

OF ECONOMICS

CIRED

CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT EnvEcon Decision Support

Société de Mathématiques Appliquées et de Sciences Humaines

What if the Biggest EU Member States had emulated Sweden's outstanding Carbon Tax?

E. Ó BROIN, J. EWALD, F. NADAUD, É. MATA

2021 INTERNATIONAL ASSOCIATION ENERGY ECONOMISTS ONLINE CONFERENCE

The Swedish Research Council Formas

 Image: Second state
 Image: Second state

 Imag

Committed to excellence in research for sustainable development

Background

- FORMAS funded project
 - Climate policies for urban households Attitudes and effects
- Empirical analysis of determining factors of buildings' energy use
- 6 EU countries: France, Germany, Italy, Sweden, and the UK
- Econometrics & Simulation

(Andersson, 2019)

(Map created by Jens Ewald)

Residential Sector CO₂ emissions for EU Big 5

Swedish carbon tax rates

Image from :

https://www.government.se/governmentpolicy/taxes-and-tariffs/swedens-carbon-tax/

Global comparison

Application to Gas, Oil & Coal

Carbon Tax in Sweden 1991-2019

Natural Gas — Oil — Coal

MWh/1000m3 Gas	10.55
MWh/m3 Oil	9.91
MWh/ton Coal	6.67

Fossil fuel use in Swedish Residential Sector

The Residential Sector

Energy Balances

This Study – Part A

- 1. Calculate Price Elasticity of demand for EU Residential Sector.
- 2. Simulate how a Swedish level of CO_2 price would have affected emissions

Data for EU Price Elasticity

.87	data 1990-2015		Variable	ļ	Mean S	td. Dev.	Min	Max
•	France,	Consumption	ETOT (TWh)	Ĩ	342	205	71	776
	Germany,	Consumption	[™] L E _{sH} (TWh)	1	226	159	27	602
	Italy.	Prico	∫ wap _{тот} (€ _{os} /MWh)	1	84	20	47	134
	Spain	1 IICC	uwap _{sH} (€os/MWh)	1	67	171	34	109
	Span,	Income	- finc (€₀₅/capita)	1	15755	2794	9343	21366
	Sweden,	Weather	- hdd (°C)	1	2890	1176	1485	5874
	UK	Dwellings	-C dwe (#)	i	21140	9919	3962	38131

Annual nanel

Estimation Method

• Autoregressive Distributed Lag Model (AR1)

$$E_{it} = f(E_{i,t-1}, wap_{i,t}, inc_{i,t}, Year, hdd_{i,t}, dwe_{i,t})$$

- Fixed Effects (FE) estimator
- Arellano & Bond (1991) one-step GMM estimator
 - $\Delta E_{it} = \gamma \Delta E_{it-1} + \beta_1 \Delta P_{it} + \beta_2 \Delta I_{it} + \Delta x'_{it} \beta + \Delta \nu_{it}$
- Kiviet (1995) bias corrected LSDVC estimator

Results EU Price Elasticity

Long-run price elasticity: -0.22/(1-0.44)=0.39

		(1)	(2)	(3)
		FE	GMM	LSDVC
$E_{i,t-1}$	L.l_tot	0.41***	0.36***	0.44***
		(0.061)	(0.055)	(0.087)
wap _{i,t}	l_wap_tot	-0.23***	-0.23***	-0.22***
		(0.030)	(0.027)	(0.041)
inc _{i,t}	l_inc	0.098***	0.13***	0.096***
		(0.033)	(0.031)	(0.025)
hdd _{i,t}	l_hdd	0.46***	0.47***	0.46***
	1777	(0.048)	(0.042)	(0.056)
dwe _{i,t}	l_dwe	0.80***	0.83***	0.76***
	1772	(0.12)	(0.12)	(0.16)
Year	year	-0.0041***	-0.0046***	-0.0038**
		(0.0015)	(0.0013)	(0.0016)

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01</pre>

(Modelling carried out by Jens Ewald)

Energy Prices

Actual/Counterfactual demand for Natural Gas

Actual/Counterfactual Demand for Natural Gas

$$E_H = E_{i,t} \left(\frac{P}{P_{j,i,t}}\right)^{\beta}$$

Actual/Counterfactual demand for Oil+Coal+Natural Gas

Simulation Emissions

Residential Sector CO₂ emissions for EU Big 5

Carbon Intensity Gas kg/MWh	202
Carbon Intensity Oil kg/MWh	274
Carbon Intensity Coalkg/MWh	342

American Economic Journal: Economic Policy 2019, 11(4): 1–30 https://doi.org/10.1257/pol.20170144

Part B

Carbon Taxes and CO₂ Emissions: Sweden as a Case Study

By JULIUS J. ANDERSSON^{*}

Andersson, 2019

	OLS	OLS	OLS	OLS	IV(EnTax)	IV(OilPrice)
	(1)	(2)	(3)	(4)	(5)	(6)
Gas price with VAT	-0.0575	-0.0598	-0.0612	-0.0603	-0.0620	-0.0641
	(0.024)	(0.021)	(0.016)	(0.012)	(0.020)	(0.014)
Carbon tax with VAT	-0.260	-0.232	-0.234	-0.186	-0.186	-0.186
	(0.042)	(0.049)	(0.053)	(0.043)	(0.038)	(0.038)
Dummy carbon tax	0.109	0.0604	0.0633	0.0999	0.0977	0.0949
	(0.040)	(0.061)	(0.061)	(0.066)	(0.070)	(0.059)
Trend	0.0207 (0.003)	0.0253 (0.004)	0.0244 (0.004)	0.0341 (0.003)	0.0342 (0.003)	0.0344 (0.003)
GDP per capita		-0.00108 (0.001)	-0.00105 (0.001)	-0.00366 (0.001)	-0.00367 (0.001)	-0.00368 (0.001)
Urban population			0.0127 (0.075)	0.0301 (0.067)	0.0313 (0.064)	0.0329 (0.058)
Unemployment rate				-0.0242 (0.006)	-0.0242 (0.005)	-0.0242 (0.005)
Constant	6.228	6.407	5.372	4.407	4.313	4.198
	(0.167)	(0.142)	(6.202)	(5.446)	(5.152)	(4.693)
<i>p</i> -value: $\beta_1 = \beta_2$	0.001	0.004	0.003	0.004	0.004	0.001
Instrument <i>F</i> -statistic <i>p</i> -value					3.57 0.067	310.93 <0.001
Observations R^2	42	42	42	42	42	42
	0.72	0.73	0.73	0.76	0.76	0.76

TABLE 3—ESTIMATION RESULTS FROM GASOLINE CONSUMPTION REGRESSIONS (Andersson, 2019)

Fuel Switching?

 Proposal 1 : Multiply price elasticity we calculate by a factor to simulate the effects of fuel switching.
 How to calculate factor? See Andrersson, 2019

 Proposal 2 : Calculate Elasticity of demand for heating to carbon tax for Sweden using Andersson (2019) equation :

$$\ln(x_t) = \alpha + \beta_1 p_t^{\nu} + \beta_2 \tau_{t,CO_2}^{\nu} + \beta_3 D_{t,CO_2} + X_t \gamma + \epsilon_t,$$

$$\bigcirc \mathsf{IVI} \checkmark$$

Approach 1 : Savings by applying Swedish CO₂ Tax with 3*(-0.39) elasticity

Residential Sector CO₂ emissions for EU Big 5

Fossil fuel use in Swedish Residential Sector

		Regression results for	r oil	
		Depender	nt variable:	
5	log(tot.oil/pop.sw)			
	(1)	(2)	(3)	(4)
P.oil.exCO2	-0.003	-0.01**	-0.01**	-0.01***
	(0.004)	(0.004)	(0.004)	(0.004)
CO2TaxVAT	-0.03***	-0.03***	-0.05***	-0.03***
	(0.01)	(0.01)	(0.02)	(0.01)
d.CO2.91	0.86***	0.29	0.53	-0.08
	(0.30)	(0.28)	(0.37)	(0.22)
Year	-0.04***			
	(0.01)			
inc.pc	-0.0001***	-0.0002***	-0.0001***	-0.0001***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Urban.	-0.15*	-0.28***	-0.28***	-0.33***
	(0.07)	(0.07)	(0.07)	(0.07)
Unemploy	-0.07**	-0.07*	-0.06*	
	(0.03)	(0.03)	(0.03)	
hdd			0.0001	
			(0.0001)	
f.ave			-0.01	
			(0.01)	
Constant	101.74***	27.35***	27.75***	31.07***
	(21.87)	(5.51)	(5.76)	(5.37)
Observations	49	49	49	49
R ²	0.98	0.97	0.97	0.97
Adjusted R ²	0.97	0.97	0.97	0.96
Residual Std. Error	0.24 (df = 41)	0.27 (df = 42)	0.27 (df = 40)	0.28 (df = 43)
F Statistic	255.99^{***} (df = 7; 41)	234.28^{***} (df = 6; 42)	171.66^{***} (df = 8; 40)	262.02^{***} (df = 5; 43)
			*	

Carbon Price elasticity for Residential Sector

Note: (Modelling corr *p<0.1; **p<0.05; ****p<0.01

(Modelling carried out by Franck Nadaud and Eoin Ó Broin)

Bounds F-test (Wald) for no cointegration

- 1-1-1-0 is best model under AIC
- Bounds (k=4) are I(0) 3.178 I(1) 4.450
- F = 9.3131, p-value = 1e-06

term	estimate	std.error	t.statistic	p.value
1 (Intercept)	3.599	0.7541	4.77***	2.442e-05
2 P.oil.exCO2	-0.026	0.0063	-4.16***	1.619e-04
3 CO2TaxVAT	-0.045	0.0152	-3.00***	4.529e-03
4 inc.pc	-0.001	0.0000	-1.50*	1.397e-01

Regression results for oil			
9	Dependent variable:		
-	log(tot.oil/pop.sw)		
P.oil.exCO2	-0.01***		
	(0.004)		
CO2TaxVAT	-0.03***		
	(0.01)		
d.CO2.91	-0.34		
	(0.26)		
inc.pc	-0.0002***		
	(0.0000)		
Constant	5.22***		
	(0.50)		
Observations	49		
R ²	0.95		
Adjusted R ²	0.95		
Residual Std. Error	0.34 (df = 44)		
F Statistic	213.47^{***} (df = 4; 44)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Ratio CO₂ Tax elasticity / **Price Elasticity** OLS : -0.03/-0.01 = 2.3 ARDL: -0.045/-0.026 = 1.7 @ivl UNIVERSITY GOTHENBURG IRED

Fuel Switching?

Price elasticity = -0.39 Carbon Tax elasticity = -0.39 * 2

Conclusions

- At a long run price elasticity of -0.39 15% reduction in CO₂ emissions from residential sector of five large EU countries if Swedish level of Carbon Taxes had been adopted.
- At a long run carbon tax elasticity of 2*(-0.39), which incorporates fuel switching, reduction increases to 26%.

DEPARTMENT OF ECONOMICS

CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT

Société de Mathématiques Appliquées et de Sciences Humaines

Tack Merci Gracia Thanks Go raibh maith agaibh

eoin@centre-cired.fr

The Swedish Research Council Formas

Committed to excellence in research for sustainable development

