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Highlights

Beyond cost reduction: Improving the value of energy storage in electricity systems.

Maximilian Parzen'*, Fabian Neumann?, Addrian H. Van Der Weijde', Daniel Friedrich!, Aristides Kiprakis'

e Review of evaluation methods for energy storage identifies
need for new approaches.

o Pitfalls of cost approaches are identified in an European
electricity system.

e Formulation of new ’market-potential method’ to identify
value of storage.

e Increasing storage design-freedom impacts technology
value and system benefit.

e The ’market-potential-method’ is useful for research and
industry.
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Abstract

An energy storage technology is valuable if it makes energy systems cheaper. Traditional ways to improve storage technologies
are to reduce their costs; however, the cheapest energy storage is not always the most valuable in energy systems. This paper
reviews techno-economic storage valuation methods and expands them by the introduced ‘market potential method’. The market
potential method derives the value of technologies by examining common deployment signals from energy system model outputs
in a structured way. We apply and compare this method to cost evaluation approaches in a renewables-based European power
system model, covering diverse energy storage technologies. We find that characteristics of high-cost hydrogen storage can be
equally or even more valuable than low-cost hydrogen storage. Additionally, we show that modifying the freedom of storage
sizing and component interactions can make the energy system 10% cheaper and impact the value of technologies. The results
suggest to look beyond the pure cost reduction paradigm and focus on developing technologies with value approaches that can lead
to cheaper electricity systems in future. One practical and useful value method guiding energy storage innovation could be the
"market potential method’.

Keywords: Energy storage, Energy system modelling, Techno-economic analysis, Hydrogen, Battery, Technology development

1. Introduction

In the face of global ambitions to reduce greenhouse gas
(GHG) emissions, the energy transition characterised by in-
creasing shares of wind and solar power will benefit from more
energy storage in the future electricity system [1-3]. How many
benefits can be delivered depends, among others, on how future
technology will be designed. Consequently, research and de-
velopment (R&D) must adapt the techno-economic design of
energy storage systems to be most beneficial.

A traditional approach to improve energy storage design is
to reduce the cost of its devices [4]. The cost can be absolute
in €or relative defined. The latter is typically related to energy
(€/kWh) and power (€/kW) quantities. In particular, in the ma-
terial science and chemistry literature, cost reductions of energy
storage are a pivotal element, alongside maintaining other stor-
age characteristics such as a ’sufficient’ high efficiency, power
and energy density, and safety [5, 6]. Though, what is ’suffi-
cient’ high is often unclear. Only if one energy storage outper-
forms the other in all characteristics one can define it as supe-
rior technology; otherwise, more expensive energy storage with
suitable technical characteristics can compete as well (as will be
demonstrated in Section 4). Fortunately, material science liter-
ature has recognised one of the key challenges that energy stor-
age depends on different applications and the interaction with
the energy system [7].

Alternatives to cost reduction approaches are approaches that
maximise profits and whole system benefits (see Section 2).
However, none of them focus on what probably matters the
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most: designing technologies that more likely reduces the aver-
age electricity bill.

This study aims to close this research gap by introducing a
method which fundamental objective is to reduce the average
electricity bill. A key economic metric in this context are total
system costs. Only if we can achieve a total system cost re-
duction in reality, it is possible to reduce the average electricity
bill, freeing up money for alternative investments that could be
used to increase social welfare. Tools that aim total system cost
reductions are energy system models which are applied in this
study. These models can minimise investment and operational
costs in the whole energy system and therefore be complemen-
tary used to guide technology design such as for energy storage.

The scope in this study regarding the energy storage value is
limited. In general, energy storage systems can provide value
to the energy system by reducing its total system cost; and by
reducing risk for any investment and operation. This paper dis-
cusses total system cost reduction in an idealised model without
considering risks. Reducing risk in a real power system can be
seen as option value [2] leading to a more optimal investment
and operation. Further, included are only energy balance ben-
efits within a European power system model. Sacrificing sub-
hourly signals relevant to address grid stability benefits, but in-
cluding hourly up to seasonal arbitrage based scarcity signals
relevant to address short and long-term balancing benefits (de-
scribed in Section 3.3).

The paper distinguishes from and contributes to existing lit-
erature in the following way:
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e We review and discuss techno-economic approaches that
are currently used to evaluate and compare energy stor-
age technology in Section 2. Included are cost, profit and
system-values analysis.

e We show that current cost metrics can be misleading for
technology design decisions. Section 4.2 and 4.3 show that
a high levelised cost of storage (LCOS) hydrogen storage
can be equally or even more valuable than a low LCOS one
from the system perspective. We draw this conclusion by
observing deployment of low and high LCOS hydrogen
storage systems in a least-cost power system investment
planning model.

e We extend the system-value approaches by the newly de-
veloped "market potential method’ in Section 3.1. It is fur-
ther applied and discussed in Section 4. The method anal-
yse common deployment estimations from energy models
in a systematic way by looking on a set of probable scenar-
ios in high spatial-temporal resolution over large regions
such as Europe. Compared to existing alternatives that are
described in Section 2, the new approach could be poten-
tially more useful and overcomes many limitations. Re-
search and industry could complementary apply the new
approach to guide energy storage innovation.

e We show that modifying the freedom of storage sizing and
component interactions can lead to significant energy sys-
tem benefits (Section 4.1) and impact the system-value
of a technology (Section 4.3). It underlines the impact
of developing and offering adaptive components, such as
charger, storage and discharger, separately instead of com-
plete storage systems.

Our findings suggest that a narrow cost focus on designing
energy storage is not enough. Future R&D design decisions
should additionally use system-value insights from energy sys-
tem models. The presented market potential method could be
one approach to accomplish this.

2. Review on Storage Valuation Methods

This section reviews and classifies currently applied storage
valuation methods, or in other words, techno-economic anal-
ysis approaches which appraise the competitiveness of energy
storage including both, technicalities and economic measures.

This study classifies the literature into three groups: cost
analysis, profit analysis and system-value analysis, which
mainly differ in the objective of the metrics. Figure 1 sum-
maries what components will be discussed. These methods are
broadly employed for industry decision making, research focus
consolidations and policy regulation [2, 8, 9], which underlines
their importance and the impact of any improvement.

To understand the ’visible’ and ’hidden’ value terminology
chosen to classify the literature, one should acknowledge that
current markets can be considered imperfect and incomplete for
multiple reasons:

e Markets are not temporally or spatially resolved. For in-
stance, spot prices are settled over larger spatial areas and
not in real-time, leading to not perfect spatial dissolved
socialised grid fees [10].

e Market power can be exploited. Dominant market partic-
ipants act for their profit while damaging the average par-
ticipant [10].

e Forecast information are imperfect. Forecasts of demand,
wind and solar generation underlies uncertainties leading
to imperfect operation and planning [10].

e Other negative and positive externalities exist, related to
incomplete markets which distort the price. Negative ex-
ternalities are for instance, non-priced cost for carbon
emission, air pollution and biodiversity losses; positive ex-
ternalities are non-priced benefits such non-tracked carbon
reduction benefits [10].

In this context, system-value analysis generally tends to anal-
yse markets by partially or entirely reducing these market flaws.
For instance, energy system models can cover higher spatial
and temporal resolution, exclude market power, assume perfect
foresight and account for externalities. However, not all mod-
els idealise. Some can also incorporate effects of imperfect and
incomplete markets by adding cost and benefits related to un-
certainty and non-optimal operation and investment [11-13].

’Visible values’ are simply said benefits that can be priced
or accounted for in real world imperfect and incomplete market
such used for profit analysis. In contrast, *hidden values’ are
benefits that are not yet priced or accounted for in real world
markets. An example are hidden energy storage benefits for net-
work or peak plant deferral, or reduced solar and wind power
plant curtailments [14]. To track both hidden and visible val-
ues, system-value approaches use idealised models assuming
perfect and complete markets.

The next subsections will clarify for each techno-economic
analysis class their objectives, methods and users, and further,
analyse the grade of technical detail and how the approaches
handle the role of competition in uncertain future markets.

2.1. Cost analysis

We categorise the cost analysis of energy storage into two
groups based on the methodology used: while one solely es-
timates the cost of storage components or systems, the other
additionally considers the charging cost, such as the levelised
cost approaches. Their objective is in general to minimise the
cost metric for a particular technology or application.

An example of the first approach is represented in [15]. The
energy weighted cost of a storage system (£/kWh) is min-
imised, without any electricity price signal, by a cost optimi-
sation model that simultaneously maximise the round-trip effi-
ciency of the storage. In [16, 17], instead of assuming the cost
of components, they break down storage components or sys-
tems into materials and manufacturing processes. This method-
ology, known as process-based cost analysis, allows a deeper
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Figure 1: Classification of current techno-economic analysis methods in the context of energy storage. *Market potential indicator is a suggested decision metric
and part of the new introduced market potential method. The abbreviation mean the following: levelised cost of storage (LCOS), levelised cost of hydrogen or
methan (LCOH/M), net present value (NPV), internal rate of return (IRR), return of investment (ROI).

understanding of cost reductions by mass production or switch-
ing to different manufacturing methods. While both approaches
do not mention competitiveness or the value of energy storage,
their outputs combined with cost and benefit analysis allows
finding the value of energy storage solutions.

The levelised cost approaches for energy storage include
metrics such levelised cost of storage when electricity is dis-
charged (LCOS) and LCOH or LCOM when hydrogen or
methane are discharged respectively [8, 18]. All the levelised
cost metrics above are similarly structured. They divide the
total cost of the considered system by the discharged energy.
Both parameters must be discounted to represent the time value
of money [19]. We use LCOX in the following equation to
indicate that the equation holds for various discharged energy
forms:

T
(2o Total cost) piscounted

(Zg Total discharged energy)piscounted

LCOX = 1)

Thereby, the total cost typically consists of capital expendi-
tures, operational expenditures and charging expenditures [20—
22]. Sometimes additional factors are included that can impact
total cost and total discharged energy such as degradation rates,
taxes, or self-discharging [8].

Levelised cost like metrics are used to evaluate many appli-
cations, such as energy arbitrage, frequency regulation, volt-
age regulation, system restoration and operational management
(i.e. redispatch). For this purpose the levelised cost like metrics
assumptions must be categorised for the specific application,
such charging price, operational time and power to energy ratio
[8, 22].

While the ’cost of component’ or ’cost of system’ approach
is widely used for design decisions with high technological de-
tail [15-17], the levelised approaches forego some technolog-
ical detail to inform project developer and policy about their

projected competitiveness in the market [8].

Cost of component or system metrics are excellent for ex-
ploring cost reduction opportunities in great technical detail.
On the other hand, LCOS-like metrics differ by being a good
first indicator for the competitiveness between various tech-
nologies for a particular application.

However, the main limitation of cost-analysis methods is
that cost reductions can be only a clear signal for technology
improvement under the condition that the other characteristics
such as efficiency and cost of each components stay at least the
same or even improve. Because this lead to what we define as
valuable technology. One technology that lead to total system
rather than single technology cost reductions. As example, an
energy storage only clearly improves if the cost reduces at least
for one component such as charger, store or discharger, while
the other component costs and efficiencies are not negatively
influenced or even benefit. If this is not the case, a complex
solution space exist for which a higher cost energy storage can
lead to lower total system cost - being more valuable, see Sec-
tion 4.

2.2. Profit analysis

The profit analysis describes methods from the investor’s per-
spective. They tend to choose profitable energy storage projects
at current energy market designs [23, 24]. Thereby, the general
objective for the investor is to maximise the profit indicator for
a given investment.

The inclusion of discharging behaviour and revenue streams
are distinctive for profit analysis. Depending on the market de-
sign, several different revenue streams for energy storage ex-
ist. In the UK, for instance, 14 potential revenue streams exist,
such as frequency response provision or wholesale market arbi-
trage, which can be power (€/kW) or energy (€/kWh) related
[25]. In general, not every storage has access to the same rev-
enue streams due to specific characteristics and requirements



[8]. Most studies include only the energy arbitrage service from
energy storage, which means buying cheap electricity and sell-
ing it later more expensive [26]. Other studies co-optimise mul-
tiple energy services which result in higher benefits [26-28].

The profit analysis typically evaluates energy storage
projects with capital budgeting techniques based on discounted
cash flow methods to acknowledge the time value of money
[19]. The energy storage literature uses multiple project assess-
ment metrics: present value (PV) is employed to calculate the
feasible cost of a storage project [23], net present value (NPV)
to evaluate the profitability of a project [14, 29], and internal
rate of return (IRR) to determine at which discount rate or op-
portunity cost a project is viable [26, 30]. NPV and IRR are
good investor signals when investment capital can be accessed
easily. However, when investment capital is limited, projects
should be evaluated by a profitability index, which relates the
discounted benefits to the cost [19]. Many energy storage stud-
ies, therefore, investigate energy storage by the profitability in-
dex [19], which is also termed cost-benefit ratio [31, 32], NPV-
ratio [33], return of investment (ROI) [34], return on equity
(ROE) [24], all giving the signal of how much money can be
achieved per investment. Another common metric in context of
energy storage is the payback period [30, 35, 36], which [19]
judges to be an illustrative but not useful factor for investment
decisions. Finally, when multiple energy storage technologies
with different lifetimes are evaluated and compared, such as
in [29, 32, 36], an equivalent annual annuity metric is recom-
mended [19]. For instance, one could break down the NPV to
an equivalent annual annuity where the highest annuity is the
preferable project.

The main limitation of the profit analysis is that it misses the
“hidden’ or wider power system cost and benefits of energy stor-
age. Because it only focuses on the visible’ cost and benefits at
the current market design. Future energy markets might inter-
nalise "hidden’ benefits, such evident by market design efforts
to address the previously hidden greenhouse gas emission costs.
Hidden cost and benefits are, for instance, savings due to in-
vestment deferral of network upgrades or peak plants, or when
fewer curtailments increase the value of renewable generators
[37]. Employing a hybrid method of profit and system-value
analysis, the authors in [14] added social or *hidden’ benefits
to the NPV metrics, which are not directly accounted for in the
market design. This lead to a higher value of energy storage
solutions. The drawback of the approach is that many assump-
tions are made and added exogenously to the NPV characteris-
tics ignoring the spatial and temporal heterogeneity of the hid-
den cost and benefits. What may be a good assumption at one
location at a specific time must not be the case at another lo-
cation at the same or another time. Including these variables
endogenously, as some energy system models do, can help an-
ticipate better infrastructural changes and reduce risks.

As a result, the profit analysis is a useful method to inves-
tigate a storage project’s value and competitiveness at present
for a specific location at current market designs. This might
be sufficient for investors to assess short-term projects at spe-
cific locations. However, when one looks at the value of energy
storage in the long term or across many regions, the following

system-value approach can give some extra insights.

2.3. System-value analysis

As previously stated, the system-value analysis estimates the
value of energy storage which are ’visible’ and "hidden’ at ex-
isting markets, for longer time horizon and large spatial regions
by considering perfect and complete markets in the analysis.
Energy system models are used for the system view which op-
timises investment and operation of generators, networks and
storage or demand response units at the same time to accom-
plish the objective of minimising total system cost. The results
of such analysis are nowadays mostly applied for policy rec-
ommendations. However, they also reveal insights for technol-
ogy design. For instance, it was found that high capacity factor
wind turbines can be equally desired in an optimal energy sys-
tem as their less capital intensive alternative technology with
lower capacity factors — having smaller hub heights and shorter
blade lengths [38, 39].

The system-value approaches are important to identify ben-
efits of energy storage. But not all energy system models con-
sidering the same benefits. For instance, [3] neglects network
expansion, missing significant network expansion cost savings
from storage deployment [2]. On the contrary, the authors in
[2, 40] use a model that incorporates generation, network, and
system operations savings from energy storage in the UK.

The whole-system benefit (WSB) given in €/year and the
marginal WSB given in €/kW or €/kWh are two inspiring con-
cepts how to attach a system-value to the energy storage in
power systems [2, 3, 41? ]. Both concepts share a comparison
of a none or existing storage scenario with one that includes
an energy storage expansion. Such approaches are also known
as counterfactual scenarios [42]. Thereby, the total system cost
difference between the scenarios is the WSB that the energy
storage creates [40]. When the marginal WSB curve, given in
€/kW or €/kWh, is integrated by the respective storage unit (in
kW or kWh), then the WSB is obtained. The marginal WSB is
described as vital since it provides the upper-cost limit for en-
ergy storage for a given amount of installed storage [43]. Only
if the marginal value is above its marginal cost the storage is
an economically viable option and should be installed. Ad-
ditionally, to the WSB and its marginal value, the authors in
[43], extended the concept by the differentiation of the benefits
in net and gross benefit. The gross benefit excludes the invest-
ment cost of energy storage while the net benefit includes them.
Thereby, the gross value method is used to create a benchmark
of how much the cost can rise for a given technology. The net
benefit analyses the holistic-value for a specific storage case.

Both WSB methods above lead to insightful results. For
instance, (i) that every additional installed energy storage ca-
pacity decreases its marginal value; (ii) that the value of en-
ergy storage can suffer from competition with other flexibility
providers, such as demand response or bi-directional charging
of electric vehicle; and finally (iii) that energy storage benefits
can be decomposed into its origins such as network and peak
capacity savings [2, 40].

The major drawback of the WSB approaches is that they
are unsuitable as evaluation metrics to signal between multi-



ple storage alternatives what technology is more competitive.
The WSB approaches seem to work correctly only for a sin-
gle energy storage design. When multiple energy storage units
are included in the WSB analysis at the same scenario and with
variable sizing for each location, it becomes difficult with coun-
terfactual approaches to allocate benefits. Or in other words, it
becomes unclear which energy storage at what location is re-
sponsible for certain energy storage benefits at a specific time.
As aresult, WSB approaches are not useful to assign a value to
one particular storage or to compare multiple storage technol-
ogy candidates.

In the next section, the *market potential method’ aims to
extend the existing system-value literature to circumvent the
above issue and give decision-maker signals even under com-
plex competition situations. In short, the new approach moves
away from assigning monetary values directly to individual en-
ergy storage units, but instead focuses on the optimised quan-
tity. Meaning that a storage is likely to be valuable when a
certain amount of storage is built. As in Section 4.4 discussed,
the quantity appears to be another useful metric for industry and
research when systematically applied.

3. Methodology

The methodology section is built up as follows. First, the new
system value assessment method, the *market potential method’
is defined in theory. Second, an experimental model setup for
hydrogen and battery storage is described that compares cost
and system-value analysis approaches. Finally, to carry out the
experiment the power system model PyPSA-Eur is introduced
with its problem formulation, set of scenarios and model input
data.

3.1. Market potential method

The *market potential method’ attempts to expand the exist-
ing system-value methods to give more useful signals of which
storage technology is valuable in existing or future energy sys-
tems. Figure 2 illustrates that the market potential method’
consists of: first, the “'market potential indicator’ which corre-
sponds to the expanded power or energy capacities of a stor-
age component such as charger, discharger or capacity unit;
second, the 'market potential criteria’ which seek to support
design-decision making of storage technologies.

3.1.1. Market potential indicator

The foundation of the introduced method is the market po-
tential indicator (MPI). The MPI is not a new metric. It is a
result of energy system models that analyse scenarios in future
energy systems and describes the total quantity of a particu-
lar storage technology in a cost minimised electricity system
[3, 44, 45]. However, the MPI has never been a central met-
ric to improve, compare and explore storage designs in detail; it
was rather used to inform policymakers and market participants
about probable energy futures to reduce investors risk [45]. We
utilise the MPI to guide technology innovation with probable
scenarios and market potential criteria.
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Figure 2: Description of the Market Potential Method. First a market potential
indicator is derived for a single or multiple possible scenarios. The market
potential indicator is then used by an entity through a market potential criteria
to support design-decisions making on energy storage technology.

The market potential can be either aggregated or disaggre-
gated. In the context of energy system models, we define the
disaggregated MPI of a storage unit as optimised (or expanded
t—ty) power or energy related size at a region. Thereby, the mar-
ket potential focuses on the storage component ¢, which repre-
sents a charger, discharger or store unit. The over a region i
aggregated MPI is determined by:

MPI,_,, . = Z (MPD),_, .;  [MWor MWh]  (2)
ieN

It is crucial to consider the MPI by components rather than
by a fixed-sized storage system for mainly two reasons. First,
grid-scale energy storage can be highly scalable and adaptable
[46, 47]. For instance, electrolysers (MW), steel tanks (MWh)
and fuel cells (MW) composing hydrogen storage systems can
be freely scaled and combined. And in a H,-hub operation,
two different electrolyser could feed the same H,-storage tank.
Second, energy storage system components—for instance based
on hydrogen—are not required to be at one location. Indicated
by [18], hydrogen pipelines can become an economically viable
option when large amounts of hydrogen need to be transported.
Its integration means that hydrogen electrolyser and fuel cell are
not required to be located at one place. Consequently, because
storage components can be independently scaled, adaptable in
operation and do not require co-location, it seems advisable to
optimise them separately.

3.1.2. Scenario selection and dealing with uncertainty

The use of energy system models is subject to uncertainty
as predicting the future with certainty is impossible. It is im-
possible because we can make decisions that impact the future
such as done by agreeing on multilateral CO; targets which im-
proved renewable energy deployment and led to learning by do-
ing cost reductions effects [4]. Nevertheless, analysing a broad
range of future scenarios can reduce uncertainty [48].

The market potential method in linear programming models
relies on possible and probable scenarios. Many different ways
exist to create ’possible’ scenarios which differ in the set of
deterministic input assumption and constraints [48, 49]. How-
ever, a possible future does not necessarily mean that it is a



probable one. A good approach to develop scenarios that can
be expected in future is to follow the ones which are provided
and encouraged by either national or multinational institutions
- and engage in public consultations if they require changes
[45]. An example of the latter one is the European Network
of Transmission System Operator for Electricity (ENTSO-E)
which provides every two year an update on multiple, currently
three, ’realistic’ pathway scenarios based on storylines towards
the European agreed targets - known as Ten-Year Network De-
velopment Plan (TYNDP) [45]. Transparency in energy mod-
elling, also from trusted institutions, is a key requirement to
lower uncertainty [50].

Scenarios can be additionally selected to investigate multi-
ple technology designs. For instance, technology manufacturer
might be interested in such analysis to guide energy storage in-
novation.

This study includes for the purpose of technology assess-
ment three different hydrogen design constraints and two dif-
ferent charger and discharger technologies which are described
in more detail in Section 3.3. While this study uses an exem-
plary 100% GHG emission reduction scenario that is sufficient
for the research purpose, future work should include probable
scenarios such given by national or multinational institution as
ENTSO-E.

3.1.3. Market potential criteria

The *market potential criteria’ give the market potential in-
dicator its meaning and can help with decision-making. The
criteria includes three simple rules. In an optimised energy sys-
tem model with many if not all technological alternatives, the
technology with:

e MPI = 0, for one scenario is unlikely valuable.
e MPI > 0, for one scenario is probably valuable.

e MPI > 0 in multiple scenarios reduces uncertainty.

Additionally, the positive MPI magnitude can be used as sup-
portive decision criteria to set flexibly own rules to deal with un-
certainty. This can be for example the "threshold’ or the *bigger
is better’ rule described below:

e MPI > X or ’threshold rule’. Where a company or insti-
tution decides what minimum market potential X must be
achieved. For instance, an alkaline electrolyser needs to
have 1 GW market size to be an attractive technology for
a company.

e MPIy, > MPIy or ’bigger is better’ rule. Where if two
technologies A and B are compared, the one with higher
market potential is more likely to be valuable.

Figure 9 illustrates how the market potential criteria could be
applied as decision support tool. The illustrative example could
lead to the anticipative decision of a technology manufacturer
or research institution to focus rather on the first two technolo-
gies than the latter ones.

Only with the criteria one can systematically analyse the mar-
ket potential indicators and reduce risk. Together, the mar-
ket potential indicator and criteria build the market potential
method.

Tech.1 Tech.2 Tech.3 Tech.4
oA ++ ++ +H+ 0 Likely to be
g valuable
= B it ot 0 0 Likely to be
o
A C Ty y i 0 not valuable
‘+’ mpI
magnitude

Certainty about positive value increases

Figure 3: Qualitative illustration of market potential criteria applied to a set of
scenarios and technology options. The "+ indicates the MPI magnitude. Ad-
ditionally, the threshold rule is set to a single plus, meaning that for instance a
company requires at least two plus to consider a technology as potential candi-
date to manufacture or start R&D activities.

3.2. Model structure and data

The open European transmission system model PyPSA-Eur
is adopted to determine the value of various energy storage sys-
tems in a European electricity system. PyPSA-Eur is an adapt-
able investment and dispatch model built on the core model
PyPSA that combines high spatial and temporal resolution. The
suitability of PyPSA-Eur for operational studies and long-term
power system planning studies is described in [13, 51, 52].

PyPSA-Eur covers the European transmission model and
processes electricity system data from diverse sources. Ex-
isting conventional generators, transmission lines, substations,
and hydro storage systems, as well as planned network rein-
forcements, are included with their size and location. Wind
and solar based technologies are greenfield optimised, which
means that existing solar and wind capacities are disregarded.
The time series for wind and solar generators are derived from
satellite and earth observatory data [51]. In regards to power
demand, the load time series are collected from ENTSO-E data
for each country, and redistributed by GDP and population over
the regions. A spatial resolution of 181 nodes matched with
an hourly resolution across a full year, accounts for the com-
plex spatio-temporal patterns of renewables and grid congestion
events that shape investment decisions [53].

In terms of market economics, the model assumes perfect
competition and foresight for one reference year. A detailed
model description is included in [51, 52]. Here, we only high-
light the key features and constraints. The objective of the
model is to minimise the total system cost in the European elec-
tricity system on transmission level. The total system costs con-
sists of

e investment costs, which includes annualised capital cost of
onshore and offshore wind turbines, storage components
and both HVAC and HVDC transmission lines, and

e operating costs, which includes fixed operation and main-
tenance, and variable operating cost.



The objective is subject to

e nodal power balance constraint that guarantee that supply
equals demand at all times,

e linearised power flow constraints modelling the physical-
ity of power transmission,

e Solar and wind resource constraint that limit the theoreti-
cal generation time-series. We chose a single weather year
for our analysis; however, this can be extended for a more
robust prediction of weather year anomalies or variations
[54].

e Renewable availability constraint which restricts solar and
wind technical potential based on environmental protec-
tion areas, land use coverage and a distance criteria.

e Emission constraint introduces a limit of carbon dioxide
CO, equivalent emission in the model that impacts tech-
nology investment and generation.

The model has many adjustable constraints. This study does

not include the available unit commitment (UC) constraints,
since the purpose of this paper does not justify extra computa-
tional burdens. These computational burdens are introduced by
the mixed-integer formulation of UC constraints which losses
convexity and hence, leads to a nonlinear program that requires
more efforts to solve. However, if a more detailed technolog-
ical performance in a high renewable electricity system with
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Figure 4: Optimal generation, storage and network expansion under a 100% emission reduction scenario and technology data for 2030. Light grey lines showing
the existing installed network capacity.

nuclear power plants is important, this UC formulation should
be included [55].

For the input cost and technical assumptions, the documented
dataset provided in [56] is used, referring to an electricity sys-
tem scenario in 2030. We only adjusted the dataset of [56] by
the battery and hydrogen storage system inputs summarised in
Table 1 and Table 2.

Table 1: Power related energy storage model inputs representing 2030 data

Energy storage components Electrolysor Fuel cell Battery Inverter
LCOS Scenario [Low] [High] [Low] [High] [-]
Investment [EUR/kW,;] 339 677 339 4230 209¢
FOM* [%/year] 2 3 2 3 3
Lifetime [a] 25 15 20 20 10
Efficiency [%] 68 79 47 58 90
Discount Rate [%] 7 7 7 7 7

Based on Ref. [9] [9] [571  [57,58] [58, 59]

Alkaline SOECY PEM‘ SOFC/ Li-Ion Battery®
¢ Fixed operation and maintenance cost

® Includes fuel cell stack replacement after 10 years which cost 30% of initial cost

¢ Includes 80 EUR/kW balance of plant, mainly assigned to wiring and connection [59]
4 Solid-Oxide Electrolyser

¢ Proton Exchange Membrane or Polymer Electrolyte Membrane

/ Solid-Oxide Fuel Cell

¢ Lithium-Ion Battery

3.3. Energy storage scenarios

This study looks at three different constraint energy storage

scenarios in one fully emission free energy system scenario.
As explained in Section 3.1.2, one energy system scenario is
just exemplary chosen and sufficient for this research. Multiple



Table 2: Energy related energy storage model inputs representing 2030 data

Energy storage components H, storage Battery storage
LCOS Scenario [High] [Low] [-]
Investment [EUR/kWh,;] 8.4 8.4 188°
FOM* [%/year] - - -
Lifetime [a] 20 20 10
Efficiency [%] - - -

Based on Ref. [58] 58] (9]

H, steel tanks

“ Fixed operation and maintenance cost
b Includes 81 EUR/kW for engineering, procurement and construction costs [59]

Li-Ton Battery

system scenarios from trusted organisations such as ENTSO-E
should be applied if technology decision are to be made with
the MPM. This section goes through the key scenario design
elements.

Starting with the energy storage scenarios, Figure 5 describes
the storage scenario design. First, technical and economic pa-
rameters are chosen as model input for each storage component
(see Table 1 and Table 2) to represent a low and high levelised
cost of storage (LCOS) case for a classical LCOS calculation of
a hydrogen storage system. Afterwards, the resulting techno-
economic details are inserted in the model environment into
three scenarios. The scenarios differ mainly in technological
design freedoms. ’Fix EP ratio’ is the most constrained energy
storage scenario having a fixed energy-to-power ratio of 100
h for the hydrogen and 4h for the battery storage technology
— applied in a similar range in research [8, 23, 60]. Whereby
charger and discharger size are equally set. ’Variable EP ratio’
optimises for the hydrogen storage unit each component size,
charger, storage and discharger so that the energy-to-power ra-
tio is variable. The battery is constrained in flexible sizing as
charger and discharger represent the same component, namely
the inverter, so that the battery storage can only size inverter and
battery capacity related design separately (see Battery compo-
nent size variables x, y, x in Figure 5). While both, fix and vari-
able EP ratio scenario, optimise hydrogen low LCOS and high
LCOS components separately, the *H,-Hub’ scenario permits
cross operation of hydrogen technologies. This can be thought
of as a H,-Hub, having at one location techno-economically
different low and high LCOS charging and discharging tech-
nologies that operate the same hydrogen storage.

This study creates energy storage scenarios that focus on
energy arbitrage benefits under spatially resolved perfect and
complete markets. Scarcity signals relevant to seasonal balanc-
ing are considered through "unconstrained’ locational marginal
prices also known as nodal prices. These nodal prices can
increase to extremely high prices such as more than 20000
€/kWh and let energy storage be optimised as seasonal reserve,
shifting cheap energy of one season to times of high prices. As
introduced in Section 2, the complete market considerations in-
cludes the often unaccounted or "hidden’ values of energy stor-
age systems, such as:

¢ Avoided investment cost of network expansion

e Avoided investment and operational cost of dispatchable
generators

o Increased power plant utilisation/ less curtailment

Emission targets play for the energy storage market potential
a vital role. To keep the comparability between scenarios and a
decent amount of market potential for energy storage, we set in
all scenarios the CO, emission reduction target to 100 %.

Figure 4 shows an example of the optimised European elec-
tricity landscape for the variable energy-to-power ratio sce-
nario, which is minimised in terms of total system costs in a 181
bus spatial resolution. One should note that the network struc-
ture is based on ENTSO-E data which is aggregated to show
realistic line capacities between the buses.

Different to [61], the scenarios include the existing European
nuclear power fleet, but acknowledge the German, Spanish,
Belgium and Swiss nuclear exit. The inclusion of nuclear power
plants reduces the required VRE capacity expansion and at the
same time, increase the share of dispatchable power plants. A
measure that reduces energy storage demand. However, the
flexibility of nuclear plants is overestimated in this study as typ-
ical ramp rates reaching up to 36%/h and minimum allowable
power of 20% per nominal power [62] are ignored. It implies
that this study will tend to underestimate the energy storage po-
tential.

Further, similar to [63], an equity constraint is included that
requires every country to produce at least 80% of its total elec-
tricity demand, leading to a smooth distribution of generators in
whole Europe. This constraint is motivated by the fact that po-
litical leaders avoid depending entirely on electricity imports,
though, are willing to trade a considerable amount to handle
the trade-off between economic benefits of importing cheaper
electricity and the costly independence of supply from other
countries.
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Figure 5: Description of scenarios set up. The cost and technical storage pa-
rameter are chosen once and serve as input for all storage scenarios. Scenario
1 shows the fix energy-to-power ratio of the hydrogen and battery unit a. In
Scenario 2 and 3 all components can be freely scaled, though, the battery is
constrained to the same charger to discharger ratio. Further, The ’5’ in the
Hj — Hub scenario indicates a new technology.

The network expansion is constrained to a volume of 25%
compared to the existing network capacity, acknowledging the
increasing political difficulty to develop new transmission lines.



A limited network expansion can potentially lead to higher stor-
age demand [64]. Further constrained are hydro storage tech-
nologies. These are based on real power plant data, though, are
deactivated for capacity expansion due to natural limitation in
many regions.

4. Results and Discussion

4.1. Relaxing design constraints of energy storage and its ben-
efits

As the introduction of the cost and value analysis scenarios,
the impact of design freedom on the storage components and
the total system is discussed in this section.

Increasing design freedom of energy storage can lead to sig-
nificant benefits in the electricity system. When investigating
the competitiveness of energy storage, many studies assume
that the energy to power ratio is fixed [3, 21]. Though a fixed-
sized storage unit seems to be far away from an optimal solu-
tion. A way to prove this is to investigate the total system cost
reduction in energy system models as applied in the following.

Table 3 shows that the increasing sizing complexity seems
worthwhile to consider as it can lead to per annum total sys-
tem cost savings of approximately 13B€or 10% in the modelled
zero CO; electricity system scenario while not leading to signif-
icant generation portfolio changes (see Figure 6). The total sys-
tem cost thereby includes the optimisation relevant costs which
consist of newly installed generation, storage and network com-
ponents, including any operational costs. Another approach to
comprehensively quantify the savings is by calculating the rel-
ative investment cost which divides the total system costs by
the total electricity demand. It shows that the introduction of
optimised sizing can lead to electricity bill savings of roughly
half a cent, with the H,-Hub scenario contributing only to neg-
ligible more savings. As a result, increasing design freedom of
energy storage can be desirable for a cheaper electricity system
and should be considered while designing technology.

Table 3: Annual total system costs, relative investment and curtailment data.
Variable sizing of energy storage reduces the system costs by 10%.
Curtailment

Scenario Total system cost ~ Relative investment? [% of annual demand]
Fix EP ratio 1529 BE 4.874 ct/kWh 0.61%
Var EP ratio 139.9 BE 4.460 ct/kWh 0.73%
H2-hub 139.7 BE 4.453 ct/kWh 0.37%

¢ Total system cost per annual demand

The optimal storage design depends on the location and tech-
nology. Figure 8 shows the EP-ratio for multiple locations and
technologies with relevant market potential in an optimal Euro-
pean future scenario.

Hydrogen charger are larger sized and reveal a wider span of
EP-ratios than its discharger opponents which means that quick
charging and slower release seem to be beneficial from a EU
system perspective at most locations. Further, the Li-Ion bat-
teries are optimised with a 2-4 h EP-ratio, much smaller than
the hydrogen components. The reason for that heterogeneous
design is that local diverse electricity system situations with its

scenario
300 fix EP ratio
var EP ratio

H,-H
200 7HUb

100

0
biomass geothermal nuclear offwind-ac offwind-dc onwind ror solar

Installed capacity [GW]

Figure 6: Absolute installed generation capacity in the exemplary 100% emis-
sion reduction scenario. The optimised capacity looks similar in all three sce-
narios indicating little influence of the storage scenarios on the generation port-
folio. Only slightly less generation capacity is required when variable sizing
of energy storage is permitted. The abbreviations 'ror’ stands for run of river,
offwind-ac and -dc for AC and DC connected offshore wind plants, respectively.

Table 4: Additional inputs for LCOS calculation oriented on [8].

Hydrogen storage unit

Battery storage unit

LCOS scenario [Low] [High] [-1
Discharging ratio [/] 100 100 4
Electricity price [Eur/MWh] 50 50 50
Yearly full load hours [4] 2500 2500 3400
Roundtrip efficiency™* [%] 32.0 45.8 81,0
Lifetime [a] 25 15 10
Static LCOS [ct/kWh] 0.21 0.26 0.12

*calculated product from energy storage component efficiencies in Table 1

individual network constraints, supply and demand curves, as
well as the different storage characteristics (see Table 1 and 2)
benefit from a variety of storage scaling to reach an optimal
solution that minimise the electricity bills.

4.2. Static LCOS vs modelled LCOS

The LCOS is currently an influential metrics to benchmark
technology and to discuss their competitiveness. Therefore it is
not surprising to see that technology design is even optimised
for minimum levelised costs (see Section 2). To show the draw-
backs of this measure, static and modelled values are calculated
according to the methodology described in Equation 1.

The main difference between static and modelled LCOS is
what assumptions are used. The static LCOS calculation uses
directly assumed or exogenous variables such as for full load
hours, electricity prices and energy-to-power ratios. In contrast,
the modelled LCOS is based on endogenous variables which
are determined by the energy system model and its inherent as-
sumptions. It means that full load hours, electricity prices and
energy-to-power ratios are determined for each location by the
European power system model.

The static LCOS is calculated with the technical and eco-
nomic component characteristics in Table 1 and 2, and the
LCOS assumptions given in Table 4. The results of the static
LCOS calculation also given in Table 4 show a 19.2% or 5
ct/kWh difference for the two hydrogen storage units, whereby
the battery storage seems much more competitive.

In contrast, the modelled LCOS results are given in Figure 7
for most buses in the EU electricity system for the ’variable EP
ratio’ scenario. Despite having the same input cost, lifetime,
discount factor and efficiency data as the static LCOS calcula-
tion, a wide LCOS range can be observed for each optimised
storage unit which consists of charger, storage, discharger. The
LCOS ranges are roughly between 20-100, 20-55 and 4-14
ct/kWh for the low, high LCOS H, unit and the battery, respec-
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in the system.

tively. One reason for the wide LCOS ranges is the heteroge-
neous charging and discharging behaviour which is indicated by
a diverse observed full load hours between 80-3000h; another
one, the heterogeneous nodal prices or electricity price profiles
at each region; and finally the heterogeneous sizing of the stor-
age chain. Again, the battery technology seems more compet-
itive under the LCOS framing while it becomes ambiguous for
hydrogen with the overlapping LCOS ranges.

A minimum LCOS metrics should be never a solely technol-
ogy design objective or used to argue about competitiveness.
Regardless of the low or high LCOS indication, the ’variable
EP scenario’ shows that all included energy storages technolo-
gies are valuable. As reminder, we define a technology as valu-
able if it reduces the total system costs. This is the case if a
technology is part of an optimised energy system. In Figure 7,
all technologies reveal a market potential indicating to be re-
quired assets to achieve the minimum total system costs. As a
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result, instead of improving energy storage by minimising the
LCOS, one could try to optimise the system-value and assess
the market potential indicator. Why reducing the total system
cost should be also in interest of the technology developer will
be discussed in Section 4.4

4.3. Market potential method as value indicator

This section reveals the market potential indicator for each
technology and scenario and evaluates it exemplary with the
market potential criteria. Exemplary, because as described in
Section 3.1 the MPM scenarios should be chosen according to
institutional scenarios or ’beliefs’ that might be more likely to
impact decision making. As reminder, the scenario design of
this study is described in Figure 5 and helps interpreting the
results.

Figure 9 shows the total market potential indicator for all ex-
pandable storage components in the European market. How this
market potential can be disaggregated over Europe is demon-
strated for chargers and the variable EP ratio scenario in Figure
10.

The first scenario shows as expected a fix energy to power
ratio of 100h (10TWh/95GW) for hydrogen technologies and
4h (0.07TWh/17GW) while the charging and discharging mar-
ket potential are constrained to be equal for one storage unit.
Surprisingly, in this scenario, the mainly optimised hydrogen
technology is the high LCOS case of the static LCOS calcula-
tion, whereby, the low LCOS case reveals a negligible market
potential. It means in simple terms that the high LCOS hydro-
gen unit is more likely to be valuable and worthwhile to design
or manufacture due to the approximately two orders of magni-
tude higher market potential.

In the second scenario, when all hydrogen storage compo-
nents, and the battery inverter to capacity ratio, are indepen-
dently scalable, one can observe a noteworthy reduction of the
market potential of battery components. This means that flex-
ible scaling of storage technologies can reduce the viable mar-
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Figure 7: Static LCOS values and modelled LCOS ranges of hydrogen and battery storage. The static LCOS is marked by a red horizontal line and calculated by
the assumptions given in Table 1, 2, and 4. In contrast, the modelled LCOS ranges are calculated for the *var EP ratio’ scenario for each bus in the EU network and
represented as point in the Figure, showing additional full load hours and the market potential indicator for the discharging unit. The width of the violin plot shows
the occurrence in the kernel density estimation which means the wider the plot the more buses are located at the respective LCOS cost range. In all cases, buses with
less than 1 MW market potential or 80 FLH are removed, keeping the visualisation readable. The plot shows that the aim to minimise the LCOS can be misleading
since a similar technology can be optimised and reveals a positive magnitude of market potential indicator even with higher LCOS.



ket for batteries. Further, the optimised energy to power ratio
impacts the market potential for hydrogen technologies. Now,
both high and low LCOS technologies possess a good market
potential and seem desirable as complementary technologies.
However, the variable sizing of hydrogen components leads to
a market potential shift from charger towards discharger com-
ponents. For a fix, variable and H, — Hub scenario, the to-
tal amount of hydrogen charger market potential (summing low
and high LCOS components) shift from 95, 68 and 80 GW to a
hydrogen discharger market potential of 95, 219 and 211 GW,
respectively. Making the hydrogen discharger components the
clear winner of variable sizing through a rough doubling in mar-
ket potential.

Concerning the H, — Hub scenario, when components are
variable sized and diverse H, electrolyser and fuel cell tech-
nologies can simultaneously use the same storage tank, then
the market potential of storage technologies changes remark-
able again. It makes the before well desirable solid oxide elec-
trolyser as technology almost negligible in terms of market po-
tential.

As aresult, what the market potential indicator reveals is that
the design freedom of storage is important to consider because
it impacts the value assessment. For instance, when variable
component sizing is possible, the PEM fuel cell, as well as
the Alkaline electrolyser, seem to be more desirable while Li-
batteries lose in importance in the electricity system.

Applying the full MPM and judging, hence, with the mar-
ket potential criteria lead to the insight that all the implemented
storage components can be considered as valuable. Because
at least one of the scenario’s possesses a positive market po-
tential indicator. However, only the Li-battery as well as the
SOFC fuel cell are the most likely valuable technologies as they
are optimised in all scenario’s and exceed a self-defined 1 GW

MPI dis-/charger [GW]

threshold criteria. As reminder, such a threshold might be set
by a manufacturer to define a minimal viable market for a tech-
nology worth to invest. The knowledge derived from the market
potential criteria can lead to implications, for instance, that the
Alkaline electrolyser manufacturer can actively mitigate their
value risk by promoting variable sizing.

Finally, the presented insights underline the misleading con-
cept of solely cost minimising technologies. Not always a tech-
nology with lowest investment or LCOS is most valuable. It
can be also the more expensive technology that can lead to a
cheaper future electricity system.

4.4. The relevance of the market potential method

The market potential indicator is a useful metric from a prac-
tical and computer modelling perspective for manufacturer, de-
veloper and research. First and most important reason is that the
market potential is a driver for business. Successful firms want
to generate money for its stakeholders and hence are driven by
two things, growth and profitability. The market potential in-
dicator for a specific product can relate the growth potential to
the profitability. For instance, when a company expects to of-
fer a future product for net costs of 10 €/kWh then it could
include these cost in the energy system model with a profit and
risk premium of 5 €/kWh (50%). The modelling output is the
market potential indicator which is related to the profit and risk
premium of 50%. As result, the market potential method can be
useful for growth and profit evaluations of future storage tech-
nology.

Second, the market potential can give insights where growth
markets are located and for what reason. This can be achieved
since the disaggregated market potential can identify regions
with future technology expansion (see Figure 10). The elec-
trolyser distribution reveals that in many locations high and
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Figure 9: Market potential indicator for all charging and discharging components in Europe for three technical storage scenarios in a zero emission electricity
system. Despite having the same economic and technical input data the market potential vary drastically between the scenarios. The SOFC fuel cell and Li-battery
are according to the market potential method, the technologies which are most likely to be valuable in the exemplary set of scenarios. Because they have an optimised
market potential indicator in each scenario. *Refers to the total shared storage capacity.
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low LCOS units complement each other. Additionally, when
storage components are compared to the generation distribu-
tion from Figure 4, most hydrogen units are co-located at re-
gions with wind plants (mostly northern regions) while batteries
gravitate towards solar plant optimised areas (mostly southern
regions). A reason for the observed co-location might be the
diurnal solar power pattern and the multi-day to weekly wind
power pattern which creates a network constrained mismatch
suitable for the given storage characteristics [65].

o M
HVAC Line Capacity HVDC Link Capacity Technology
2GwW 2 GW @ Electrolysor high-LCOS
5GW 5GW Electrolysor low-LCOS

Battery Inverter
10 GW 10 GW

Market potential
5GW
16w

Figure 10: Optimal energy storage charger distribution in the variable energy
to power sizing scenario. Showing the location of market potential in a 100%
emission reduction scenario. Comparing to Figure 4, most hydrogen units are
co-located with wind plants while batteries gravitate towards solar plant opti-
mised areas [65].

Third, the market potential is useful as an indicator of future
cost reductions. Because with the market potential, one can as-
sume future technology deployment which is an implicit factor
in learning by doing cost reduction effects [4] or a factor that
can be incorporated into process-based cost analysis to evalu-
ate the cost reduction potential [16, 17].

Forth, the market potential can reduce the structural uncer-
tainty of the linear programming energy system model itself.
Initial cost assumptions as model inputs are often made with-
out knowing deployment numbers achieved in the optimisation.
But it is known that larger deployment can reduce costs due to
learning effects [4]. Since after the first model run the market
potential can function as a cost reduction signal, one can in an
iterative or sequential solution approach improve the input ac-
curacy and, hence, lower the structural uncertainty.

Finally, the operational behaviour can be analysed with the
spatial distributed market potential, due to the use of energy
system models which gives operational times series of opti-
mised technologies. These time series can be used to identify
operational patterns and full load hours which both might be
useful for technology design decision.
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5. Critical Appraisal

What the market potential gives its power to resolve the com-
plex value of energy storage - the energy system model - also
introduces typical limitations found in this domain. The funda-
mental challenge of any mathematical energy model is to rep-
resent a realistic future energy system that includes all relevant
physical, social and political details [66]. Current approaches
encounter limitations to represent these details. For instance,
models often aggregate in space, time and technological res-
olution to reduce the computational requirements losing some
accuracy to represent future scenarios; or assuming perfect and
complete markets, where actors have perfect foresight. Both
deviates from what can be accomplished in reality [51] and as
pointed out in the introduction it can be important to address
additional values of energy storage.

These energy model limitations can be understood as (1)
structural uncertainty related to the imperfect mathematical de-
scription of the physics and (2) parametric uncertainty that
refers to imperfect knowledge of input values, i.e. impacted by
innovation or behaviour. Both compromise every kind of math-
ematical models with increasing uncertainty looking into more
distant future and vary from model to model [42, 64, 67]. The
most important uncertainties of PyPSA-Eur are summarised in
[51], for instance, that demand profiles for regions in a coun-
try are not disaggregated and only scaled by the GDP of the
regions, hence, representing not local differences; or missing
multi-horizon optimisation which can help to describe invest-
ment pathways and lock-in effects; or the only focus on the elec-
tricity system, missing alternative flexibility competitors from
other sectors.

Nevertheless, most of the uncertainties can be reduced by
improving future mathematical descriptions of the reality and
by strategies to reveal remaining uncertainties [66]. This also
includes the missing energy storage values of this study for sub-
hourly grid services and risk confronted investment and opera-
tion. In PyPSA-Eur many of these certainty creating features
can be implemented in short-term by state of the art techniques.

In context of the above-described uncertainties, this study
does not seek to be the one true future. It rather shows a set
of possible future scenarios with different technological design
freedoms for the only purpose of comparing different storage
design evaluation methods.

6. Conclusion

This study analysed recently published literature on energy
storage and found three distinctive evaluation approaches to in-
dicate how to improve energy storage. We show how these ap-
proaches work and what are their limitations. The here newly
introduced market potential method is the only one which de-
fines a valuable technology as one that reduces the total system
costs or in micro-economic words, reduces the electricity bill.

The first approach found in literature coined ’cost analysis’
identifies competitive storage technologies with the objective
of lowest capital or levelised cost. We argue that this approach



should not be used in isolation to guide storage technology de-
velopment or policy recommendations. We quantified that a
higher LCOS hydrogen storage can be equally or even more
desired than a low LCOS hydrogen storage which questions the
meaning of cost like metrics as an evaluation factor.

The second ’profit-analysis’ approach aims maximal profits
for storage projects. It may sound intriguing for investors at
current market design without considerable electricity system
changes, but when the future storage technologies are to be
evaluated, this approach is likely to fail. In this context, we
qualitatively explain that current market designs are incomplete
and imperfect and might change due to the energy transition,
leading to missing "hidden benefits’ of energy storage when
looking into the future. As a result, rather than improving tech-
nology designs with cost or profit analysis methods, we could
design technology with approaches that can lower the total sys-
tem cost.

The third identified ’system-analysis’ approach can accom-
plish this by also including hidden storage benefits and consid-
ering future more complete and idealistic markets. However,
the review identifies a lack of practical system-analysis methods
that focus on technology evaluation. The counterfactual sce-
nario nature of existing approaches that give a monetary feel-
ing about the system benefits constraint the usefulness. Hence,
the new market potential method’ is introduced, formulated,
applied and discussed to improve technology design-decision
making. The market potential method can be described as sys-
tematic deployment assessment. It focuses on components such
as charger, store and discharger separately and assess how they
could be scaled rather than on assessing fixed sized whole stor-
age systems. Further, as indicator it uses the total sum of the
optimised, expanded energy or power related size in a large
spatial electricity system. A commonly output in energy sys-
tem models that is underestimated and not yet applied to guide
technology innovation. In probable scenarios the market poten-
tial method can derive through a set of criteria which technolo-
gies are potentially valuable or lead to the lowest cost energy
system.

In scenarios with a high and low-cost hydrogen storage sys-
tem and different grades of technological freedoms in sizing and
interactions of the storage, we quantify with the market poten-
tial method that a seemingly more expensive energy storage can
be the one with higher system-value. Thus, not only the cost but
also the system-value of technology matters in a complex and
heterogeneous electricity system.

As a secondary result, modifying the freedom of storage siz-
ing and component interactions impacts the value of technol-
ogy. For example, Li-Ion storage suffer from variable sized hy-
drogen storage. Likewise, increasing these design freedoms can
lead to meaningful total system cost savings (10% total system
cost savings compared to a fix sized storage scenario). But how
variable sizing can be indicated and supported in existing en-
ergy planning is a question by itself and should be answered in
future.

In summary, the market potential method has implications
on practical and modelling relevant insights for manufacturer,
developer and research. It can be used to
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e support technology design-decision making with growth
signals of magnitude and location,

e improve the technology by changing operational be-
haviour or adapting material or process selection to be
most valuable for the energy system,

e concentrate policy endeavours to come closer to perfect
market circumstances, or to

e enhance energy modelling as evaluation tool itself.

Future work can reduce the limitations of this study, such
as the inclusion of sector coupling and multi-horizon optimisa-
tion. Further, this study considered energy arbitrage under per-
fect and complete markets. Another branch of work can include
more services relevant to grid stability and risk approaches. For
instance, by investigating the impact of imperfect and incom-
plete market conditions and higher spatio-temporal resolutions
in regards to market potential method results. Finally, what
might be valuable in Europe could look different in other re-
gions. Technology developer would benefit from a global value
assessment. Therefore, it is of utmost importance to expand
open energy system models to cover most parts of earth.

The economist Milton Friedman said that “there is one and
only one social responsibility of business—to use it resources
and engage in activities designed to increase its profits so long
as it stays within the rules of the game, which is to say, engages
in open and free competition without deception or fraud” [68].
This might sound convenient in many cases. But in the context
of developing energy technology, the game is constantly chang-
ing due to the energy transition and sector coupling, aiming
complete and perfect markets. Thus, maybe it is time to look
beyond the cost reduction paradigm and short-term profit focus
- to develop technology that leads to lower system cost and win-
ning the game of the future. The market potential method could
contribute to this.

Code and Data availability

Code and data to reproduce results and illustrations are avail-
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