

#### Incidence Analysis of National Climate Policies: Estimates and Implications for Austrian Households

#### **Stefan Nabernegg**

Wegener Center for Climate and Global Change DK Climate Change University of Graz, Austria

### Relevance of climate policy incidence



General wisdom, that carbon or fuel taxes are regressive as low income households spend a larger portion of their income on energy and fuels



**Figure I** Average U.S. household energy expenditure as a percentage of total expenditure by expenditure decile.

Notes: Decile I is poorest, 10 is richest. Source: Bureau of Labor Statistics (2014).

# Channels of incidence and modelling approaches



- Different **channels** trough which incidence is affected:
  - Income use: direct effect from fuel and energy use
  - Income use: indirect effect
  - Income source: factor income in general equilibrium
- Correspondingly, different approaches (that imply increasing complexity) are able to cover these incidence channels to different extends:
  - Household budget survey analysis
  - Input-Output analysis (e.g. carbon footprints)
  - Macroeconomic modelling (CGE modelling)

### Short literature overview



| Approach | Incidence<br>channel                             | Study                       | Policy         | Region                      | Incidence (w./o. redistirubutive revenue recycling)         |
|----------|--------------------------------------------------|-----------------------------|----------------|-----------------------------|-------------------------------------------------------------|
| HBS      | <ul> <li>Income use:<br/>direct</li> </ul>       | Callan et al. (2009)        | Carbon pricing | Ireland                     | Regressive                                                  |
|          |                                                  | Sterner (2012)              | Fuel tax       | Seven European<br>countries | Country-dependent (regressive, proportional to progressive) |
|          |                                                  | Farell (2017)               | Carbon tax     | Ireland                     | Regressive                                                  |
| Ю        | <ul> <li>Income use:<br/>direct and</li> </ul>   | Grainger and Kolstad (2010) | Carbon pricing | US                          | Regressive                                                  |
|          | indirect                                         | Hassett et al. (2009)       | Carbon tax     | US                          | Regressive                                                  |
| CGE      | Income use:<br>direct and                        | Rausch et al. (2011)        | Carbon pricing | US                          | proportional                                                |
|          | <ul><li>Indirect</li><li>Income source</li></ul> | Dissou (2014)               | Carbon tax     | Canada                      | U-shape                                                     |

- All of the incidence approaches are used in earlier and recent studies to estimate climate policy incidence
  - All of them acknowledge incidence channels covered and excluded
- > Main body of the literature investigates carbon pricing instruments in developed countries
  - Revenue recycling may compensate regressivity
  - Effectiveness of recycling may be limited by within group variation (horizontal equity)

### **Research question**



- 1. Different approaches
  - What is the climate policy incidence from each channel of direct and indirect income use as well as income source effect for Austria?
  - I.e. what is the "error" when neglecting a channel by using different approaches?
- 2. Horizontal equity
  - How relevant is horizontal equity for revenue recycling when considering direct and indirect income use channels?
- 3. Different policy instruments
  - How does the incidence transmitted through each channel look for different national policy instruments?



- Household budget survey (HBS) analysis
  - Austrian HBS 2014/15 (Statistik Austria 2016a)
  - Representative sample of 7,162 households
  - Income deciles (1=lowest income, 10=highest income)
    - Lifetime income (expenditure proxy) (Poterba 1991)
    - Household equivalents (i.e. per capita)



• Household budget survey (HBS) analysis



➢On average higher budget share for fuels in low income households than for high incomes

Within-group variation is
 larger for low income
 groups (cf. also Pizer and Sexton 2019)



- Input-Output (IO) approach for embodied emission calculation
  - EE-MRIO based on GTAP database

$$\boldsymbol{e}^* = \boldsymbol{e} \, \widehat{\boldsymbol{x}}^{-1} \, (\boldsymbol{I} - \boldsymbol{Z} \widehat{\boldsymbol{x}}^{-1})^{-1} \widehat{\boldsymbol{y}}$$

- Regional and sectoral sources by using diagonalized vector of region-specific sectoral emission intensities  $e_r \widehat{x_r}^{-1}$
- Total Austrian emissions in the supply chain of Austrian final household demand
- HBS 2014/15 (Statistik Austria 2016a)



• Input-Output (IO) approach for embodied emission calculation



Emission embodied in consumption:

Account for 70%-80% of total household emissions

➢Are more equally distributed than direct fuel emissions



• Input-Output (IO) approach for embodied emission calculation



### Emission embodied in consumption:

Account for 70%-80% of total household emissions

>Are more equally distributed than direct fuel emissions

➢ Within-group variation of total emissions is lower than for fuels and more equal across income groups



- Computable General Equilibrium (CGE) modelling
  - Multi-sector multi-regional CGE model of explicit global trade
    - Based on GTAP data
  - Simulation of...
    - Consumption responses of households
    - Production responses of firms
    - ... via constant elasticity of substitution (CES) functions
  - Household representation in income quartiles
    - Income use: HBS 2014/15 (Statistik Austria 2016a)
    - Income source: EU-Silc (Statistik Austira 2016b)
      - Capital, high- and low-skilled labour, transfers
    - Subsistence consumption by Stone-Geary utility functions



- Computable General Equilibrium (CGE) modelling
  - Household representation in income quartiles



### Investigated climate policies - overview



- Economy-wide fossil fuel tax increase
  - With proportional-to-income revenue recycling
- Building code adaptation
  - to allow for an increased use of wood-based building structures
- Company mobility plans
  - to increase environmental friendly commuting
  - implemented as obligation for large companies (>50 employees)
- Calibrated to equal emission reductions across policies

# Incidence estimates of a fuel tax increase



- HBS: direct burden of transport and heating fuel price increase including proportional-to-income revenue recycling
- IO: direct and indirect burden of fuel price increase including proportional-toincome revenue recycling
- CGE: direct and indirect income use and income source effects



# Incidence channels of a fuel tax increase



 CGE decomposition into income use and income source channels



# Incidence estimates of a building code adaptation



- HBS: direct burden of price increase for real and imputed rents, induced by construction price change
- IO: direct and indirect burden of price changes induced by construction technology
- *CGE*: direct and indirect income use and income source effects from adapted construction technology



# Incidence channels of a fuel tax increase



 CGE decomposition into income use and income source channels



## Incidence estimates of a building code adaptation



- HBS: direct burden of public transport subsidy
- IO: direct and indirect burden consumer price changes induced by total investment costs of firms
- CGE: direct and indirect income use and income source effects from firm investment



## Incidence channels of a fuel tax increase



 CGE decomposition into income use and income source channels



### Conclusion

![](_page_19_Picture_1.jpeg)

- Fuel tax policy
  - Incidence estimate from HBS is more regressive than from IO or CGE
  - IO and CGE estimate similar incidence, as factor incomes hardly change
- Building code adaptation
  - Dominating income source side effects from factor incomes
- Company mobility plan policy
  - Strong interaction of income use and income source side effects
- Household incidence strongly varies across policy instruments

#### Discussion

![](_page_20_Picture_1.jpeg)

- Applicability of HBS estimates is rather limited
- IO estimates can be useful when income source effects are small or interpreted as short-term estimates
- Horizontal equity is less an issue for economy-wide taxes, when considering total embodied emissions instead of fuel consumption

### Discussion

![](_page_21_Picture_1.jpeg)

- In general, incidence of climate policies is determined by
  - the consumption patterns of households (income use)
  - > the corresponding emission intensities of consumption
  - the existing distribution and composition of income (income source)
  - The specific policy and policy design
- Evaluation of policy incidence should cover all these aspects to give best information basis for decision makers and public.

![](_page_22_Picture_0.jpeg)

#### Thank you!

#### **Stefan Nabernegg**

Wegener Center for Climate and Global Change DK Climate Change University of Graz, Austria