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1 Introduction

The accumulation of greenhouse gases in the atmosphere is putting at risk the
stability of the climate system (IPCC, 2014). There is already solid empiri-
cal evidence that climate fluctuations reduce productivity, damage capital and
thereby slow economic growth (e.g. Dell et al., 2012; Burke et al., 2015). There
is also significant concern about non-linearities and tipping points in the climate
system that may be encountered in the not-too-distant future (Lenton et al.,
2008; IPCC, 2014; Lenton et al., 2019). For these reasons and others, the in-
ternational community has agreed to limit the increase in global temperatures
by reducing greenhouse gas emissions to net zero over a period of just a few
decades (UNFCCC, 2016). Reducing emissions in this way will require a drastic
reduction in the production and consumption of fossil fuels: a transition to a
low-carbon economy.

Two main obstacles lie in the way of decarbonisation. First, modern produc-
tion systems are heavily dependent on fossil fuels as intermediate inputs. Fossil
fuels are still the main source of energy for electricity generation globally, they
are required in the manufacturing of steel, cement, chemicals and other goods,
and they power international transport. While in certain sectors low-carbon
technologies are available and relatively attractive (e.g. renewable electricity),
in others low-carbon alternatives are still far from being competitive with the in-
cumbent technologies e.g. in heavy-duty road transport, shipping and aviation,
and in cement, chemicals and steel manufacturing (Energy Transitions Com-
mission, 2018). Hence, further innovation is needed to offer viable low-carbon
technologies to firms, which takes time.

Second, much of the existing stock of capital and infrastructure has been
designed to work in tandem with the use of fossil fuels (e.g. coal and gas power
plants and accompanying electricity distribution networks, steel mills and road
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networks). These are typically long-lived physical assets, financed with large
initial investments under the expectation of a long and profitable asset life.
Once installed, it would be costly, or sometimes impossible, to convert high-
carbon stocks to other low-carbon uses. This creates a strong incumbency bias
against a rapid low-carbon transition, as: i) firms do not want to suffer a negative
revaluation of their assets, or a reduction in capacity utilisation; ii) investors
holding financial assets issued by high-carbon firms want to avoid a drop in their
market valuation; and iii) governments aim to avoid large-scale investments to
decarbonise public infrastructure faster than its natural replacement cycle.

What is the most appropriate course of action, given the potential trade-off
between climate stability and the stranding of existing high-carbon physical and
financial assets? One possibility is to continue using existing high-carbon cap-
ital stocks at full capacity until they reach their natural end-of-life. If there is
no new investment in fossil capital, and assuming the availability of low-carbon
technological alternatives, this would lead to a smooth process of substitution
between high- and low-carbon capital stocks, avoiding losses for the owners of
fossil capital assets. However, the long lives of certain high-carbon assets (e.g.
coal plants typically operate for around 50 years) is thought to make this strat-
egy incompatible with the achievement of more stringent climate goals such as
limiting global warming to 2°C (Davis and Socolow, 2014; Pfeiffer et al., 2016),
as well as accentuating the risks of crossing climate tipping points. An alter-
native strategy would be to ‘strand’ today excess high-carbon capital stocks by
stopping using them ahead of their natural end-of-life. This scenario is implied
by the large initial downward jump in emissions that several models find to be
optimal to mitigate climate change (e.g. DICE). However, in a context in which
converting capital stocks to new (low-carbon) purposes, when possible, takes
time and money, this strategy is likely to trigger wider macroeconomic and fi-
nancial spillovers. The business operations of the firms owning the stranded
capital stocks would be disrupted, with negative repercussions for their prof-
itability; lending banks and institutions holding the financial assets of affected
firms would suffer losses, which might propagate to others within the financial
network; downstream firms would lose a source of intermediate inputs supply
(possibly unsubstitutable, in the short-term).

This paper investigates how to strike a balance between avoiding dangerous
climate change on the one hand and stranding high-carbon assets on the other
hand. To do so, we develop an integrated assessment model (IAM) that sim-
ulates socially optimal carbon emissions and corresponding investments in two
distinct capital stocks: green and dirty (in other words low- and high-carbon).
The model has three distinctive characteristics. First, we introduce rigidities –
adjustment costs – associated with the accumulation of either type of capital,

2



with the conversion of high-carbon capital into low-carbon capital, and with the
speed of emission abatement. Capital conversion plays a particularly important
role. Whenever optimal investment in high-carbon capital is negative, high-
carbon assets are stranded and firms spend money converting these assets into
low-carbon capital. This incurs resource costs to the firms concerned and, if un-
dertaken at high speed, it incurs wider economic costs. Second, optimal capital
investment must be made under multiple climate and economic uncertainties,
each of which is captured by a stochastic process. The social planner anticipates
these uncertainties and responds to them by making corrections to the optimal
emissions/investment path. That is, we solve the optimal path using dynamic
programming, and our model belongs to the emerging class of ‘recursive IAMs’
(Lemoine and Rudik, 2017). In doing so, we employ Epstein-Zin-Weil prefer-
ences (Epstein and Zin, 1989; Weil, 1990), which disentangle risk aversion from
intertemporal consumption substitution, consistent with empirical data on asset
returns. Third, we carefully calibrate the costs of emissions abatement in our
model on data from a large number energy systems models contained in the
IPCC database.

After calibrating the model, we run numerical simulations from 2020 (or
2030-2040, in the case of delayed policy scenarios) to 2100. We consider a num-
ber of different scenarios and perform sensitivity analysis on parameter values
EXPLAIN. We find that, across all scenarios considered, it would be optimal to
immediately stop investing in high-carbon capital and moreover to strand some
of it, in the range of . After a few decades, it becomes optimal to allow for some
dirty investments again. We also find higher optimal carbon prices compared
to a simpler model with no inertia in capital stocks and no uncertainty. More
specifically, optimal carbon prices are Finally, we show how a delay in the im-
plementation of mitigation policies leads to higher asset stranding, in the order
of

The remainder of the paper is structured as follows. Section 2 discusses
related literature and identifies our contribution to it. Section 3 presents the
model. Section 4 explains our calibration strategy. Section 5 presents and
discusses our numerical results. Section 6 concludes.

2 Motivation and related literature

Our paper contributes to the literature studying possible stranding of assets
along the transition to a low-carbon economy and the wider economic impli-
cations of this. Asset stranding takes place whenever the utilisation and/or
monetary value of certain assets suffers an unanticipated reduction. The gen-
eral idea that a technological transition can lead to assets losing their value or
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having to be reconverted at a cost has been highlighted by innovation scholars
(see for instance Perez, 2010) and in recent years it has been applied to the low-
carbon transition. The root of the issue in the case of the low-carbon transition
is the disparity between, on the one hand, the still substantial amount of fossil
fuel reserves and resources, and, on the other hand, the comparatively small
atmospheric carbon budget that is available if global warming is to be limited
to a tolerable level. Meeting climate goals consequently requires some fossil fuel
reserves to remain in the ground (Meinshausen et al., 2009; McGlade and Ekins,
2015).

The idea of ‘unburnable carbon’ (Carbon Tracker, 2011) has two main ram-
ifications beyond the fossil fuel extraction sector itself. First, physical capital
stocks requiring fossil inputs to operate might lose value, because their utilisa-
tion rate falls, or because they must be converted to different uses. This should
impact the profits of the non-financial firms that operate said assets and it can
spill over to cause additional asset stranding upstream and downstream in the
value chain (Cahen-Fourot et al., 2019). Second, a reduction in the expected
profits of these non-financial firms should impact the value of the financial as-
sets they issue. This in turn could lead to a propagation of losses within the
highly interconnected financial network through second-round effects, where a
financial institution with little or no exposure to the fossil industry is negatively
affected by the revaluation of financial assets in its possession issued by other
financial institutions exposed to the fossil industry (Battiston et al., 2017). The
combination of these two dynamic effects then poses a risk of wider macroeco-
nomic dynamics characterised by financial instability, unemployment, recession
and stress on public finances; an eventuality framed by the former governor of
the Bank of England, Mark Carney, as a ‘climate Minsky moment’ (Carney
et al., 2019).

Asset stranding can be studied using different approaches, including concep-
tual studies (Semieniuk et al., 2020), analysis of emissions embodied in physical
capital stocks (Pfeiffer et al., 2018; Cui et al., 2019), analysis of production and
financial networks (Cahen-Fourot et al., 2019; Battiston et al., 2017), and em-
pirical analysis of financial asset pricing (Campiglio et al., 2019; Sen and von
Schickfus, 2020). We contribute instead to the research effort trying to incorpo-
rate asset stranding in dynamic economic models. Within this effort, a variety of
modelling traditions has been deployed, ranging from dynamic stochastic general
equilibrium (DSGE) models (Annicchiarico and Di Dio, 2016) and capital asset
pricing models (CAPM) (Karydas and Xepapadeas, 2019) to stock-flow con-
sistent (SFC) models (Dafermos et al., 2018) and agent-based models (ABMs)
(Lamperti et al., 2019). We mainly build upon and contribute to the stream of
literature developing IAMs rooted in neoclassical growth theory.
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Traditionally, IAMs have abstracted from the issue of asset stranding, both
from a physical and financial perspective. However, recent contributions have
started to fill this gap in the literature. Some of them (Baldwin et al., 2020;
Rozenberg et al., 2020; Coulomb et al., 2019; Vogt-Schilb et al., 2018) develop
Ramsey-type growth models where, building on previous contributions introduc-
ing irreversible investments (Jorgenson, 1967), they allow for under-utilisation
of capital stocks. This is introduced by setting an additional constraint to the
optimisation problem, whereby the amount of capital that can be utilised is
bounded by the amount of capital installed. The general conclusion of this
stream of work is that, in order to respect a certain carbon budget, it would be
optimal to leave part of the capital stock un-utilised. Rozenberg et al. (2020)
take a step further by assuming an additional political constraint, whereby no
stranding is allowed even if it would maximise welfare to do so, and show how
non-pricing policies (e.g. mandates, feebates) become optimal in this case. The
focus of this line of work is stranding of physical assets; no financial considera-
tions are developed.

A parallel strand of the literature has developed models with a stronger focus
on financial asset stranding. For instance, van der Ploeg and Rezai (2020) study
stranding in the form of changes in the market valuation of firms in the fossil ex-
ploration and extraction sector. Karydas and Xepapadeas (2019) introduce cli-
mate change and transition risks in a dynamic asset pricing framework to study
how these affect equity premiums. Hambel et al. (2020) also employ a dynamic
asset pricing framework to analyse the trade-off between emissions abatement
and asset diversification motives (i.e. that there can be a diversification motive
to continue investing in dirty assets). To capture inertia in investment dynam-
ics, and building on optimal investment theory (Gould, 1968; Lucas Jr, 1967),
some of the contributions mentioned above include adjustment costs as a convex
function of the level of investment (also see Coulomb et al., 2019; Vogt-Schilb
et al., 2018), or of the investment-capital ratio (Hambel et al., 2020; van der
Ploeg and Rezai, 2020). Investment adjustment costs aim to capture the fact
that a proportion of the (opportunity) costs that firms bear when installing new
capital are not transformed into new capital stock (e.g. the labour employed in
the production of new capital, which is thereby not employed in the production
of consumption goods). Given the convexity of the adjustment cost function,
large capital investment efforts concentrated in one period are assumed to be
more expensive than the same capital expansion spread over multiple periods.
Coulomb et al. (2019) also differentiate investment adjustment cost functions by
technology, assuming that the cost function for renewables has a steeper slope
than the cost function for gas because of the additional storage costs associated
with renewables.

5



An alternative approach to including asset stranding is to treat stranding as
the costs required to reconvert capital stocks to new (low-carbon) uses. Hambel
et al. (2020) introduce quadratic stranding costs by allowing dirty capital to be
reconverted to clean capital with proportionally increasing frictions. All types of
capital stocks remain fully utilised. While unable to analyse the issue of capac-
ity underutilisation, this approach has the advantage of being able to capture
both the directs costs of technological conversion and the wider macroeconomic
spillovers that the process might trigger. We also include reconversion costs us-
ing a quadratic cost function, but we differentiate ourselves from Hambel et al.
(2020) in its interpretation.

Some of the asset stranding models also include stochastic elements. Bretschger
and Soretz (2018) and van der Ploeg and Rezai (2020) focus on uncertainty
about the introduction of emissions abatement policies using optimal control
theory. Hambel et al. (2020) and Karydas and Xepapadeas (2019) introduce
stochastic processes governing both climate and macroeconomic variables. In
doing so, these latter two papers connect the literature on stranded assets with
the literature on so-called ‘recursive integrated assessment’ (Lemoine and Rudik,
2017), which studies the implications of uncertainty for optimal climate policy
in a closed-loop set up, in which uncertainty is gradually resolved and policy-
makers can make adjustments mid-course (and anticipate this possibility). Re-
cursive IAMs solve a dynamic programming problem and often apply Epstein-
Zin-Weil preferences (Epstein and Zin, 1989; Weil, 1990), which disentangle risk
aversion from the elasticity of intertemporal substitution, providing one way to
reconcile preferences in the IAM with the asset pricing puzzles.

3 The model

We consider an economy in continuous time with an infinite time horizon. A
single type of good exists, used for both consumption and investment purposes.
The expectations of agents are rational. Two technologies exist: a dirty capital
good (Kd) and a clean one (Kc), with total capital K = Kd + Kc. Two main
features distinguish dirty and clean capital. First, we assume Kd is more pro-
ductive than Kc. Second, we assume use of Kd produces CO2 emissions E at a
carbon intensity ψ (that is: E = ψKd), while use of Kc does not produce any
emissions.

In our model, dirty capital Kd represents all forms of capital that require fos-
sil fuels to produce goods and services (e.g. electricity from coal and gas, steel,
cement, and others), while clean capital Kc comprises capital that does not re-
quire fossil fuels for production. While not explicitly representing networks of
intermediate exchange, this approach allows us to partly capture the distinc-
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tion between upstream and downstream sectors. Upstream sectors where fossil
fuels enter directly as intermediate inputs require a shift towards low-carbon
technological alternatives. Downstream sectors (e.g. technological firms), where
fossil fuels are not directly used, can already be considered clean, as they are
dirty only to the extent to which they employ intermediate inputs of polluting
upstream sectors (Kemp-Benedict, 2018). Therefore, contrary to most of the
related literature that assumes clean capital is a small expanding niche in a sys-
tem dominated by dirty capital, our definition implies most of the capital stock
is clean (or at least not dirty per se), and we treat as dirty only the capital that
directly uses fossil fuels.

3.1 Production

Output Y is produced through the following function:

Y = AL1−α(Kd +Kc)
αeξ (1)

where A is a parameter representing total factor productivity, increasing
exogenously at a rate equal to (1− α)g,1 L is labour growing at rate gL, and α
is the capital share. Appendix 1 provides an overview of all parameter values.

Building on Dietz and Venmans (2019), we also assume that, at each time t,
production is perturbed by some ‘reward’ and ‘penalty’ factors, aggregated in
the term ξ. More specifically, we assume production is affected by:

• A reward for using more productive dirty capital Kd, or, to put it another
way, the extra cost of clean capital/emissions abatement. However, the
reward for polluting gradually declines with the level of emissions and
eventually becomes zero for large enough values of E (thus making the
two types of capital equally productive).

• A penalty for having high cumulative emissions S. Building on recent
scientific evidence showing that warming is approximately a linear func-
tion of cumulative emissions (see Dietz and Venmans, 2019, and references
therein), this is equivalent to introducing climate damages to production
caused by increasing temperatures. We choose a quadratic damage func-
tion, in keeping with much of the literature (e.g. with the DICE model).

• A penalty for reducing emissions too quickly. Given E = ψKd, we can
define emissions change Ė as a direct function of changes in two variables:
i) the dirty capital stock, which, as we will explain in the next subsection,

1This results in a steady state growth rate of g.
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is expanded by investments and reduced by both depreciation and repur-
posing of capital; and ii) carbon intensity ψ, which we assume decreases
at a constant rate −gψ. This penalty on the speed of abatement allows
us to consider the costs of a more abrupt transition even in the absence
of stranding costs, as it captures inertia in existing energy systems, the
struggle to retrain and reskill workers, and bottlenecks to fast innovation
(Ha-Duong et al., 1997).

We can thus write ξ as:

ξ = φE − ϕ

2
E2 + βĖ − γ

2
S2, (2)

where φ, ϕ, β and γ are constant parameters governing the costs of emissions
abatement and warming respectively. With this formulation, the marginal pro-
ductivity of clean capital YKc is equal to Y α

K .2 The marginal productivity of
dirty capital YKd is instead equal to Y

[
α
K + φψ − ϕψ2Kd

]
, where the first term

is equal to the productivity of clean capital YKc , the second term represents the
extra productivity of Kd when emissions are zero and the third term represents
the declining marginal productivity of Kd. This corresponds to the assumption
of a marginal abatement cost function that is linear as a proportion of output,
as in Dietz and Venmans (2019), which allows us to avoid obtaining unrealis-
tic infinite marginal abatement costs for levels of emissions close to zero. Note
that despite the fact that both capital forms enter the Cobb-Douglass function
additively, they are far from being perfect substitutes. The ratio of margainal
productivities writes YKd

YKc
=

α
K+φψ−ϕψ2Kd

α
K

. At zero emissions, dirty capital is
4.7 times more productive than clean capital. On the contrary, at BAU emis-
sions, both forms of capital have the same productivity.

However, in this paper, emissions abatement is obtained by substituting
dirty capital by clean capital. That is, the monetary loss of reducing emissions
at the margin is equal to YE = Y (φ−ϕE−βδ) = 1

ψ (YKd−YKc). At an emissions
level E = φ−βδ

ϕ , the marginal abatement cost is zero, both forms of capital are
equally productive and, in the absence of carbon taxes, it would be optimal to
choose a level of Kd equal to φ−βδ

ϕψ . At zero emissions, substitution of dirty
capital by clean capital is costly and marginal abatement costs, as a proportion
of production, are equal to φ− βδ.

Finally, defining effective labour l = L0e
(gL+g)t and capital per unit of ef-

fective labour ki = Ki

L0e
(g+gL)t

allows us to write production per unit of effective
labour y as

y = A0 (kd + kc)
α
eφE−

ϕ
2 E

2+βĖ− γ2 S
2

. (3)
2We use the subscript to denote the derivative of a variable with respect to the subscript

variable. In this case, YKc ≡
∂Y

∂Kc
.
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3.2 Capital dynamics

Four main factors govern the dynamics of the two capital stocks, kd and kg.
First, existing stocks of capital depreciate at a constant rate δ, which we

assume to be equal between the two sectors. If left to depreciate, capital stocks
would asymptotically converge towards zero.

Second, both types of capital stock can be expanded by investment, id and
ic. We assume investment adjustment costs are a positive and convex func-
tion of investment: c(i) = χi2. For any amount i of disbursed investment
expenditure, the value of newly installed capital will only be a proportion of
investment expenditure equal to i− χi2, where χ is the investment adjustment
cost parameter. We assume χ to be the same in the two sectors. This makes
large investment proportionally more expensive and creates a first incentive to
smooth investment over time.

Third, we allow capital stocks to be converted at a cost from dirty to clean
if optimal investment in the dirty sector is negative (id < 0)3. For convenience,
we rename negative dirty investments as r. We assume repurposing costs to be
a positive and convex function of total capital to be repurposed: c(r) = θ1r

θ2 .4

For low levels of r, it is possible to transform dirty capital into clean capital at
relatively low costs; that is, the monetary value of the new clean capital stock
is a large proportion of that of the original dirty capital (although still less than
100%). As the capital stock to be repurposed r becomes larger, repurposing
costs become more than proportionally larger, taking into account the fact that
transforming a large proportion of the operating capital stock all at once would
create impediments to the smooth functioning of the sector, as well as to the
provision of intermediate inputs to downstream sectors, possibly also causing
financial disruption. To offer an example, if only a small proportion of coal
plants is repurposed every year to burn wood pellets instead, the value of the
capital stock after the conversion will be only marginally lower than before; if all
coal plants are repurposed at the same time, the entire sector will simultaneously
shut down for a period, which might have consequences for coal firms, their
electricity customers and their investors.This means that, for large enough values
of stranding, c(r) > r.

Fourth, both capital stocks are subject to a geometric Brownian motion with
correlation coefficient ρ. This stochastic process represents random changes
to the value of capital and its productivity, similar to changes in the market
valuation of a firm on stock markets, and allows us to capture uncertainty

3We do not consider the ic < 0 case, so no conversion from dirty to clean capital is allowed.
4In the level equation, the penalty is θ̂tRθ2 , with θ̂t = θL0e(1−θ2)(g+gL)t a time dependent

coefficient. This scaling factor corresponds to the assumption that it is the relative disinvest-
ment compared to the total stock of dirty capital that matters for repurposing costs, rather
than the absolute level of disinvestment.
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concerning future growth prospects.
Hence, defining capital per unit of effective labour as k = K

L0e(gL+g)t , the
equations of motion for the dirty and clean capital stocks are

dkd =
(
id − χdi2d − r − (δ + gL + g)kd

)
dt+ σdkddWd, (4)

dkc =
(
ic − χci2c + r − θ1rθ2 − (δ + gL + g)kc

)
dt+ σckcdWc. (5)

3.3 Emissions and tipping points

Emissions are proportional to the size of the dirty capital stock

E = ψtKd (6)

Temperature is a linear function of cumulative emissions T = ζS, where ζ is the
slope coefficient, the transient climate response to cumulative CO2 emissions
or TCRE (Collins et al., 2013). Temperature is subject to both a geometric
brownian motion and a jump process. We interpret the brownian motion as
capturing physical climate and damage uncertainties, while the jump process
represents a tipping point in the climate system. The probability of tipping
over a short time interval is λdt. The size of the tipping point is proportional
to global warming at the time of tipping. We can thus write:

dT = ζEdt+ σTTdW + TdP (7)

ψt is the carbon intensity of dirty capital, which decreases at a constant rate
gψ, therefore E = ψ0L0kde

(−gψ+gL+g)t. The abatement speed is

Ė = E

[
g + gL − gψ +

k̇d
kd

]
= E

[
−δ − gψ +

id − χdi2d − r
kd

]
. (8)

Therefore, at zero dirty investment, emissions decrease at rate δ + gψ, which is
in some sense the ‘speed limit’ to decarbonization, beyond which dirty capital
needs repurposed at a cost.We assume that the parameters of the abatement
cost function, φ, ϕ, β decrease at a constant rate.Marginal abatement costs at
zero emissions decrease at rate gφ,due to exogenous technological improvement,
which we set at 1%. We assume a faster decrease in the slope of the MAC curve,
such that BAU emissions (φϕ ) increase by rate gφ − gϕ, which we set at -1%.
Technological improvement also decreases the penalty for abatement speed over
time, again at 1% per year. We choose growth rates so to be able to cancel out
time from the equations, except for the equation of motion of cumulative emis-

10



sions5. We use an iterative procedure to approximate the cumulative emissions,
explained in appendix 5. For a subset of runs, we show in appendix 8 results
for other growth rates of the parameters. This will require time as a 4th state
variable of the value function. Time’s natural unboundedness is inconvenient
in the estimation method. It is helpful to introduce a strictly monotonic trans-
formation that maps t ∈[0,∞) to τ = 1− e−ζt∈[0, 1). (Traeger 4-stated DICE,
2014)

3.4 Consumption and utility

Consumption per unit of effective labour is

c = y − id − ic. (9)

In the case of expected utility, relative risk aversion is also the inverse of the in-
tertemporal elasticity of substitution. Therefore, high levels of risk aversion will
automatically increase the discount rate and lead to lower climate ambition, all
else being equal. In order to disentangle relative risk aversion from the intertem-
poral elasticity of substitution, we use recursive utility, a.k.a. Epstein-Zin-Weil
preferences or Kreps-Porteus utility (Duffie and Epstein, 1992). The represen-
tative household maximises utility from per capita consumption, discounted at
the pure time preference rate ρ, with standardized aggregator function f and
value function V :

V (kd, kc, S, t) = maxicidE
∫ ∞
0

−f(kd, kc, S, t, V, id, ic)dτ, (10)

f(kd, kc, S, t, V, id, ic) =
1−RRA

1− η
(ρ− gL + (η − 1) g)V

[
(c)

1−η

((1−RRA)V )
1−η

1−RRA
− 1

]
.

(11)
Appendix 2 shows the formulas for expected utility (the special case where
η = RRA) and how we transform the present value function into a current
value function. The Hamilton-Jacobi-Bellman equation is

maxE

{
f +

1

dt
E[dV (kd, kc, S, t)]

}
= 0. (12)

Applying Ito’s Lemma gives6

5More specifically, this requires gφ = −
(
g + gL − gψ

)
; gϕ = −2

(
g + gL − gψ

)
; gβ =

−
(
g + gL − gψ

)
.

6In the case of expected utility, a transform of the value function leads to a similar formula,

where the factor (1−RRA)V
1−η

[
c1−η

((1−RRA)V )
1−η

1−RRA
− 1

]
is replaced by c1−η

1−η .
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0 = maxid,ic{(ρ− gL + (η − 1) g)
(1−RRA)V

1− η

[
c1−η

((1−RRA)V )
1−η

1−RRA
− 1

]
+Vkd

(
id − χi2d − (δ + gL + g)kd

)
+ Vkc

(
ic − χi2c − (δ + gL + g)kc

)
+0.5Vkdkdk

2
dσ

2
d + 0.5Vkckck

2
cσ

2
c + Vkckdρσcσd

+VSE + 0.5VSSS
2σ2
S + λS [V (S + ξS)− V ]

+Vt}

Applying the envelope theorem to the Bellman equation gives an analytical
expression for the shadow price of cumulative emissions, i.e. the social cost of
carbon expressed in utils. 7

VS = 1
(ρ−gL+(η−1)g) Φ{Ψc−ηy(−γS) + VSSE

+VSkd
(
id − χi2d − (δ + gL + g)kd

)
+ VSkc

(
ic − χi2c − (δ + gL + g)kc

)
+ 0.5VSkdkdk

2
dσ

2
d + 0.5VSkckck

2
cσ

2
c + VSkckdρσcσd

+0.5VSSSS
2σ2
S + VSSSσ

2
S + λS [VS(S + ξS)− VS ] + VtS},

with Φ(V, c) = 1−η

1−RRA+(RRA−η)c1−η((1−RRA)V )
− 1−η

1−RRA
and Ψ(V ) = ρ−gL+(η−1)g

((1−RRA)V )
1−η

1−RRA−1
,

both of which are equal to one in the case of expected utility. Although we solve
the problem stated in this section as a command optimum, the resulting solu-
tion corresponds to the outcome in a decentralized market economy provided
carbon emissions are priced at an amount equal to the marginal damage cost
of CO2 or in other words the social cost of carbon, and that there are no other
externalities or market failures. Henceforth we will use the price of carbon and
the SCC interchangeably. Figure 2. shows a decomposition of the different
terms of the SCC.

The first term c−ηy(−γS) is the marginal damage from warming, typically
modest in 2020 with 1°C of warming and independent of the fact that there is
inertia. Inertia leads to two major differences regarding term 2 and 3. Firstly, in
a model with inertia, emissions start at the current level of emissions, whereas
in a model without inertia, optimal emissions jump from the current level of
emissions to an optimal level that is much lower. This will increase the second
term−VSSE proportionally. This second term can be considered as a temper-
ature trend effect, because emissions are proportional to the time derivative of
temperature. The temperature trend matters because the social cost of carbon
depends also on future marginal damages. Note that this effect is especially

7The Social Cost of Carbon expressed in units of consumption (dollars) is SCC =
VS
Vkc

L0e(g+gL)t
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large for very convex damage functions. We show below that this term repre-
sents more than 100% of the carbon price in our model. Next, the third term
VSkd ∗ trend(kd) is proportional to the speed of abatement and is absent in the
model without inertia. We call this the temperature concavity effect, because
the trend of dirty capital is proportional to the second time derivative of tem-
perature. VSE is typically negative, because the social cost of carbon is larger
in a larger economy and emissions increase production. Therefore, the third
term reduces the SCC, especially for productions functions with a large cross
derivative in kd and S (e.g. when both abatement costs and damages are pro-
portional to production size). The intuition is that repurposing costs increase
the temperature trend at the start, but if this temperature path is at the same
time very concave, the difference with a model without repurposing costs will
be limited. In the extreme case with a negligible penalty for abatement speed,
this third term compensates the increased magnitude of the second term. The
carbon price converges to the case without emission inertia. In the case of a
binding penalty for abatement speed at the start, the effect on the second term
will dominate the counteracting effect on the third term and the carbon price
will be higher. This implies that the optimal emissions path incurs a nonzero
penalty on abatement speed at the start of the optimal path (except if there
are interaction terms in the cross derivative VSX). Appendix 2 shows that the
above features hold in any model with inertia in emissions.

4 Calibration of the model

4.1 Estimation of abatement costs

We calibrate abatement costs in our model using the results of the scenario
ensemble underpinning the IPCC Special Report on Global Warming of 1.5°C
(IPCC, 2018). The database aggregates the results of several modelling or
inter-model comparison exercises involving twenty-four leading energy systems
models8. Each model or project has a business-as-usual (BAU) reference sce-
nario (e.g. one in which no mitigation policy is implemented), which may differ
depending on underlying assumptions about population growth, GDP growth,
the openness of economies etc. (e.g. differences in the SSP scenarios). Mitiga-
tion scenarios include various assumptions concerning the strength of mitigation
policies and temperature objectives, ranging from below 1.5°C to more than 3°C.
After excluding scenarios with warming above 3°C in 2100, we are left with 89
scenarios for which we have values for emissions, carbon prices, GDP and other
variables.

8The database is available at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.
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As mentioned in section 3.1, emissions when no abatement policy is imple-
mented are equal to EBAU = φ

ϕ . We can thus define abatement B = φ
ϕ − E

and GDPBAU = AL1−αKαe
φ2

2ϕ−
γ
2 S

2

.
This leads to the following expression for total abatement costs as a percent-

age of GDP:

ln
GDPt

GDPBAUt
= −ϕ

2

(
E − φ

ϕ

)2

+ βĖ. (13)

9

Alternatively, we use carbon prices as a function of abatement in models and
fit this to our marginal abatement cost function:

MAC = Y (φ− ϕE) = ϕA (14)

and φ = ϕE2020.
Table 1 shows the results of a non-linear regression minimizing the squared

deviation between both sides of equation 13.

4.2 Estimation of the depreciation rate δd

The depreciation rate of dirty capital δd represents the rate at which capital
stocks reach their ‘natural’ end of life. This plays a particularly important role
in our model as, together with the decline rate of emission intensity ψ (see
next subsection), it defines the maximum speed at which the system can abate
emissions without having to repurpose existing capital to low-carbon uses (hence
incurring our non-linear repurposing costs). Given the heterogeneity of kd, it
is not straightforward to establish the correct value of δd. Ideally, one would
have, for each type of dirty capital considered, data regarding the vintages
of existing capital and the expected asset lifetime at the plant level, in order
to be able to construct a timeline of future expected retirements, at least for
currently operating stocks. However, while data are available for certain types
of assets (see for instance Cui et al. (2019) for coal plants), for other activities
data are much more scattered. For simplicity, we thus assume kd to be internally
homogenous and depreciating at a constant rate δd, which we assume to be equal
to the inverse of average asset lifetime. The assets we consider here tend to have

9Defining investment net of stranding costs as îc = ic + r − θ1rθ2 gives the following
consumption equation c = y − îc − îd − θ1rθ2 . Therefore, a model where repurposing costs
create a loss in consumption or production rather than in clean investment results in the same
optimization problem, provided that îd is interpreted as net clean investments. Assuming that
a relative loss in production is a good proxy for a loss in consumption we also fit the following
equation wich includes stranding costs GDPt = GDPBAUte

−ϕ
2
A2+βĖ − θ1rθ2L0e(g+gL)t,

with r =
−Ė−(gψ−δ)E

ψ0L0e
(−gψ+gL+g)t

from equation 8
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Table 1: Nonlinear regression estimating equation 13 for total abatement costs
and equation ?? for marginal abatement costs. Only scenarios with tempera-
tures below 3°C in 2100 are included. Stranding is set to zero for emissions below
5GtCO2. Carbon prices are winsorized at the 5% level (p5=2150$/tCO2); be-
yond that they are likely to be influenced by nonlinear spikes for a small amount
of the most expensive abatement. Total abatement costs are winsorized at 1%
(p1=14% of GDP_BAU). A weighting scheme using a disount rate of 3.3% is
used to take into account that data far in the future are estimated with lower
precision. We exogenously set θ2 = 2.1; δd = 0.04;ψ = 2.5.

E_BAU_endog E_BAU_endog__GDP E_BAU_endog2 E_BAU_55 E_BAU_55_incl_3° E_BAU_50 E_BAU2010_50 E_BAU_ref_sc E_BAU_ref_sc__r2050 E_BAU_ref_sc__GDP E_BAU_ref_sc__lnL~s E_BAU_ref_sc2010_~s
varphi 5.5e-06*** 6.8e-06*** 9.2e-06*** 2.0e-05*** 2.0e-05*** 2.4e-05*** 2.4e-05*** 4.5e-05*** 2.3e-05*** 1.9e-05*** 2.3e-05*** 2.5e-05***
phi 5.5e-04*** 6.1e-04*** 7.3e-04***
beta -.0015 .0011 9.1e-04 .0042*** .0033*** .0052*** .0047*** .0013 -1.4e-05 5.8e-04 6.6e-04 6.6e-04
theta1 34.23** 22.05*** 9.559 16.88*** 5.696 7.603 13.9* 25.29*** 10.86 13.7* 13.43*

obs 1012 1012 1033 1033 2090 1033 1033 1033 1033 1012 1033 1033
ll -3671 -3673 2337 2324 5173 2320 2322 2258 2262 -3811 2182 2182
bic 7369 7367 -4647 -4627 -1.0e+04 -4620 -4623 -4496 -4503 7643 -4343 -4343
aic 7349 7352 -4667 -4642 -1.0e+04 -4635 -4638 -4511 -4518 7628 -4357 -4357

legend: * p<.1; ** p<.05; *** p<.01 legend: * p<.1; ** p<.05; *** p<.01 legend: * p<.1; ** p<.05; *** p<.01

a long lifetime. Coal plants, for instance, have an average lifetime of 46 years
(Cui et al., 2019), with many of them lasting up to 60 or 70 years. Similarly, IEA
(2019) uses a reference lifetime of coal plants of 50 years. Other carbon-related
assets like transport infrastructure and buildings have even longer life-spans,
reaching 100 or 200 years, while manufacturing equipment is estimated to last
between 10 and 40 years (Hallegatte, 2009; IEA, 2002). We choose a central
parameter value for δd equal to 4%, corresponding to an average asset mean
lifetime of 25 years. This is roughly in line with depreciation rates adopted
by models including long-lived physical assets (see for instance van der Ploeg
and Rezai, 2020; Vogt-Schilb et al., 2018; Baldwin et al., 2020; Coulomb et al.,
2019)10. For simplicity and to facilitate the dynamics of the model, we also set
δc = δd.

4.3 Estimation of the carbon intensity of dirty assets ψ

We define ψ as the carbon intensity of dirty assets. To calibrate ψ, we start
by considering starting 2020 values for two variables: 50 gigatonnes for CO2

10For instance,van der Ploeg and Rezai (2020) use a depreciation rate of 5% for exploration
capital; Coulomb et al. (2019) use 3.33% for electricity generation plants; Baldwin et al. (2020)
use 5% for general capital stock and 2.5% for fossil energy capital; Vogt-Schilb et al. (2018)
use 4% for industry and 2.5% for energy capital.
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emissions and 335 trillion $ for the global stock of capital. We then need to
estimate the proportion of the capital stock that can be considered ‘dirty’. To
obtain this value, we use the World Input-Output Database (WIOD), containing
sectoral capital stock data for 43 countries at a NACE level 2 disaggregation
(Timmer et al., 2015). Certain sectors are labelled dirty because of their fossil-
dependent technological basis (e.g. mining, coke, chemicals, plastics, metals,
electricity, transportation). Where possible, we employ data from another multi-
regional input-output dataset called Exiobase (Stadler et al., 2018) to further
disaggregate stocks and isolate those directly related to fossil fuels (e.g. the
capital stock used for the exploration and extraction of coal, gas and oil) from
those with less of a connection to fossil fuels (e.g. mining of non-ferrous metals
and other materials)11. With this method, we estimate that approximately 8%
of the capital stock can be considered dirty, i.e. KD ≈ 25 trillion $. We thus
estimate ψ = 50

25000 = 0.002 GtCO2/billion$. .
This is in line with the emission intensity of coal plants, one of the dirty assets

that are most at risk of being stranded. 25% of world emissions are related
to coal powerplants. IEA estimates that 5GtCO2 can be abated in 2040 by
stranding 1500GW. The IEA 2019 estimates a cost (at the beginning of lifetime)
of 0.7 to 2.5 billion $/GW depending on the region (World Energy Outlook 2019,
p 237, Lazard IEA estimates that 5GtCO2 can be avoided in 2040 by stranding
1500GW.). Using the middle of the range value of 1.66 billion $/GW, we have
ψ = 5GtCO2/1500GW ∗ 1GW/1.66billion$ = 0.002 GtCO2/$Billion.

4.4 Costs of converting dirty capital

Decommissioning old coal-fired power plants is not as costly as decommissioning
new coal plants. Therefore we fit θ1 and θ2 on the age distribution of coal plants
in the IEA and Cui et al. 2019. The lifetime of stranded coal plants in the IEA
is 25 years and older. This gives 1/4 of the new value for all stranded plants
if the simple rule of stranding after 25 years is applied. However retrofitting is
a more interesting option, also captured by our variables θ1 and theta θ2. IEA
mentions at least 1 billion $ per GW retrofitted with CCS. only millions per
GW for retrofitting to biomass.

5 Results

In this section we will present and discuss the results of our numerical simula-
tions. We start by comparing our baseline scenario with a scenario using the

11To perform this disaggregation we assume that the share of fossil-related capital stock
on the total of a specific sector is the same as the fossil-related output on the total sectoral
output.
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same set of central parameter values but assuming no inertia in capital repur-
posing. This is crucial to show how introducing stranding costs and related
frictions modifies the optimal abatement plan. We then focus on the conse-
quences of delaying policy action to 2030 or 2040 in section 5.2 and explore
the implications of imposing a constraint on capital reconversion in section 5.3.
Finally, we compare scenarios with different assumptions regarding the rate of
relative risk aversion in section 5.4. Since our model is stochastic, future values
depend on realisations of the stochastics. Therefore, in all figures, we report
means of 1000 Monte Carlo runs. A probability distribution of the baseline
scenario can be found in appendix 6.

5.1 The effect of inertia in emissions due to stranding cost

The purpose of this section is to compare the optimal investment and emission
paths resulting from two scenarios. The first scenario is based on the set of
central parameter values presented in Table 2. The second scenario is identical
to the first, except for the absence of frictions in capital stock repurposing, i.e.
zero stranding costs. Kd can be immediately converted into Kc without losing
any of its value (i.e. c(r) = 0).

The results of the comparison are striking, and shown in figure 1. In the
scenario without stranding, emissions start at 50 GtCO2-eq in 2020, but imme-
diately jump to 15 GtCO2-eq and decrease very slowly thereafter. This rapid
drop in emissions is possible thanks to the immediate repurposing of a large
proportion (around70%) of the outstanding stock of dirty assets. The remain-
ing part of Kd, since its emissions are increasingly costly to abate, is gradually
replaced by new Kc as it reaches the end of its natural life. Temperature in-
creases to reach a steady state warming of 2.5°C only after a few centuries. The
social cost of carbon moves from just below 100$ in 2020 to around twice this
value in 2100.

Introducing real-world frictions in repurposing capital stocks leads to a
starkly different optimal emission path. An immediate jump to a lower level
of emissions is no longer optimal, because it would incur large stranding costs.
As a matter of fact, any rate of decrease of Kd higher than δ+ gψ (around 5.5%
according to our calibration) will create increasingly relevant repurposing costs.
As a result, optimal emission paths are smoother and reach the unconstrained
path only around 2040. After 2040, the constrained emission path is consis-
tently lower than the unconstrained one. This is because, since the steady state
of the constrained model is the same as the unconstrained one, and we assume
temperature to be proportional to cumulative emissions, both trajectories have
the same cumulative emissions. However, a larger proportion of the carbon
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Figure 1: Results for the model with central parameters compared to a model
without stranding costs (θ1 = 0)
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budget has been consumed by the constrained model before 2040, thus forcing
emissions to be lower after that. By the end of the century, the optimal path
with stranding costs is close to zero emissions, whereas the unconstrained path
has positive emissions for another century. Less abrupt dynamics are also ob-
served in optimal investments/repurposing of dirty capital. Repurposing starts
immediatelyat around $300 billion of assets per year and gradually decreases
until it ends around 2045, with dirty capital representing approximately 3% of
the total. After 2040, the optimal abatement speed is slower than 5.5% year,
which in turn corresponds to slightly positive levels of dirty investment. One
can think of the remaining dirty capital as gas turbines required for the stability
of the electricity network, or airplanes. Since its emissions are costly to abate,
dirty capital is replaced by more dirty capital when it reaches its end of life.

Since stranding costs lead to larger emissions at the start, the temperature
trajectory is higher compared to the unconstrained scenario. After 2040, when
stranding costs lead to lower emissions, both temperature paths slowly converge
to the same steady state. In 2100 temperature is still 0.05°C higher. The op-
timal carbon tax/social cost of carbon is 14% higher in the case of non-zero
stranding costs, in line with our analytical results above. From a damages per-
spective, this is logical, because temperatures (and therefore marginal damages)
are higher over the entire trajectory. Since temperatures converge only after
centuries, the difference between carbon prices is fairly stable over time. The
higher carbon price can also be understood from an abatement cost perspective.
Stranding/repurposing costs are added on top of marginal abatement costs for
greenfield investments. A higher price is required to incentivize companies not
only to switch to green investments, but also to incur costs for repurposing or
stranding the existing dirty capital stock.

. As shown above, the optimal path for the model with stranding/repurposing
costs must start by repurposing dirty capital.

Figure 1.d shows total repurposing/stranding costs. On an optimal emissions
trajectory starting in 2020, stranding costs are fairly limited, at $25 billion. This
contextualises the $300 billion repurposed/stranded assets in 2020. Since in 2020
only 2% of dirty capital is repurposed/stranded, only those assets that can be
repurposed and keep 90% of their value are repurposed.

Figure 2 shows the decomposition of the SCC. As the temperautre path of the
model with stranding costs has higher emissions in 2020, the temperature path
has a much steeper slope in 2020 (see Figure 1.c). Therefore, the SCC has a large
term related to the temperature trend, more than 100% of the SCC. On the other
hand, the temperature path in 2020 is concave, wich limits its deviation from
the model without stranding costs. This leads to a large negative term related
to the concavity of the temperautre path. Our damage function is quadratic in
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Figure 2: Decomposition of the social cost of carbon. Different components
correspond to the relative size of the terms in equation ??, for central parameters
and optimal policy starting in 2020.
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temperature, in other words the third derivative of consumption with respect
to S is zero, leading to a negligible risk premium for gradual uncertainty on
temperature (the brownian motion on S). Note that the risk primium would
be larger if the policy would not optimally and instantaneously adapt to new
information on temperature. By contrast, the tipping point on temperature
(jump process) represents 45% of the value of the SCC. Note that the jump
proces increases both the expected value of damages as its uncertainty, which
explains the large contrast with the negligible effect of the brownian motion.

5.2 The cost of delay

Figure 3 shows the effect of delaying the introduction of a carbon price by a
decade to 2030 or two decades to 2040. Recall that we define optimality as
maximizing welfare including both damages and abatement costs, not minimiz-
ing abatement costs to stay within a given level of warming this century. As a
result, temperatures in 2100 are higher for delayed policies, although they result
in the same steady state warming of 2.5°C in the very long run. Delayed policies
lead to a much steeper decrease of emissions, with an abatement speed beyond
δd + gψ (the dirty capital depreciation rate plus the rate of reduction of the
carbon intensity of dirty capital). Therefore, dirty investment is negative over
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Figure 3: The cost of delay. Optimal policy starting in 2020, 2030 or 2040.
Before the optimal trajectory, dirty capital is assumed to be constant per unit
of effective labor. .
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the entire path. If the optimal trajectory starts in 2030, $500 billion per year of
dirty capital is stranded in real terms, resulting in a yearly cost of $45 billion. If
the optimal trajectory starts in 2040, $800 billion per year is stranded, resulting
in a yearly cost of $82 billion. The sum of all stranding cost in the first decade
is $551 billion. 12

Delayed scenario, have two effects on temperature. Firstly, the absence of
effort leads to a higher temperature at the time when the optimal emissions
path starts, in 2030 and 2040 respectively. This is the only effect in the absence
of emissions inertia. Secondly, delay locks in more dirty capital, leading to a
steeper increase of temperature starting in 2030 and 2040 respectively. In other
words the shape of the temperature path for a given intial temperature has
changed. This is an effect that only exists in the presence of emissions inertia.
Technically, in a model without inertia, the value function only depends on
cumulative emissions (and other state variables) but is independent of the level
of emissions, because emissions is a decision variable. As a result, a temperature
path is only determined by the initial temperature, not by its history. By
contrast, in a model with inertia, emissions is a state variable, affecting the
value function and therefore affecting the future path. The temperature path is
not only affected by its initial value, but also by its history, i.e. we see hysteresis.

The different temperature trajectories also lead to different carbon price
scenarios. For a model where the temperature path is independent of delay
(only depends on initial temperature), there is only one carbon price path (and
the initial carbon price depends on initial temperature). By contrast, we show
that the carbon price path is not only shifted to the left, it has also a different
shape, slightly steeper at the start, to compensate for the extra cost of strand-
ing/repurposing. Postponing action until 2040 leads to a loss of the welfare
functional of 0.7%, despite arriving at the same steady state temperautre.

5.3 Should we avoid stranding? Feebates versus a carbon
tax

Figure 4 compares an optimal policy with a policy imposing id ≥ 0. Stranding
can for example be avoided by the use of feebates, i.e. policies which tax dirty
investment and subsidize clean investment instead of taxing emissions. As a re-
sult, emissions decrease at rate δd + gψ, i.e. 5.5% per year until 2055, instead of

12Our MAC function allows for negative emissions and assumes the same linear increasing
MAC for abatement beyond zero emissions. This implies that total capital (which is 100%
clean by then) equals kd+kc which are now both abstract concepts. The total investment for
total capital writes ic−θ1(r)θ2 , where the second term is a penalty for negative emissions. As
a conclusion, the term θ1(r)θ2 represents stranding costs in the positive domain of emissions,
and a penalty for abatement speed in the negative domain of emissions. Note that maintaining
kd at a constant negative level also requires a constant level of r due to the term (δ+g+gL)kd
in equation 4.
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Figure 4: Optimal policy versus a policy where stranding is avoided.
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a rate beyond 5.5% in the standard model. This leads to a temperature trajec-
tory that is more or less 2% higher from 2040 onwards. This higher temperature
logically leads to a higher carbon price. The carbon price in the model is not the
carbon tax, but the marginal cost of the most expensive abatement technology.
The carbon price is on average 8% higher over the period 2020-2100. This leads
to an increase in total abatement costs that exceeds the stranding/repurposing
costs in the standard model. Expressed in terms of the present value of welfare,
avoiding stranding/repurposing reduces the welfare by $25 Trillion (0.2%).

5.4 The effect of risk aversion

Figure 5 shows the different optimal paths under relative risk aversion of 1.35
and 8, keeping the intertemporal elasticity of substitution constant at 1/1.35).
In other words the figure compares the optimal paths under expected utility and
Epstein-Zin-Weil utility. It shows that the initial emissions path is not much
affected by the uncertainty. It is optimal in both cases to decrease emissions as
fast as possible, while limiting the costs of stranding/repurposing. Even in the
event of tipping points, emissions paths are similar to paths where tipping points
come later, due to fastly rising repurposing costs. However, once repurposing
costs are zero, confidence intervals widen due the stochastics of the model and
the risk-averse model has lower emissions by 2 or 3GtCO2-eq per year. This
emissions path requires a carbon price that is 5% higher on average over the
next century, slightly less so in 2020. Also, in the more risk avers scenario, the
uncertainty range of the future carbon price is larger.

5.5 Cost-minimization to stay within 2°C

Many integrated assesment models apply a cost-effectiveness analysis, minimiz-
ing costs to stay within a maximum warming of 2°C (cfr Paris Agreement).
In a deterministic setting, cost-minimzation can be obtained by using a dam-
age function that is zero until 2°C and infinite thereafter. In a probabilistic
setting however, the maximum warming is often interpreted as a probabilistic
constraint.13 We model this by solving the Bellman equation using a dam-
age function that is negligible until 2°C and raises fast beyond 2°C (at the 8th
power), reaching 4% GDP loss at 2.5°C. As a result, our model has a mean
steady state warming of 2°C, although damages are zero until 2°C. It is not
optimal to increase temperature beyond 2°C, because the mean steady state

13If our model were to stay below 2°C in any circumstance, mean warming would exceed
1.5°C to ensure that even in the event of atipping point, the constraint is not exceeded.
Moreover, this steady state warming would be very sensitive to precision with which the
stochastic processes are modelled (even a modest brownian motion has a non-zero chance of
giving an extra 0,5°C).
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Figure 5: Optimal policy under constant relative risk aversion of 1.35 and 8.
Both models have the same intertemporal elasticity of substitution of 1/1.35. As
a result, the relative risk aversion of 1.35 corresponds to a model with expected
utility. The figure is made as a Monte Carlo simulation with 1000 scenarios.
Each scenarios is a unique draw from the distribution of brownian motions and
jumps. The 80% confidence intervals correspond to internal variation, where
policy optimally adapts to shock in the economy and in the climate system.
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warming of 2°C includes also scenarios with more warming due to the jump
proces and brownian motion on temperature. The high damages beyond the
2°C is in the spirit of the Paris Agreement, assuming that warming beyond 2°C
is dangerous.

Figure “2degHockyStick_n945” shows the results for both the cost-effectiveness
and cost-benefit analysis. Since the cost-effectiveness model is insensitive to
the timing of the damages, the model has more emissions during the first
decades compared to a cost-benefit analysis.14 For example, in 2050, the cost-
effectiveness analysis has more than double the emissions of the cost-benefit
analysis. The larger early emissions of cost-effectiveness analysis are compen-
sated by lower emissions at the end of the century. The tendency for more
emissions at the start also results in 50% less stranding/repurposing in the cost-
effectiveness model.

6 Conclusions

In this paper, we have studied the optimal transition to a low-carbon economy,
recognizing that the transition is not going to be seamless. Many IAMs and
studies into optimal carbon emissions paths do assume a seamless transition,
because they assume way adjustment costs and frictions that constitute obsta-
cles to rapidly decumulating dirty capital on the one hand and accumulating
clean capital on the other hand. By contrast, our model includes (i) adjustment
costs pertaining to investment in clean (and dirty) capital, (ii) costs associated
with converting/repurposing dirty capital as clean capital, and (iii) abatement
costs that are an increasing function of the speed of abatement, capturing bot-
tlenecks in clean technology innovation.

We find that introducing costs to repurposing dirty capital as clean leads
to a slower decline of emissions initially, which, given temperature is a linear
function of cumulative CO2 emissions, leads to the need for greater emissions
reductions later. These frictions thus optimally push abatement effort further
into the future, with consequences for 21st century temperature, but not steady-
state temperature. However, even though emissions decline more slowly given
these frictions, carbon prices are higher, because dirty capital owners need an
incentive to incur those extra costs of repurposing that are optimal from society’s
point of view. The share of genuinely dirty capital in the economy – capital that
requires fossil fuels to produce goods and services – is actually quite small, a
point that can be substantiated using data from multi-regional input-output
tables, which likely overstate the share of dirty capital, even. Therefore the

14Our cost-benefit analysis has a similar long term effect reaching 2.1°C in the year 2300.
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Figure 6: Welfare maximization versus cost-effectiveness. The welfare maxi-
mization corresponds to the model with standard parameters. The cost effec-
tiveness analysis corresponds to a model with zero damages until 1.9°C and a
very steep increase in damages for temperatures beyond 2°C.
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value of assets repurposed or ‘stranded’ in this way is rather small.
Delaying the introduction of the globally optimal carbon tax by a decade

or two, which we can think of as an approximation of continued difficulties
in negotiating a sufficiently strong set of national climate commitments and
implementing them, increases the value of stranded assets in real terms, even
in a set-up such as ours where there is no temperature constraint per se, rather
the planner maximizes social welfare taking into account both damages and
abatement costs. Delaying climate action by 2 decades leads to a decrease in
welfare of 0.71%, a cost of $108.5 trillion dollar at current prices.

We could seek to avoid stranding assets. Instead of imposing a Pigouvian
tax on CO2 emissions, governments could institute a combination of taxes on
dirty capital investment and subsidies on clean capital investment. We quantify
the welfare cost of this second-best policy and we find that welfare is reduced
by 0.2%, i.e. $25 Trillion at current prices.

Appendix 1 : Parameters

Table 2: Parameter values for the central scenario
Symbol Value Remark
A 4.092 Match 2019 GDP from the World Bank (PPP, current international$)
L 7.403 DICE
Kd0 25 8% of total capital
Kc0 310 Total capital per unit of effective labour should be close to steady state.
α 0.3 As in DICE
φ 0.0016 Our fit to the IPCC database for the report on 1.5°C
ϕ 0.000032 Our fit to the IPCC database for the report on 1,5°C
γT 0.014 By assumption. 2°C warming reduces GDP by 3%. Steady state of 2.5°C.
ζ 0.0006 γ in text is ζ2γT . IPCC 5th assessment report. Matthews et al. 2009.
S0 2083 1°C warming in 2020, IPCC report on 1.5°C.
χ1 0.001
χ2 0.001
θ1 1.8 Our fit to the IPCC database for the report on 1.5°C
θ2 2.1 By assumption.
δ 0.4 See text
ψ 2
gψ 0.015 1.5% is Mean for period 1995-2018 according to BP energy outlook 2020. Also used in DICE.
gL 0.005 United Nations, 2017.
g 0.02 By assumption
ρ 0.011 Drupp, et al. 2018
η 1.35 Drupp, et al. 2018

RRA 8
σ2
d 4e-4 Hambel, Kraft, van der Ploeg 2019
σ2
c 4e-4

ρdc 0.5
σ2
S 1e-6 10% chance of having more than 5GtCO2 extra in 2020.
λ 0.15 Jump increases temperature by 15%. A larger jump is technically very challenging to model, it brings S outside its range with Chebychev nodes.

jumpProb 0.015 By assumption. On average 1 tipping point per 66 years.
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Appendix 2: Value functions and Bellman equa-

tions

Expected Utility

Consider the following value function as the discounted value of future utility:

J(Kd,Kc, S, t) = maxId,Ic

∫ ∞
τ=0

e−ρ(t+τ)Lt+τu

(
Ct+τ
Lt+τ

)
dτ. (15)

This function increases with the starting time t, because utility is higher in the
future. J does not converge to a steady state. Using C = cL0e

(g+gL)(t+τ) , we
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have
Ct+τ
Lt+τ

= eg(t+τ) (c) . (16)

For a CES utility function, the value function can be written as

J(kd, kc, S, t) = maxid,icL0e
−(ρ−gL+(η−1)g)t

∫ ∞
τ=0

e−(ρ−gL+(η−1)g)τ c
1−η

1− η
dτ.

(17)
Define a current value value function V =

∫∞
τ=0

e−(ρ−gL+(η−1)g)τ c1−η
1−η dτ , allow-

ing us to write the differential of J as J = L0e
−(ρ−gL+(η−1)g)tV ⇔ dJ/dt =

− (ρ− gL + (η − 1) g)L0e
−(ρ−gL+(η−1)g)tV + L0e

−(ρ−gL+(η−1)g)tdV/dt.
The standard Bellman equation is 0 = maxid,ic

{
u
(
Ct
Lt

)
L0e

−(ρ−gL)t + d
dtEJ(kd, kc, S, t)

}
.

Substitute for consumption per unit of effective labor and value function V :

0 = maxid,ic

{
L0e

−(ρ−gL+(η−1)g)t c
1−η

1− η
− (ρ− gL + (η − 1) g)L0e

−(ρ−gL+(η−1)g)tV + L0e
−(ρ−gL+(η−1)g)t d

dt
EV (kd, kc, S, t)

}
(18)

⇔ (ρ− gL + (η − 1) g)V (kd, kc, S, t) = maxid,ic

{
c1−η

1− η
+
d

dt
EV (kd, kc, S, t)

}
.

(19)
In case consumption per unit of effective labour is not an explicit function

of t, we have reduced the number of states from 4 to 3. If c is still a function
of t, we have a value function that converges to a steady state. Also, working
with a discount rate that is larger than ρ is also beneficial for computational
convergence.

Apply Ito’s Lemma to the value function V :

(ρ− gL + (η − 1) g)V (kd, kc, S, t) = maxid,ic{
c1−η

1− η
+Vkd

(
id − χi2d − (δ + gL + g)kd

)
+ Vkc

(
ic − χi2c − (δ + gL + g)kc

)
+0.5Vkdkdk

2
dσ

2
d + 0.5Vkckck

2
cσ

2
c + Vkckdρσcσd

+VSE + 0.5VSSS
2σ2
S + λS [V (S + ξS)− V ]

+Vt}.

The first order conditions in the maximand are:

Vkd =
−c−ηcid
1− 2χid

, (20)

Vkc =
c−η

1− 2χic
. (21)

Applying the envelope theorem with respect to S gives an expression for the
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shadow price of cumulative emissions:

VS =
1

ρ− gL + (η − 1) g
{c−ηy(−γS) + VSSE

+0.5VSSSS
2σ2
S + VSSSσ

2
S + λS [VS(S + ξS)− VS ] + VtS

+VSkd
(
id − χi2d − (δ + gL + g)kd

)
+ VSkc

(
ic − χi2c − (δ + gL + g)kc

)
+ 0.5VSkdkdk

2
dσ

2
d + 0.5VSkckck

2
cσ

2
c + VSkckdkdkcρσcσd}.

The first line is the same as in the model without uncertainty and emissions
inertia in Dietz & Venmans 2019. In this model, VSSE = V̇S = − ˙MAC . In
other words, the shadow price of cumulative emissions contains the speed of its
increase. By introducing inertia, this speed is much larger. Technically, the term
VSSE is much larger in our model, because initial emissions are much larger in
any model with inertia.

The formula of the social cost of carbon is

SCC =
−VS
Vkd

L0e
(g+gL)t (22)

The intuition of this formula is as follows. VS is the shadow price of cumu-
lative emissions, expressed in utils per unit of effective labor. Vkc is the shadow
price of capital, also expressed in utils per unit of effective labor. The quotient
of both gives a result in units of capital per unit of effective labor kc per GtC.
By multiplying by L0e

(g+gL)t we obtain a result in dollars per tonne of carbon.
Equation 21 shows that Vkc is marginal utility, slightly reduced by investment
inertia effects. Note however Vkc (and therefore consumption) is also lowered
by the risk in the model (this can be seen by applying the envelope theorem to
the Bellman equation with respect to clean capital).

Epstein-Zin-Weil preferences

The present value value function is:

J(Kd,Kc, S, t) = maxId,IcE
∫ ∞
t

−f̂(Kd,Kc, S, t, J, Id, Ic)dτ

s.t. ṡ = g, with

f̂(Kd,Kc, S, t, J, Id, Ic) =
1−RRA

1− η
(ρ− gL) J

[ (
C
L

)1−η
((1−RRA) J)

1−η
1−RRA

− 1

]
(23)

Defining a current value value function V = e−g(1−η)tJ , a current value ag-
gregator function f = f̂ e−(1−η)gt and standardized consumption (per unit of
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utility-corrected effective labor) c = C

L0e
(g+gL)t

allows us to obtain an optimiza-
tion problem without time as an explicit argument (or at least a stable steady
state):

V (kd, kc, S, t) = maxEE
∫ ∞
0

−f(kd, kc, S, t, V, id, ic)dτ (24)

f =
1−RRA

1− η
(ρ− gL + (η − 1) g)V

[
(c)

1−η

((1−RRA)V )
1−η

1−RRA
− 1

]
(25)

The Bellman equation is

maxE

{
f +

1

dt
E[dV (kd, kc, S, t)]

}
= 0 (26)

0 = maxid,ic{
1−RRA

1− η
(ρ− gL + (η − 1) g)V

[
(c)

1−η

((1−RRA)V )
1−η

1−RRA
− 1

]
+Vkd

(
id − χi2d − (δ + gL + g)kd

)
+ Vkc

(
ic − χi2c − (δ + gL + g)kc

)
+0.5Vkdkdk

2
dσ

2
d + 0.5Vkckck

2
cσ

2
c + Vkckdρσcσd

+VSE + 0.5VSSS
2σ2
S + λS [V (S + ξS)− V ]

+Vt}

Applying the envelope theorem with respect to S gives an expression for the
shadow price of cumulative emissions.

VS = 1
(ρ−gL+(η−1)g) Φ(V, c){Ψ(V )c−ηy(−γS) + VSSE

+VSkd
(
id − χi2d − (δ + gL + g)kd

)
+ VSkc

(
ic − χi2c − (δ + gL + g)kc

)
+ 0.5VSkdkdk

2
dσ

2
d + 0.5VSkckck

2
cσ

2
c + VSkckdρσcσd

+0.5VSSSS
2σ2
S + VSSSσ

2
S + λS [VS(S + ξS)− VS ] + VtS}

with Φ = 1−η

1−RRA+(RRA−η)c1−η((1−RRA)V )
− 1−η

1−RRA
and Ψ = ρ−gL+(η−1)g

((1−RRA)V )
1−η

1−RRA−1
.

Appendix 3: The general effect of inertia on the

carbon price

In this section we make the general case that a model with emissions inertia, i.e.
a MAC that is larger at high abatement speed, will increase the carbon price.

Define E as emissions, S as cumulative emissions (proportional to temper-
ature), X as a vector of other state variables (possibly different types of cap-

36



ital, fossil resources etc.) with trend µX((X, t, y)) and brownian motion with
variance σX(X, t, y), and y as a vector of other decision variables. V is the
current-value value function, discounted at rate r. In a model with emissions
inertia, emissions is a state variable, not a decision variable. The Hamilton-
Jacobi-Bellman equation is 15

rV = maxy

{
u+ VSE + VEĖ + VXµX + tr0.5VXXσ

2
X + Vt

}
. (29)

The shadow price of cumulative emissions corresponds to the social cost of
carbon (expressed in utils) and is obtained by applying the envelope theorem
to the Bellman equation16 17

SCC(utils) = −VS =
1

r

(
−uS − VSSE − VSEĖ −

∂

∂S

(
VXẊ + tr0.5VXXσ

2
X + Vt

))
.

(31)
The first term is the marginal damage from warming, typically modest in 2020
with 1°C of warming and independent of the fact that there is inertia. Inertia
leads to two major differences in terms 2 and 3 respectively. Firstly, in a model
with inertia, emissions start at the current level of emissions, whereas in a model
without inertia, optimal emissions jump from the current level of emissions to
an optimal level that is much lower. This will increase the second term −VSSE
proportionally, especially for very convex damage functions. We show below
that this term represents 70% of the carbon price in our model. Secondly, the
term −VSEĖ is absent in the model without inertia. VSE is typically negative,
because emissions increase production whereas cumulative emissions decrease
production via temperature damages. Therefore, the term −VSEĖ reduces the
SCC, especially for production functions with a large cross derivative in E and
S (e.g. when both abatement costs and damages are proportional to production
size). In the extreme case with a negligible penalty for abatement speed, Ė is

15We could simplify to

rV = maxy
{
u+ VSE + VEĖ + VX

˙̇X + Vt
}

(27)

Or work with our JEEM model and add any penalty for Ė in the production function
(possibly combined with brownian motion and jump on temperature):

rV = maxĖ

{
u+ VSE + VEĖ

}
(28)

16This equation corresponds to the equation of motion of the shadow price of cumulative
emissions in optimal control theory: λ̇S = rλS −HS

17The explicit form is

SCC(utils) = −VS =
1

r

(
−uS − VSSE − VSEĖ − VSXẊ + VX

∂

∂S
Ẋ + tr0.5VSXXσ

2
X + tr0.5VXX

∂

∂S
σ2
X + VSt

)
(30)
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largely negative and compensates the increased magnitude of the second term.
The carbon price converges to the case without emission inertia. In the case of a
binding penalty for abatement speed at the start, the effect on the second term
will dominate the counteracting effect on the third term and the carbon price
will be higher. This implies that the optimal emissions path incurs a non-zero
penalty on abatement speed at the start of the optimal path (except if there are
interaction terms in the cross derivative VSX).

Appendix 4: Equations used in the Compecon Tool-

box

The compecon toolbox for dynamic programming requires the gradient and
hessian of both the objective function f and the difference function g. Capital
letters are aggregate values, small letters are per unit of effective labour.

Call s = [kd, kc, S, τ ] and x = [id, ic]. Since it is never optimal to strand and
invest in dirty capital at the same time, they are both captured by the same
variable, where stranding is −id.

The conversion from time to synthetic time, in its different variants, reads

τ = 1− e−ζt ⇔ t = −1

ζ
ln(1− τ)⇔ et = (1− τ)

− 1
ζ . (32)

Emissions are

E = ψKd = ψ0L0kde
(g+gL−gψ)t = ψ0L0kd (1− τ)

(−g−gL+gψ)
ζ . (33)

Emissions change (middle expression gives 0/0 for kd=0) is

Ė = E

(
g + gL − gψ +

k̇d
kd

)
= E

(
id − χdi2d

kd
− gψ − δ

)
= ψ0L0 (1− τ)

(−g−gL+gψ)
ζ

(
id − χdi2d − (gψ + δ) kd

)
.

(34)
Stranding costs and derivatives are

strcost = 1Id<0
θ1 (−Id)θ2

L0e(g+gL)t
= θ1 (−id)θ2 Lθ2−10 e(θ2−1)(g+gL)t = θ1 (−id)θ2 Lθ2−10 (1− τ)

(1−θ2)(g+gL)
ζ ,

(35)

strcostid = −1Id<0θ1θ2 (−id)θ2−1 Lθ2−10 (1− τ)
(1−θ2)(g+gL)

ζ , (36)
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strcostidid = 1Id<0θ1θ2 (θ2 − 1) (−id)θ2−2 Lθ2−10 (1− τ)
(1−θ2)(g+gL)

ζ . (37)

Consumption and derivatives are

c = A0 (kd + kc)
α
eφE−

ϕ
2 E

2+βĖ− γ2 S
2

− id − ic − strcost, (38)

cid = −1 + yβψ0L0 (1− τ)
(−g−gL+gψ)

ζ (1− 2χdid)− strcostid , (39)

cidid = y

(
βψ0L0 (1− τ)

(−g−gL+gψ)
ζ (1− 2χdid)

)2

+yβψ0L0 (1− τ)
(−g−gL+gψ)

ζ (−2χd)−strcostidid .

(40)
The objective function is

f =
1

1− η
c1−η. (41)

The gradient of the objective function with respect to the two decision variables
is

fid = c−ηcid, (42)

fic = −c−η. (43)

The hessian is

fidid = −ηc−η−1 (cid)
2

+ c−ηcidid , (44)

ficic = −ηc−η−1, (45)

fidic = ηc−η−1cid . (46)

For the difference function g we have
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kdt+1
= id − χdi2d + (1− δ − gL − g + σd∆Wd)kd,

kct+1
= ic − χci2c + (1− δ − gL − g + σc∆Wc)kc,

St+1 = E + (1 + σS∆W + λ∆P )St,

τt+1 = 1− e−ζ(t+1) = 1− (1− τ) e−ζ .

The gradient reads

dg/dx =


1− 2χid 0

0 1− 2χic

0 0

0 0

 , (47)

with hessian

d2g/dx2 =


−2χ 0

0 0

0 0

0 0

 ...


0 0

0 −2χ

0 0

0 0

 . (48)

Appendix 5: Cumulative emissions in the model

with three states

For cumulative emissions, we have:

St = S0 +

∫ t

0

Eτdτ +

∫ t

0

SτσSdW +

∫ t

0

ξSτdP. (49)

The second term is ∫ t

0

ψ0L0kde
(g+gL−gψ)tdt. (50)

We omit the factor e(g+gL−gψ)t, underestimating cumulative emissions and
therefore damages in the long run. This has a limited impact, however, because
optimal emissions decrease rapidly and are about zero at the end of the century.
We use an iterative approach where we adapt the damage coefficient as follows:

γ̂ = γ(S/Ŝ)2 = γ

[∫ 2100

2020
ψ0L0kde

(g+gL−gψ)tdt∫ 2100

2020
ψ0L0kddt

]2
(51)

If emissions are not at zero in 2100, we extend the estimation horizon. This
gives the correct damage factor e−γS

2

in the steady state. We show the difference
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between the full model and this approximation for a set of parameters below.

Appendix 6: Use of total capital and proportion

of dirty capital as state variables

The model with states kd and kc has difficulties converging in the 4 states
setting. One of the difficulties is that both states are very interdependent.
Easier convergence is obtained by using total capital and the proportion of
dirty capital in total capital (µ) as states. The latter is defined as

µ =
kd
k

(52)

E = ψKd = ψ0L0µk (1− τ)
(−g−gL+gψ)

ζ (53)

Ė = ψ0L0 (1− τ)
(−g−gL+gψ)

ζ
(
id − χdi2d − (gψ + δ)µk

)
(54)

Applying Ito’s Lemma gives

dµ =

[
(1− µ)

id − χi2d
k

− µ (ic − χi2c)
k

+

(
1

2
+ 2µ

)
µ2σ2

d −
(

1

2
− 2µ

)
(1− µ)

2
σ2
c − 2µ2(1− µ)ρcdσdσc

]
dt

(55)
+ (1− µ)µ (σddWd − σcdWc) (56)

dk = dkd + dkc (57)

Difference equation g becomes

µt+1 = µ+ (1− µ)
id − χi2d

k
− µ (ic − χi2c)

k

+

(
1

2
+ 2µ

)
µ2σ2

d −
(

1

2
− 2µ

)
(1− µ)

2
σ2
c − 2µ2(1− µ)ρcdσdσc

+µ (1− µ) (σd∆Wd − σc∆Wc)

kt+1 = id + ic − χdi2d − χci2c + (1− δ − gL − g + µσd∆Wd + (1− µ)σc∆Wc)k

St+1 = E + (1 + σS∆W + λ∆P )St

τt+1 = 1− e−ζ(t+1) = 1− (1− τ) e−ζ

The gradient reads
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dg/dx =


(1− µ) 1−2χid

k −µ 1−2χic
k

1− 2χid 1− 2χic

0 0

0 0

 (58)

with hessian

d2g/dx2 =


− (1− µ) 2χ

k 0

−2χ 0

0 0

0 0

 ...


0 µ 2χ
k

0 −2χ

0 0

0 0

 (59)

Appendix 7: The probability distribution of stranded

assets
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Figure 7: The probability distribution of stranded assets at different time hori-
zons. Brownian motions have a rather limited effect on the risk of stranding
because optimal policy reacts relatively fast to small changes in damages. How-
ever, the jump process leads to a set of scenarios with much higher stranding
than the mean scenario.
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