| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## Carbon Tax and Emissions Transfer a Spatial Analysis

<u>Sahar Amidi</u> University of Orléans Rezgar Feizi University of Kurdistan

Thaís Núñez-Rocha University of Orléans Isabelle Rabaud University of Orléans

June, 2021

Introduction

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 00000        | 000                | 00000       | 000000  | 0000        | 000000   |

# Essential facts

- Country tends to import the goods intensive in carbon rather than producing them domestically.
- Goods tend to be imported from near countries.
- ► Increase of the emissions embodied in exports and imports, around 5% and 10%, respectively.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 00000        | 000                | 00000       | 000000  | 0000        | 000000   |

## Carbon emissions affect the neighborhood through two ways:

#### First

Pollution at the national level, and transmission to neighboring countries through exports.

### Second

- ▶ Transferring the production of their output to tax-exempt third countries.
- ▶ Imported goods from that country might be exempted from the tax.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Three important reasons for using input-output model:

## First

Ex-ante analysis can be carried out and serve as an effective tool in quantifying key coefficients changes to CO<sub>2</sub> emissions.

#### Second

 Dependency and proportionality relations between different sectors (inter-relations between industries).

## Third

▶ Very tractable: the interactions of intermediate sectors and final sectors.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Research questions

#### Main question

What is the carbon taxation effect in spatial econometrics approach (direct indirect effects) (Silva Freitas et al., 2016) and (Zhong et al., 2018)?

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Research questions

#### Main question

What is the carbon taxation effect in spatial econometrics approach (direct indirect effects) (Silva Freitas et al., 2016) and (Zhong et al., 2018)?

### Secondary question

Which sector emitted more pollution through structural decomposition analysis (Perobelli et al., 2015)?

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## Our contribution

#### Models

 SDA (structural decomposition analysis), MRIO (multi-regional input-output model), and Spatial econometric models

### 56 sectors gathered in 5 categories

 Electricity, Manufacturing industries construction, Other sectors, Residential buildings commercial and public services, Transport

### 43 countries

31 OECD countries and 12 other countries

## Time period

▶ 2000-2014

Related literature

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

CO<sub>2</sub> emission transfers is synthesized into two different strands:

- CO<sub>2</sub> emissions embodied in trade that are generated by goods and services produced in some countries which are consumed in other countries.
- Carbon that is physically in fossil fuels, petroleum-derived products, harvested wood products, crops, and livestock products (Peters et al., 2012).

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 00●                | 00000       | 000000  | 0000        | 000000   |

# Ways for equalizing carbon taxes across countries

## First

All countries simply levy the same tax on the carbon content of fossil fuels produced within their borders.

#### Second

The production tax base could be modified to include fuel imports taxes to equalize them when production tax is lower in the producing country.

#### Final

Destination-based taxation.

Methodology

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 0000        | 000000  | 0000        | 000000   |

# Explained variables

#### Emissions embodied in trade

## $LnY_{ijt}^{rs}$

i: sector i, j= sector j, t: year, r: country r, s: country s i $\neq j, r \neq s$ 

- Emissions embodied in export
- Emissions embodied in import

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## $LnT_{ijt}^{rs}$ (Tax variables)

- Before tax (Total emissions before tax)
- After tax (carbon tax, Total emissions after tax, and The tax impact on price index)

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 0000        | 000000  | 0000        | 000000   |

## $LnT_{ijt}^{rs}$ (Tax variables)

- Before tax (Total emissions before tax)
- After tax (carbon tax, Total emissions after tax, and The tax impact on price index)

## $LnX_{it}^{rs}$ (Control variables)

 GDP per unit of energy consumption, The ratio of clean energy to total energy use, Per capita GDP

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## $LnT_{ijt}^{rs}$ (Tax variables)

- Before tax (Total emissions before tax)
- After tax (carbon tax, Total emissions after tax, and The tax impact on price index)

## $LnX_{it}^{rs}$ (Control variables)

 GDP per unit of energy consumption, The ratio of clean energy to total energy use, Per capita GDP

## $LnZ_{ijt}^{rs}$ (MRIO variables)

Intermediate inputs in local and other regions, Final requirements in local and other regions, Consumer Emissions, Producer Emissions

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## $LnT_{ijt}^{rs}$ (Tax variables)

- Before tax (Total emissions before tax)
- After tax (carbon tax, Total emissions after tax, and The tax impact on price index)

## $LnX_{it}^{rs}$ (Control variables)

 GDP per unit of energy consumption, The ratio of clean energy to total energy use, Per capita GDP

## $LnZ_{ijt}^{rs}$ (MRIO variables)

Intermediate inputs in local and other regions, Final requirements in local and other regions, Consumer Emissions, Producer Emissions

## OECD (Dummy Variable)

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Main estimating equation

$$LnY_{ijt}^{rs} = \beta_0 + \rho W_{t-1}^{rs} LnY_{ijt}^{rs} + \beta_1 LnX_{ijt}^{rs} + \delta_1 \sum_{ij=1}^n W_{ij} LnX_{ijt}^{rs} + U_{ijt}^{rs} + \epsilon_{ijt}^{rs}$$

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 0000●       | 000000  | 0000        | 000000   |

# Measurement and Descriptive Statistics of Variables

| Variable           | Definition                                    | Unit              | Mean     | Std.Dev. | Min      | Max      |
|--------------------|-----------------------------------------------|-------------------|----------|----------|----------|----------|
| EEE                | Emissions embodied in exports                 | Mt                | 3.4874   | 1.7788   | 0.1344   | 10.5868  |
| EEI                | Emissions embodied in imports                 | Mt                | 1.8087   | 1.5514   | -1417    | 6.4543   |
| TAX                | carbon tax                                    | Million dollars   | 8.4638   | 2.0382   | 0        | 11.70127 |
| TEBT               | Total emissions before tax                    | Mt                | 11.7661  | 2.7111   | 4.8204   | 20.0515  |
| TEAT               | Total emissions after tax                     | mt                | 8.999    | 2.8979   | 1.807    | 18.0747  |
| IPI                | The tax impact on price index                 | Million dollar    | 3.6664   | 3.0262   | -5.4033  | 9.4406   |
| GDP-engi           | GDP per unit of energy consumption            | Million Dollar/Mt | -11.7465 | 0.3556   | -13.0163 | -10.8619 |
| Clean-engi         | The ratio of clean energy to total energy use | %                 | 2.3358   | 1.1753   | -2.4383  | 4.4784   |
| PGDP               | Per capita GDP                                | Million dollars   | 9.8501   | 1.0322   | 6.1983   | 11.5351  |
| Intermediate-Local | Intermediate inputs in local region           | Million dollars   | 12.5772  | 1.7475   | 8.2934   | 16.8424  |
| Final-Local        | Final requirements in local region            | Million dollars   | 12.5545  | 1.7635   | 8.4225   | 16.6653  |
| Intermediate-Other | Intermediate inputs in other regions          | Million dollars   | 9.6786   | 1.5616   | 5.3796   | 13.2202  |
| Final-Other        | Final requirements in other regions           | Million dollars   | 9.1475   | 1.663    | 4.5644   | 13.0963  |
| C-emission         | Consumer Emissions                            | Million dollars   | 17.4695  | 3.3585   | 9.188    | 26.1566  |
| P-emission         | Producer Emissions                            | Million dollars   | 14.9916  | 3.1469   | 6.6068   | 23.1412  |
| OECD               | Belonging to an OECD country                  | Dummy Variable    | 0.7209   | 0.4489   | 0        | 1        |

# Results

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 00000   | 0000        | 000000   |

## Results based on two directions

## Step I

Recall the secondary question: Which sector emitted more pollution?

## Step II

Recall the main question: What is the effect of carbon taxation through carbon embodied emissions in trade?

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Step I



| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

Step I (Cont'd)



# Estimation of Panel Spatial Models for Emissions Embodied in Imports Before and After Tax

| VARIABLES  | $1/d^{2}$ | EEBT       | $1/d^2$   | EEBT       |  |
|------------|-----------|------------|-----------|------------|--|
|            | Befor     | e Tax      | After Tax |            |  |
| tax        | -         | -          | 0.0205    | 0.0979***  |  |
|            | -         | -          | (0.0317)  | (0.0289)   |  |
| Inter-L    | -5.712*** | -2.145*    | -2.965*** | -0.170     |  |
|            | (1.318)   | (1.122)    | (1.080)   | (0.968)    |  |
| Final-L    | 1.416***  | 0.379*     | 0.624***  | -0.00531   |  |
|            | (0.227)   | (0.210)    | (0.193)   | (0.185)    |  |
| Inter-O    | 3.365***  | 1.204      | 1.587**   | 0.0400     |  |
|            | (0.884)   | (0.736)    | (0.722)   | (0.631)    |  |
| Final-O    | 1.289***  | 0.214      | 0.754*    | -0.254     |  |
|            | (0.461)   | (0.405)    | (0.385)   | (0.356)    |  |
| C-emission | 4.918***  | 1.993*     | 2.426**   | 0.0572     |  |
|            | (1.434)   | (1.209)    | (1.173)   | (1.044)    |  |
| P-emission | -4.958*** | -1.802     | -2.528**  | -0.0196    |  |
|            | (1.429)   | (1.200)    | (1.171)   | (1.037)    |  |
| ρ          | 0.0579*** | 0.00301*** | 0.0543*** | 0.00242*** |  |
|            | (0.00457) | (0.000828) | (0.00427) | (0.000774) |  |
| δ          | 1.078***  | 1.048***   | 0.843***  | 0.886***   |  |
|            | (0.0312)  | (0.0303)   | (0.0244)  | (0.0256)   |  |

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Direct and Indirect Effects of the SDM Model for Emissions Embodied in Imports

| Variables          | Beta    | Total   | Direct  | InDirect | Beta    | Total   | Direct  | InDirect | Final effect |
|--------------------|---------|---------|---------|----------|---------|---------|---------|----------|--------------|
|                    |         | Bef     | ore Tax |          |         | Af      | ter Tax |          |              |
| tax                | -       | -       | -       | -        | 0.0096  | 0.0088  | 0.0019  | 0.0069   | -            |
| teat               | -       | -       |         | -        | 0.3321  | 0.3059  | 0.0663  | 0.2395   | -            |
| tebt               | 0.0646  | 0.0596  | 0.0131  | 0.0465   | -       | -       | -       | -        | -            |
| ipi                | -       | -       | -       | -        | -0.015  | -0.0138 | -0.003  | -0.0108  | -            |
| GDP-engi           | 0.0746  | 0.0688  | 0.0151  | 0.0537   | -0.0732 | -0.0674 | -0.0146 | -0.0528  | -0.1362      |
| Clean-engi         | 0.1809  | 0.1669  | 0.0367  | 0.1303   | 0.0797  | 0.0734  | 0.0159  | 0.0575   | -0.0935      |
| pgdp               | -0.0295 | -0.0272 | -0.006  | -0.0213  | -0.0747 | -0.0688 | -0.0149 | -0.0539  | -0.0416      |
| Intermediate-Local | 2.4115  | 2.2248  | 0.4887  | 1.736    | 2.6563  | 2.4468  | 0.5307  | 1.9161   | 0.222        |
| Final-Local        | 0.7851  | 0.7243  | 0.1591  | 0.5652   | 0.1529  | 0.1408  | 0.0305  | 0.1103   | -0.5835      |
| Intermediate-Other | -1.0872 | -1.003  | -0.2203 | -0.7826  | -1.3974 | -1.2872 | -0.2792 | -1.008   | -0.2842      |
| Final-Other        | -1.5743 | -1.4524 | -0.3191 | -1.1333  | -1.2321 | -1.135  | -0.2462 | -0.8888  | 0.3174       |
| C-emission         | -3.1963 | -2.9488 | -0.6478 | -2.301   | -3.141  | -2.8933 | -0.6276 | -2.2658  | 0.0555       |
| P-emission         | 3.198   | 2.9504  | 0.6481  | 2.3022   | 3.0964  | 2.8522  | 0.6186  | 2.2335   | -0.0982      |
| oecd               | 0.621   | 0.5729  | 0.1259  | 0.4471   | 0.5247  | 0.4833  | 0.1048  | 0.3785   | -0.0896      |

All coefficients are significant.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## Main results

- ► The spatial spillovers positive, significant and accepted sign.
- ► Tax increase in pollution embodied in trade.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

### Main results

- ► The spatial spillovers positive, significant and accepted sign.
- ► Tax increase in pollution embodied in trade.

#### Secondary results

- Electricity and heat production is the most polluting sector.
- Residential buildings, commercial and public services is the less polluting sector.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## First

Tax implementation have been effective in emission embodied in import with considering trade matrix, but this effect is less tangible when considering the geographical distance situation.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## First

Tax implementation have been effective in emission embodied in import with considering trade matrix, but this effect is less tangible when considering the geographical distance situation.

#### Second

Tax implementation have been effective in emission embodied in export with the weight matrix of geographical distance, but this effect is less tangible when trade is considered as the weight matrix.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## First

Tax implementation have been effective in emission embodied in import with considering trade matrix, but this effect is less tangible when considering the geographical distance situation.

#### Second

Tax implementation have been effective in emission embodied in export with the weight matrix of geographical distance, but this effect is less tangible when trade is considered as the weight matrix.

## Third

• The government can develop more rules when setting up the tax rate.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Policy recommendations

### First

EU zone or other integrated zones should harmonize this kind of increase in emissions.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

## Policy recommendations

## First

EU zone or other integrated zones should harmonize this kind of increase in emissions.

### Second

There is the spillover effect before and after taxation. So, the government should care about their decisions on environmental taxation in their country and their neighbors.

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Policy recommendations

## First

EU zone or other integrated zones should harmonize this kind of increase in emissions.

### Second

There is the spillover effect before and after taxation. So, the government should care about their decisions on environmental taxation in their country and their neighbors.

#### Third

▶ Integrated regions are good to avoid the carbon tax spillover effect.

| 000000 000 00000 00000 000000 000000 0000 | Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|-------------------------------------------|--------------|--------------------|-------------|---------|-------------|----------|
|                                           | 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

Thanks for your attention! Are there questions? amidisahar@yahoo.com Appendix

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 00000    |

$$\beta_{2} \mathbf{LnX_{it}^{rs}} = \begin{cases} \beta_{4} LnGDP.engi_{it}^{rs} + \beta_{5} LnClean.engi_{it}^{rs} + \beta_{6} LnPGDP_{it}^{rs} + \\ \delta_{4} \sum_{ij=1}^{n} W_{ij} LnGDP.engi_{it}^{rs} + \delta_{5} \sum_{ij=1}^{n} W_{ij} LnClean.engi_{it}^{rs} + \\ \delta_{6} \sum_{ij=1}^{n} W_{ij} LnPGDP_{it}^{rs} \end{cases}$$

$$\beta_{3} \mathbf{LnZ_{ijt}^{rs}} = \begin{cases} \beta_{7} LnInter.L_{ijt}^{rs} + \beta_{8} LnFinal.L_{ijt}^{rs} + \beta_{9} LnInter.O_{ijt}^{rs} + \\ \beta_{10} LnFinal.O_{ijt}^{rs} + \beta_{11} LnC.emission_{ijt}^{rs} + \beta_{12} LnP.emission_{ijt}^{rs} + \\ +\delta_{7} \sum_{ij=1}^{n} W_{ij} LnInter.L_{ijt}^{rs} + \delta_{8} \sum_{ij=1}^{n} W_{ij} LnFinal.C_{ijt}^{rs} + \\ \\ \delta_{9} \sum_{ij=1}^{n} W_{ij} LnInter.O_{ijt}^{rs} + \delta_{10} \sum_{ij=1}^{n} W_{ij} LnFinal.O_{ijt}^{rs} + \\ \\ \delta_{11} \sum_{ij=1}^{n} W_{ij} LnC.emission_{ijt}^{rs} + \delta_{12} \sum_{ij=1}^{n} W_{ij} LnP.emission_{ijt}^{rs} \end{cases}$$

$$\beta_{1}LnTEBT_{ijt}^{rs} + \delta_{1}\sum_{ij=1}^{n}W_{ij}LnTEBT_{ijt}^{rs} + \delta_{1}LnTAX_{t}^{rs} + \beta_{2}LnTEAT_{ijt}^{rs} + \beta_{3}LnIPI_{ijt}^{rs} + \delta_{1}\sum_{ij=1}^{n}W_{ij}LnTAX_{t}^{rs} + \delta_{2}\sum_{ij=1}^{n}W_{ij}LnTEAT_{ijt}^{rs} + \delta_{3}\sum_{ij=1}^{n}W_{ij}LnIPI_{ijt}^{rs}$$

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 00000    |

# Results of Selection Model Tests for Emissions Embodied in Exports Before and After Tax

|            |                         |           | SDM           | SAC           | SEM           | SAR          |
|------------|-------------------------|-----------|---------------|---------------|---------------|--------------|
| After Tax  | Log Likelihood Function | $1/d^2$   | -455.908      | -501.745      | -501.071      | -695.792     |
|            | -                       | EEBT      | -746.597      | -766.162      | -774.967      | -793.501     |
| Before Tax | Log Likelihood Function | $1/d^{2}$ | -514.411      | -547.417      | -553.264      | -780.331     |
|            | -                       | EEBT      | -815.793      | -835.839      | -877.358      | -869.983     |
| After Tax  | LR Test                 | $1/d^2$   | 858.6497 ***  | 399.7964 ***  | 1296.0179***  | 251.9009***  |
|            |                         | EEBT      | 36.9630***    | 53.1820***    | 72.6409***    | 16.3346***   |
| Before Tax | LR Test                 | $1/d^{2}$ | 1069.4587 *** | 11.9344 ***   | 1376.8246***  | 237.8938***  |
|            |                         | ÉEBT      | 34.6413***    | 0.0019 ***    | 6.7194 ***    | 22.2970***   |
| After Tax  | LM Error (Burridge)     | $1/d^2$   | 1835.3325***  | 2285.3894 *** | 2285.3894***  | 2285.3894*** |
|            | -                       | EEBT      | 55.0979***    | 429.4411 ***  | 429.4411***   | 429.4411***  |
| Before Tax | LM Error (Burridge)     | $1/d^{2}$ | 2080.2515 *** | 2600.1593 *** | 2600.1593***  | 2600.1593*** |
|            | -                       | EEBT      | 55.1978 ***   | 505.2714***   | 505.2714***   | 505.2714***  |
| After Tax  | LM Error (Robust)       | $1/d^2$   | 85.8318 ***   | 682.2846***   | 682.2846***   | 682.2846***  |
|            |                         | ÉEBT      | 13.3914***    | 156.6260 ***  | 156.6260 ***  | 156.6260***  |
| Before Tax | LM Error (Robust)       | $1/d^{2}$ | 4.97e+04 ***  | 1.50e+05 *    | 1.50e+05*     | 1.50e+05*    |
|            |                         | EEBT      | 231.4984***   | 2.36e+04**    | 2.36e+04 **   | 2.36e+04**   |
| After Tax  | LM Lag (Anselin)        | $1/d^2$   | 1764.9363 *** | 3728.4581***  | 3728.4581***  | 3728.4581*** |
|            | -                       | EEBT      | 43.5225***    | 304.3896 ***  | 304.3896***   | 304.3896***  |
| Before Tax | LM Lag (Anselin)        | $1/d^{2}$ | 2225.5606 *** | 3444.2500***  | 3444.2500 *** | 3444.2500*** |
|            | -                       | EEBT      | 46.6183 ***   | 379.6509***   | 379.6509 ***  | 379.6509***  |
| After Tax  | LM Lag (Robust)         | $1/d^2$   | 15.4356 ***   | 2125.3533 *** | 2125.3533 *** | 2125.3533*** |
|            | -                       | EEBT      | 1.8159 *      | 31.5745 ***   | 31.5745 ***   | 31.5745***   |
| Before Tax | LM Lag (Robust)         | $1/d^{2}$ | 4.98e+04 ***  | 1.51e+05 *    | 1.51e+05*     | 1.51e+05*    |
|            |                         | ÉEBT      | 222.9190***   | 2.34e+04 **   | 2.34e+04**    | 2.34e+04**   |
| After Tax  | AIC <sup>1</sup>        | $1/d^2$   | 969.8165      | 1033.489      | 1034.143      | 1423.584     |
|            |                         | EEBT      | 1551.194      | 1566.325      | 1581.934      | 1619.001     |
| Before Tax | AIC                     | $1/d^{2}$ | 1078.823      | 1124.834      | 1134.528      | 1588.663     |
|            |                         | EEBT      | 1681.586      | 1701.678      | 1780.716      | 1767.966     |
| After Tax  | BIC <sup>2</sup>        | $1/d^2$   | 1099.425      | 1100.528      | 1105.651      | 1495.092     |
|            |                         | EEBT      | 1680.802      | 1642.302      | 1653.442      | 1690.509     |
| Before Tax | BIC                     | $1/d^2$   | 1190.554      | 1191.873      | 1197.098      | 1651.232     |
|            | 1                       | ĖEBT      | 1793.318      | 1768.717      | 1838.817      | 1830.536     |

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 000000   |

# Results of Selection Model Tests for Emissions Embodied in Imports Before and After Tax

|            |                     |         | SDM         | SAC         | SEM         | SAR         |
|------------|---------------------|---------|-------------|-------------|-------------|-------------|
| After Tax  | Log Likelihood      | $1/d^2$ | -753.616    | -792.134    | -793.743    | -855.965    |
|            |                     | EEBT    | -777.319    | -857.121    | -859.943    | -870.987    |
| Before Tax | Log Likelihood      | $1/d^2$ | -902.163    | -965.4405   | -967.678    | -1003.35    |
|            |                     | EEBT    | -878.168    | -1031.13    | -986.481    | -1026.89    |
| After Tax  | LR Test             | $1/d^2$ | 162.1024*** | 2.7493**    | 210.8688*** | 45.1557***  |
|            |                     | EEBT    | 9.7860***   | 6.5061***   | 31.6680***  | 13.3546***  |
| Before Tax | LR Test             | $1/d^2$ | 159.9940*** | 4.4183***   | 187.0732*** | 77.6447***  |
|            |                     | ÉEBT    | 13.2280***  | 4.2578***   | 118.0840*** | 25.1705***  |
| After Tax  | LM Error (Burridge) | $1/d^2$ | 430.8375*** | 620.2473*** | 620.2473*** | 620.2473*** |
|            |                     | EEBT    | 6.4993***   | 106.5023*** | 106.5023*** | 106.5023*** |
| Before Tax | LM Error (Burridge) | $1/d^2$ | 317.4636*** | 352.4611*** | 352.4611*** | 352.4611*** |
|            |                     | ÉEBT    | 6.8341***   | 176.4571*** | 176.4571*** | 176.4571*** |
| After Tax  | LM Error (Robust)   | $1/d^2$ | 321.6487*** | 921.3551*** | 921.3551*** | 921.3551*** |
|            |                     | EEBT    | 2.8341**    | 0.7122      | 0.7122      | 0.7122      |
| Before Tax | LM Error (Robust)   | $1/d^2$ | 38.5859***  | 36.3757***  | 36.3757***  | 36.3757***  |
|            |                     | EEBT    | 4.3674***   | 9.4530***   | 9.4530***   | 9.4530***   |
| After Tax  | LM Lag (Anselin)    | $1/d^2$ | 470.2623*** | 406.8592*** | 406.8592*** | 406.8592*** |
|            |                     | EEBT    | 4.0149***   | 111.1076*** | 111.1076*** | 111.1076*** |
| Before Tax | LM Lag (Anselin)    | $1/d^2$ | 331.8253*** | 376.5123*** | 376.5123*** | 376.5123*** |
|            |                     | EEBT    | 4.6548***   | 195.7482*** | 195.7482*** | 195.7482*** |
| After Tax  | LM Lag (Robust)     | $1/d^2$ | 361.0735*** | 707.9670*** | 707.9670*** | 707.9670*** |
|            |                     | EEBT    | 0.3497      | 5.3175***   | 5.3175***   | 5.3175***   |
| Before Tax | LM Lag (Robust)     | $1/d^2$ | 52.9475***  | 60.4269***  | 60.4269***  | 60.4269***  |
|            |                     | EEBT    | 2.1881**    | 28.7441***  | 28.7441***  | 28.7441***  |
| After Tax  | AIC <sup>3</sup>    | $1/d^2$ | 1565.232    | 1618.268    | 1619.485    | 1743.929    |
|            |                     | EEBT    | 1612.637    | 1748.241    | 1751.886    | 1773.974    |
| Before Tax | AIC                 | $1/d^2$ | 1854.327    | 1960.881    | 1963.355    | 2034.695    |

Introduction
Related literature
Methodology
Results
Conclusions
Appendix

000000
0000
00000
00000
00000
00000
00000
00000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
0000000
000000
0000000

# Estimation of Panel Spatial Models for Emissions Embodied in Exports Before and After Tax

| VARIABLES  | $1/d^{2}$ | EEBT       | $1/d^{2}$ | EEBT       |  |  |
|------------|-----------|------------|-----------|------------|--|--|
|            | Befor     | e Tax      | After Tax |            |  |  |
| tax        | -         | -          | 0.0418**  | 0.0542**   |  |  |
|            | -         | -          | (0.0176)  | (0.0246)   |  |  |
| Inter-L    | -1.498**  | -1.036     | -0.275    | -0.0965    |  |  |
|            | (0.602)   | (0.875)    | (0.576)   | (0.798)    |  |  |
| Final-L    | 0.802***  | 0.764***   | 0.598***  | 0.619***   |  |  |
|            | (0.106)   | (0.164)    | (0.101)   | (0.151)    |  |  |
| Inter-O    | 0.731*    | 0.228      | -0.0979   | -0.404     |  |  |
|            | (0.404)   | (0.575)    | (0.388)   | (0.523)    |  |  |
| Final-O    | 0.620***  | 0.283      | 0.285     | 0.103      |  |  |
|            | (0.209)   | (0.312)    | (0.203)   | (0.288)    |  |  |
| C-emission | 1.792***  | 1.181      | 0.565     | 0.190      |  |  |
|            | (0.654)   | (0.942)    | (0.625)   | (0.858)    |  |  |
| P-emission | -1.688*** | -0.906     | -0.477    | -0.0221    |  |  |
|            | (0.652)   | (0.935)    | (0.625)   | (0.852)    |  |  |
| ρ          | 0.0823*** | 0.00307*** | 0.0798*** | 0.00318*** |  |  |
|            | (0.00252) | (0.000521) | (0.00272) | (0.000523) |  |  |
| δ          | 0.523***  | 0.857***   | 0.479***  | 0.770***   |  |  |
|            | (0.0146)  | (0.0239)   | (0.0134)  | (0.0214)   |  |  |

| Introduction | Related literature | Methodology | Results | Conclusions | Appendix |
|--------------|--------------------|-------------|---------|-------------|----------|
| 000000       | 000                | 00000       | 000000  | 0000        | 00000    |

# Direct and Indirect Effects of the SDM Model for Emissions Embodied in exports

| Variables          | Beta       | Total   | Direct  | InDirect  | Beta    | Total   | Direct  | InDirect | Final effect |
|--------------------|------------|---------|---------|-----------|---------|---------|---------|----------|--------------|
|                    | Before Tax |         |         | After Tax |         |         |         |          |              |
| tax                | -          | -       |         | -         | 0.0017  | 0.0012  | 0.0001  | 0.0011   | -            |
| teat               | -          | -       | -       | -         | 0.0492  | 0.0359  | 0.0029  | 0.033    | -            |
| tebt               | 0.0053     | 0.004   | 0.0003  | 0.0036    | -       | -       | -       | -        | -            |
| ipi                | -          | -       | -       | -         | -0.0017 | -0.0013 | -0.0001 | -0.0012  | -            |
| GDP-engi           | 0.0423     | 0.0318  | 0.0028  | 0.029     | 0.013   | 0.0095  | 0.0008  | 0.0087   | -0.0223      |
| Clean-engi         | -0.0151    | -0.0113 | -0.001  | -0.0104   | -0.028  | -0.0205 | -0.0016 | -0.0188  | -0.0092      |
| pgdp               | 0.0293     | 0.0221  | 0.0019  | 0.0201    | 0.0174  | 0.0127  | 0.001   | 0.0116   | -0.0094      |
| Intermediate-Local | -0.0899    | -0.0677 | -0.0059 | -0.0618   | 0.0848  | 0.0618  | 0.005   | 0.0568   | 0.1295       |
| Final-Local        | 0.9331     | 0.7025  | 0.0613  | 0.6412    | 0.8341  | 0.6084  | 0.049   | 0.5594   | -0.0941      |
| Intermediate-Other | 0.0378     | 0.0285  | 0.0025  | 0.026     | -0.082  | -0.0598 | -0.0048 | -0.055   | -0.0883      |
| Final-Other        | 0.0695     | 0.0523  | 0.0046  | 0.0477    | 0.0795  | 0.058   | 0.0047  | 0.0533   | 0.0057       |
| C-emission         | 0.0874     | 0.0658  | 0.0057  | 0.0601    | -0.0323 | -0.0236 | -0.0019 | -0.0217  | -0.0894      |
| P-emission         | -0.0978    | -0.0736 | -0.0064 | -0.0672   | 0.0066  | 0.0048  | 0.0004  | 0.0045   | 0.0784       |
| oecd               | -0.0869    | -0.0655 | -0.0057 | -0.0597   | -0.0928 | -0.0677 | -0.0055 | -0.0622  | -0.0022      |

All coefficients are significant.