Climate Action Plan (Meld. St. 13 (2020-2021)))

2) Increasing trend of Electric Vehicles sold in Harstad

Source: GIFT Deliverable D7.1
In GIFT, the flexibility is offered by each individual charging session whose load is shifted from peak hours to off-peak hours to release the stress on the distribution grid (GIFT D7.1).
TIMES EV charging strategy

Charging BEVs with respect to electricity prices (2035)

Load demand profile and EV charging (typical winter working day) (2035)

Technical parameters of chargers and vehicles, i.e. data on their size and operational distance (fuel economy, capital costs, O&M costs and lifetime).

Future transport service demand and mobility demand, based on the national transport model of Norway (NTM) & U.S. Department of Transportation resp. + future electricity prices (NVE forecasts).

Taxation on transport greenhouse gas emissions (CO2, NOX).
Procida Island: Energy profile

- Main source of energy is electricity from imports
- Solar energy: reduce dependency + decarbonization of sectors

Electricity supply (2018)

- P.V. 1%
- Imports 99%

Electricity consumption (2018)

- AGRICULTURE 62.7%
- INDUSTRY 5.4%
- RESIDENTIAL 28.4%
- TERTIARY 0.1%
- PUBLIC 2.1%
- TRANSPORTATION 1.3%

Data from E-Distribuzione, 2018
Prosumers in Procida: Self-consumption

Exploiting Solar energy potential

Total imports decrease at peak hours

Electricity imports to public buildings

Reduction in electricity imports in public buildings >50%
Conclusion & Lessons learned

• Flexibility & RE integration through:
 1. Production of electricity on the island
 2. Storage technologies

• Cross-sectoral flexibility solutions: Electrification of the transport sector for RE integration and decarbonization (specific for Norway)

FINAL ENERGY MIX OF PROCIDA (2050)

FINAL ENERGY MIX OF HINNOYA ISLAND CLUSTER (2050)
Conclusion & Lessons learned

Key takeaways:

- Assessing the context of the territory as well as the energy system of the island help in understanding the flexibility needs and identify the suitable solutions
- Flexibility is linked to investment costs and maturity of solutions
- Long term planning supports decision making in new investments in flexibility solutions, but is limited from a grid operation point of view
- Necessity of involvement of the consumers that become “prosumers” thus participating in the energy transition
- Permissible regulatory framework and the use of properly designed systems for information and communication, monitoring and measurement are needed for the sustainability of the solutions
REFERENCES 1

3. “TIMES-HINNOYA” Norwegian University of Science and Technology (NTNU), 2020
REFERENCES

Thank you for your attention!

Q&A

e-mail: sophie.chlela@mines-paristech.fr
Annex

Energy mix of Hinnoya island cluster, scenario with investment in new Hydro and Wind