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Abstract

We consider auctions for procurement contracts that have both exogenous production risk
and a payment rule depending on the winning bidder’s self-reported expected production.
We establish an incentive to over-estimate production when the payment rule is production-
insuring (under truthful reporting), and that it is impossible to design a rule that fully insure
strategic bidders. We then analyze equilibrium bidding behavior under several paradigms and
illustrate our results on the pitfalls of production-insuring payment rules with some offshore
wind power auctions in France. The estimated benefits under truthful reporting are much
lower in magnitude than the potential losses due to misreporting, which exceed 3%. We
consider variants of the French rule, in particular with punishments aimed to discourage
misreporting, and find limited room for improving unit-price contracts.

Keywords: Production Risk; Insurance Provision Contracts; Auctions for Contracts; Market
Design; Gaming; Renewable Energy; Wind Power.
JEL classification: D44; D47; D86; L94.

1 Introduction

The transition towards low-carbon economies has induced many countries to support renewable
energy sources of electricity (RES-E) on a large scale, especially from wind and solar power. The
corresponding subsidy contracts are often assigned through auctions.1 Such production contracts
involve risks which are known to induce precautionary bidding when producers are risk-averse
(Eso and White, 2004). Among the various sources of risk, one is the determination by weather
conditions of the quantity of electricity that will be produced from wind and solar sources. Letting

1In 2019, an estimated 115 GW (resp. 60 GW) of solar PV (resp. wind power) capacity was installed worldwide.
RES-E subsidies were awarded through auctions in 48 countries according to REN21’s 2020 global status report
(www.ren21.net/wp-content/uploads/2019/05/gsr_2020_key_findings_en.pdf).
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the public authority bear a larger share of this risk could reduce risk premiums and help to develop
RES-E at a lower cost.

The benefits of insurance schemes that hedge contractors against exogenous risk, thereby de-
flating the risk premiums required by producers, have been analysed in the contingent auction
literature in which payments are allowed to depend on ex post verifiable variables, such as vol-
umes extracted in oil lease or timber auctions (Bhattacharya et al (2018) and Athey and Levin
(2001)), revenues from tolls in auctions for highway franchising (Engel, Fischer and Galetovic,
2001), quantities of inputs in procurement for infrastructure project (Bolotnyy and Vasserman
(2019) and Luo and Takahashi (2019)), coal prices in procurement for fossil power plant (Ryan,
2020), and lastly, electricity produced in the RES-E auctions. Various hedging instruments have
been considered and/or used in practice. Engel, Fischer and Galetovic (2001) plead for least-
present-value-auctions where the franchise term adjust to demand realizations: according to their
estimations, such contracts could reduce public spending by more than 20% compared to fixed
term contracts where contractors bid on tolls.2 One of the most popular instruments to share
profits between parties are royalties and unit-price (UP) contracts that specify, respectively, a per-
centage of the revenues and of the observable costs that accrue to the buyer. According to their
structural model, Bhattacharya et al (2018) estimate that the optimal royalty rate is around 26%
which is more than 50% higher than the one currently used in oil lease auctions. In procurement
for transport infrastructure projects, Bolotnyy and Vasserman (2019) estimate that switching to
a Fixed Price (FP) contract – where the contractor bears all the cost overruns – would more than
double public spending compared to a UP scaling auctions where producers are partially insured
against risk at the time of contracting (provided that unit prices reflect marginal production
cost).3

RES-E are often subsidized through Feed-in-Tariff (FiT) contracts where producers receive a
fixed subsidy for each MWh produced. Those contracts are analogous to the UP contracts used
in infrastructure procurement, up to the twist that solar PV and wind power production do not
involve any marginal costs. Henceforth, FiT contracts do not hedge producers against but rather
greatly expose them to production risk. If we abstract from discounting and limit ourselves to the
ex post risk after the equipment has been installed, the sole source of risk faced by producers in

2In a related vein, for offshore wind farm projects, the Danish government has used auctions where the duration
of the contract adjust so that the public subsidy ends once a fixed quantity of energy has been produced (IRENA,
2017). After the end of the contract, the producer is then free to sell the electricity produced, which contrasts with
auctions for highway franchising where the contractor does not collect any toll after the end of the contract.

3For the same kinds of contracts run by a different Department of Transportation, Luo and Takahashi (2019)
show consistently that UP contracts are usually chosen by project managers for “complex projects”, that are
also more risky, while FP contracts are typically used for “simple projects”. Furthermore, in scaling auctions
where potential contractors bid on multiple unit-prices, there is another source of insurance provision by choosing
appropriately the item(s) on which to bid more aggressively.
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terms of revenues is the total quantity produced over the duration of the contract. To remunerate
wind farms, some countries – including notably Brazil, France and Germany – have departed from
linear FiT and adopted contract designs (further referred to more generally as “payment rules”)
where producers’ yearly revenue is made less sensitive to yearly production variations within an
interval around a production of reference. For instance, the payment rule for early offshore wind
auctions in France was almost flat within an interval of plus or minus 10% around the production
of reference. The rationale was presumably to insure producers against meteorological variations
but also possibly against poor production predictions.4 Under such production-insuring payment
rules, the subsidy received by the contractor does not depend solely on the contract price but also
on a so-called production of reference. In Brazil, this parameter is certified by a third party based
on wind measurements in the planned location for the project.5 In France, the production of
reference is based on the firm’s own data and calculation.6 In any case, there is no guarantee that
the reported production of reference will be the true one: Firms that are aware of the possibility
to game the auction rules could be able to depart from truthful reporting.7

Our theoretical analysis considers a set of risk-averse firms bidding for risky contracts that
remunerate production as a linear function of the auction price and also as a function of both the
realized production and the production of reference, as this in a quite general way much beyond
the very specific rule used in France. Our model abstracts from any moral hazard issues: firms
are assumed to have no control on the quantity produced after having entered the auction. In
addition to considering their price bid, we also consider that firms are either constrained to report
truthfully their production of reference or are entirely free – at no cost – to make any possible
report. The former (resp. later) firms are called truthful (resp. strategic).

We first formalize a fundamental conflict between insurance provision and strategy-proofness.
For this we first consider the class of payment rules that would increase (resp. not change) the
expected utility of any risk-averse (resp. risk-neutral) contractor for any symmetric single-peaked
production distribution, provided that the contractor has reported truthfully its expected pro-
duction. We characterize those payment rules that are referred to next as production-insuring

4The standard deviation of the yearly production of a wind farm represents at least 10% of the mean production
(Newbery, 2012). Until recently, the accuracy of wind power forecasting was an important issue and suffered from
an important over-prediction bias. See Lee and Fields (2020) for a survey.

5See the report D4.1-BRA (2016) of the AURES project for details. In Germany, the production of reference
is also determined according to some administrative rules but without using the characteristics of the location
(Bichler et al, 2020). The rationale for the German payment rule is very different: it consists in promoting regional
diversification by giving bonus (resp. malus) to projects located in less (resp. more) windy areas.

6For that purpose, firms provide to the public authority the wind data they used and the technical characteristics
of the wind turbine they considered. However, no certification by a third party is required regarding these data and
calculations, and the technical characteristics reported are not entirely binding: some firms have finally selected a
different wind turbine than the one initially declared to the authority in the auction process.

7Obtaining a more favorable production of reference could be obtained either directly through corruption or
indirectly by reporting inaccurate technical characteristics about the project.
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payment rules and that include in particular the payment rule used in France for offshore wind
farms. We establish that for any given production-insuring payment rule and any given sym-
metric single-peaked distribution, risk-neutral producers strictly benefit from overestimating their
expected production. When firms are risk-averse, the analysis of optimal misreporting is less
clear-cut since overestimating production may also increase the variability of the revenue which is
then detrimental to the contractor. To get more insights, we derive some comparative statics on
the optimal misreporting for a specific class of production-insuring payment rules that are very
similar to the one used in France.

Second, we consider the class of payment rules that are homogeneous of degree one in the
realized production and the production of reference, a property also satisfied by the French wind
auction contracts. Then for any production distribution and any form of risk aversion, we cannot
design such a payment rule where strategic firms would be fully insured against production risk.

Those two negative results however do not claim that there is no hope to reduce risk thanks
to a production-insuring payment rule or a homogeneous of degree one payment rule. We will
partially address this question through our simulation exercises calibrated to our wind power
contract application where we analyze the performance of a variation of the French rule.

The second part of our theoretical analysis is devoted to the impact of strategic misreporting on
equilibrium prices and then on the buyer expected cost. In the benchmark case where all producers
are risk-neutral and truthful, the buyer’s expected cost is equal to the production (fixed) cost. If
producers are (strictly) risk-averse, a risk premium should be added. Under truthful reporting,
this premium is lower under a production-insuring contract than under the linear FiT contract.
However, this result may no longer hold under strategic reporting: instead of evening out the
producer’s revenue (as it would be the case under truthful reporting), a production-insuring
payment rule could have exactly the opposite effect, as illustrated in Section 2, and those risks are
born ultimately by the buyer through an increased risk premium. When all firms are strategic,
the equilibrium price decreases compared to the case where all firms are truthful, but this effect
is deceptive because equilibrium prices no longer reflect the expected price per quantity produced
when the reported production of reference differs from the true one. Quantitatively speaking, the
impact of such risk premiums on the buyer’s expected cost is nevertheless very limited for our
wind power application. However, the picture is very different if firms are heterogeneous, i.e. if
some are truthful and others strategic. We consider specifically two models as benchmarks: first
a model where a single firm is strategic while the remaining firms are all truthful, and second, a
model where each firm is truthful or strategic with some common probability and independently
of each other. Such heterogeneity among bidders induces non-competitive rents. In our model
with a single strategic bidder and for a typical level of risk aversion (CRRA = 1), our estimates
of such non-competitive rents exceed 3% and are around fifteen times larger than the estimated
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theoretical gains that could be expected from the French production-insuring rule (compared to
the linear FiT) in the best case when all bidders are assumed to be truthful. We obtain thus that
the largest pitfall of production-insuring payment rules do not result from misreporting per se
but relies rather on the possible heterogeneity in the way bidders misreport their production of
reference. In other words, departing from linear contracts to reduce risk premium seems a quite
risky bet for the buyer.

Related literature This paper contributes to the small (and still growing) literature on indi-
vidual manipulations where bidders have opportunities to “game” the auction rules, which arise
in complex environments where bids are multi-dimensional.8 Yokoo et al. (2004) consider multi-
object combinatorial auctions where bidders can benefit from using multiple identities to bid in
the auction.9 In scaling auctions, the score of a bid is computed based on ex ante estimates of
the various underlying quantities. If bidders receive ex ante some information about the realized
quantities, then they will benefit from skewing their bids (Athey and Levin, 2001).10 Agarwal
et al (2009) discuss such incentives and mention other manipulations as well in sponsored search
auctions for online advertising. Last, Ryan (2020) considers a manipulation associated with a
hedging instrument in procurement for fossil power plants where ex post risk comes from the
future price of coal: a firm’s bid can be viewed as the combination of a score (such that the lowest
score wins the auction) and a hedging instrument. Ryan (2020) show that some firms do not
use the hedging instrument having in mind their ability to renegotiate their contract in case of
spikes in the price of coal. Overall, bid manipulations in procurement open the door to welfare
inefficiencies by selecting – instead of the firms with the lowest cost – the best “manipulators”, i.e.
those who benefit the most from ex post renegotiation in Ryan(2020), those who benefit the most
from skewing their bids in Luo and Takahashi (2019), or those who are able to fool the auctioneer
by misreporting their production of reference in our analysis.

This paper also contributes to the theoretical literature on contingent auctions as surveyed by
Skrzypacz (2013). Hansen’s (1985) seminal contribution shows that auctions on royalties leave less
informational rents to the winning bidder compared to cash auctions. Under a paradigm with risk-

8The standard auction formats (that prevail in auction textbooks, as Krishna (2002)) are immune to individ-
ual gaming strategies, but not to collective manipulations which are referred to as collusion and have received
considerable interest (see for Correia-da-Silva (2017) for a survey).

9Such false-name bidding activity is sometimes referred to as shill bidding, a term that is also used for manipu-
lation by the seller consisting in bidding in the auction (Lamy, 2013) in order to increase the selling price, although
it is typically considered to be fraudulent activity.

10In Athey and Levin’s (2001) bi-dimensional timber scaling auctions model, the optimal strategy of a risk-neutral
bidder consists in bidding zero on the species whose percentage has been underestimated by the seller and paying
the Forest Service only for the overestimated species. Such extreme unbalanced bids are not observed in practice,
partly due to risk aversion (Athey and Levin, 2001). Bajari et al (2014) mention another explanation: the risk
that a bid could be rejected when its skewness is too visible. Luo and Takahashi (2019) consider multidimensional
UP contracts and argue that bidders form their bid portfolios to balance their risks.
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neutrality and independent private signals, Laffont and Tirole (1986) and McAfee and McMillan
(1987) develop models involving a trade-off between selecting the most efficient supplier and
reducing moral hazard: in the optimal contract, the supplier and the buyer share the observable
part of the profit. More recently, Abhishek et al. (2015) and Fioriti and Hernandez-Chanto (2020)
consider risk-averse bidders and argue that steeper securities are beneficial not only because they
reduce informational rents but also because they provide more insurance and thus reduce risk-
premiums. Bhattacharya et al. (2018) consider a common value model auction for oil tracts
contracts and analyze the trade-off between insurance-provision (pleading for larger royalties) and
providing appropriate incentives to drill (or not) the tracts in an efficient manner (pleading for
cash auctions). The trade-off we analyze is slightly different but still quite related: insurance-
provision induces opportunities to game the auction rule and thus to increase the buyer’s cost
through non-competitive rents.

The remainder of the paper is organized as follows. Section 2 introduces the payment rule
used by the French government and its caveats. Section 3 is devoted to the theoretical analysis of
auctions for contracts with production risk: we analyse first how firms can optimally (mis)report
their expected production, and second, the buyer’s expected cost when the final contract results
from competitive bidding under several paradigms regarding how bidders report expected produc-
tion. Section 4 reports various estimates regarding the performance of the French rule compared
to the linear FiT. Section 5 introduces a set of payment rules that are piecewise linear in the
realized production (as the French rule). Those rules that are characterized by two parameters
are designed in order to deter misreporting. We then present the results of some simulations in
an attempt to determine whether and how such simple payment rules could outperform the linear
FiT. Section 6 concludes.

2 Background: The French production-insuring payment rule

In 2011 and 2013, the French government auctioned up to 4 GW of capacity through six offshore
wind farm projects.11 For each retained project, the feed-in-tariff (FiT) contract specifies the
yearly amount paid by the government to the winning firm as a function of its realized yearly
production (in MWh). The French payment rule differs from standard FiT linear contracts where
the payment is strictly proportional to total production: the yearly remuneration depends not
only on the auction-determined price (per MWh) and the amount of electricity produced during

11The auction and contract rules are provided (in French) by the French Energy Regulatory Commi-
sion for both auction rounds from 2011 and 2013: http://www.cre.fr/Documents/Appels-d-offres/Appel-
d-offres-portant-sur-des-installations-eoliennes-de-production-d-electricite-en-mer-en-France-metropolitaine
and http://www.cre.fr/Documents/Appels-d-offres/Appel-d-offres-portant-sur-des-installations-eoliennes-de-
production-d-electricite-en-mer-en-France-metropolitaine2.
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the year, but also on how the latter compare to the production of reference reported by the
producers in their bids. This production of reference corresponds to the capacity (which is a
technical feature that is verifiable) times the expected capacity factor reported by the bidder,
and corresponds thus to the expected production. The French payment rule was designed in a
way that makes producers’ yearly revenues vary little within a range of +/- 10% of the reported
expected production. Therefore, this rule offers producers an opportunity to insure themselves
against production risk. We presume that the original motivation for such a design was to lower
producers’ risk premium, that would be passed over to public authorities through higher price
bids in the FiT auction.

Formally, let p denote the price bid of the winning firm, q0 the reported expected production
and qt the realized production in year t. Throughout our analysis, we consider payment rules
where the revenue of the firm for each year t can be expressed as p · R(qt, q0). We also make the
normalization R(q0, q0) = q0 for any q0. The French payment rule as a function of the realized
yearly production is depicted in Figure 1a where the solid line shows the firm’s (yearly) revenue
depending on how its (yearly) production compares to q0. Here R(qt, q0) takes the form qt · z( qtq0 )

where z : R+ → R+ with z(1) = 1.
In order to hedge producers against the variation of qt, we wish to set the correction factor z

such that z( qtq0 ) ≥ 1 (resp. ≤ 1) if qt < q0 (resp. qt > q0), i.e. such that the payment is higher
(resp. lower) than what it would have been under a standard linear payment rule for the same
price (depicted by the dotted line Figure 1a) when the realized production is lower (resp. higher)
than q0. According to the French payment rule, we have z( qtq0 ) > 1 (< 1) when production qt is up
to 15% below (resp. above) q0 and z( qtq0 ) = 1 when qt lies outside the [0.85q0, 1.15q0] range. As a
consequence, for a given price p, the more often the yearly production lies in the range [0.85·q0, q0],
the higher will be the firm’s revenue. For that purpose, if the firm knew ex ante that the realized
production will be equal to q, or equivalently if there were no production risk, then reporting an
expected production q0 higher than the true expected production q would enhance revenues, as
can be seen in Figure 1b which depicts the function z( qtq0 ) as a function of q0. This function is
maximized when the realized production is equal to 0.9q0, i.e. when the firm overestimates its
production by about 11%. Thanks to this strategic misreporting, the average subsidy per MWh
produced would increase by 10% compared to the theoretical FiT p under truthful reporting. This
shift corresponds to the difference between the slopes of the dashed and the dotted lines depicted
in Figure 1a.

More generally, when production is risky, producers have no incentives to report truthfully
their expected production E[qt]. E.g., a risk-neutral firm wish to report q0 strategically in order
to maximize E[z( qtq0 )]. If we also assume that the production is symmetrically distributed, then
it is intuitive that bidders wish to overestimate q0 to get more often a favorable correction factor
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Figure 1: Payment rule in French offshore wind auction

(a) Payment to the firm (b) Correction factor z(.)

z( qtq0 ) that is larger than 1 (and less often a correction factor below 1). By optimizing their
report q0, firms benefit from the effective feed-in-tariff p · E[qtz(

qt
q0

)]/E[qt] which is larger than
p · E[qtz(

qt
E[qt]

)]/E[qt]. If qt is symmetrically distributed, then the latter term is equal to p for the
French rule since the function q → R(q, q0) is symmetric around q0 (for any reported q0 and thus in
particular for E[qt]). Naturally, the effective feed-in-tariff is bounded above by p ·maxx z(x ≥ 0),
the bound when future production is perfectly known ex ante.

To get a first-order approximation of the magnitude of the incentives to misreport expected
production, we provide in Appendix 1 a methodology to model the yearly production distribution
of a wind farm project, and this from an ex ante perspective. This distribution is built from
historical data on local meteorological conditions, on the top of which we add a systematic error
term reflecting imperfect knowledge on the wind resource at the ex ante stage. We then apply this
methodology to five of the offshore wind farm projects auctioned by the French government.12

For three different payment rules and for a given fixed price bid (equal to the one awarded to the
winning bidder in the corresponding project), Figure 2 depicts the pdf of the discounted revenue
raised over 20 years for the offshore wind farm projects both in Le Tréport and in Saint-Nazaire.
The payment rules we consider are: the linear FiT and the French payment rule both under
truthful and strategic13 reporting, i.e. when q0 = E[qt] and when q0 = q∗0 ∈ Argmaxq>0 E[z( qtq )],

12We leave out one of the sites for which the methodology cannot be applied (see Appendix 1).
13Here we consider to simplify that the optimal reported production of reference is the one that would maximize

the expected revenue, or equivalently the expected payoff of a risk-neutral firm. More generally, the optimal
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respectively. When firms report truthfully their expected production, then the revenue distribution
is less spread out under the French rule than under the linear FiT. However, for any given price bid
p, firms could benefit from a significant shift upward of their revenue distribution by strategically
misreporting their expected production: for the five wind farms used in our simulations, we
estimate that the optimal report of risk-neutral firms consists in overestimating their expected
production by 11.9 to 12.5% which increases their expected revenue by 3.2 to 3.6% compared to
truthful reporting. But by doing so, they also increase the standard deviation of their revenue
distribution by 72 to 85% compared to truthful reporting, and which ends up being 10 to 13%
larger than the standard deviation under the linear FiT. It is also noteworthy that the revenue
distribution becomes quite asymmetric under strategic reporting.

If the contracts are awarded through competitive auctions, then the benefits from reporting
an overestimated expected production would be competed away through the competition in the
auction if all bidders are strategic. For a given price p under the linear FiT, and if bidders are
risk-neutral, let ps denote the price that yields the same expected revenue under the French rule
under strategic reporting. We have then ps = pE[qt]/E[R(qt, q

∗
0)]. After this price rescaling, we

find that the variance of ps · R(qt, q
∗
0) is larger than the variance of p · qt by 6.6 to 9.3% in the

five wind farm projects included in our simulations. In other words, the alleged benefit from the
French rule -insurance provision- can be largely offset by strategic reporting and is likely to fail
completing its original objective of reducing firms’ risk premiums. An in-depth analysis of risk
premiums and of the expected equilibrium subsidy is developed in 4.

3 The model

Let us enlarge our horizon beyond the specific intermittent RES-E application to develop a general
theory of procurement/auctions for production contracts when the quantity produced ex post is
determined by exogenous conditions and when the payment rule have an insurance provisions
clause.14 Namely, we consider the following setup:

Production risk: We assume that the quantity produced q is an exogenous random variable,
and in particular that it does not depend on any efforts made ex post by the producer. The
variable q is distributed on R+ according to the pdf f , which is assumed to be symmetric around
its mean Ef [q] = q̄, with q̄ > 0. Formally, f(q̄+x) = f(q̄−x) for any x ∈ [0, q̄] and the support of
f is a subset of [0, 2q̄]. Let F denote the corresponding (differentiable) cdf. We also assume that f

(mis)report would depend on bidders’ risk aversion as developed later.
14In this section, we abstract from the (typical) inter-temporal nature of such contracts where producers are

subsidized for their production over multiple years. Qualitatively, this dynamic aspect is rather innocuous from a
theoretical perspective. Still, it matters quantitatively once producers are risk-averse, as averaging production over
several years reduces the risk faced by producers.
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Figure 2: Firm’s revenue distributions depending on payment rule and firm’s strategy

is single-peaked: formally, for a symmetric distribution f on R+, being single-peaked is equivalent
to being non-decreasing on [0, q̄]. Let Fsp denote the set of such symmetric and single-peaked
distributions. For f ∈ Fsp, the support of f corresponds then to the interval [q̄(1− δf ), q̄(1 + δf )]

where δf := inf{t ≥ 0|f(q̄(1 + t)) = 0}. Note that δf ∈]0, 1].
The class of contracts: a producer receives from a buyer a payment taking the form p ·

R(q, q0) where p > 0 is a per unit price, q the quantity produced ex post, and q0 ≥ 0 a parameter
reported ex ante by the producer. The function R(·, ·) is called the payment rule.15 Contracts are
designed such that the buyer expect contractors to report q̄ for q0. Next, q and q0 are referred
to as the ex post production and the expected production reported by the producer, respectively.
Throughout our analysis, we assume that the function q 7→ R(q, q0) is positive, non-decreasing
and continuous16 with R(0, q0) = 0, for any q0 ∈ R+, and that the function q 7→ R(q, q) is strictly
increasing with limq→+∞R(q, q) = +∞. Then without loss of generality, we can also make the
normalization R(q0, q0) = q0.17 We also assume that q0 7→ R(q, q0) is differentiable for any q ≥ 0.
Among these contracts, we call linear contracts those for which R(q, q0) = q for any q0.18 We

15In other kinds of applications, the variable q could corresponds to a measure for quality, or more generally any
kind of uni-dimensional measure characterizing the producer’s output.

16The assumption that q 7→ R(q, q0) is continuous is not mandatory for most of our results and allows us to
get rid of some technicalities: without it, some intermediate properties would hold almost everywhere instead of
everywhere, which would be sufficient for most of our results.

17In general, what is referred to as the ex post production could thus correspond to a non-linear transformation
of the quantity produced according to usual production measures.

18In our application, a simple FiT with a fixed per unit price is a linear contract.
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say that the payment rule is homogeneous of degree one if R(λ · q, λ · q0) = λ · R(q, q0) for any
λ, q, q0 ≥ 0.

Producers’ payoff: We assume to simplify that the production costs resume to a fixed cost
C > 0 that is sunk once the contract is signed. We also assume that producers value their profit
according to an increasing concave utility function U . Under risk-neutrality, we consider that U is
linear. If U is strictly concave then we say that producers are strictly risk-averse. If the producer
wins the auction and has signed a contract characterized by the pair (p, q0), then its expected
payoff, denoted by Π(p, q0), is equal to Ef [U(p · R(q, q0))]. If the producer loses the auction and
thus does not sign any contract, its expected payoff is given by U(C).19

Strategic behavior: We consider two kinds of producers: truthful (or non-strategic) pro-
ducers who report q̄ for q0 and strategic producers who report a quantity q0 belonging to the set
Argmaxq0∈R+ Π(p, q0) given the price bid p.20 In other words, for a given per unit price p, strate-
gic producers face the menu of contracts {p · R(q, q0)}q0∈R+ among which they pick the contract
they prefer. Then, for a given distribution f , a given utility function U and a given contract price
p > 0, we say that a payment rule is strategy-proof (resp. manipulable) if the producer does
not benefit (resp. does strictly benefit) from misreporting its expected production, i.e., formally,
if q̄ belongs (resp. does not belong) to Arg maxq0≥0 Ef [U(p ·R(q, q0)))]. The linear contract is
strategy-proof since the producer’s payoff does not depend on q0.

The buyer’s payoff: We assume that the buyer is risk-neutral, and wish to minimize the
expected transfer to the producer per quantity produced p ·Ef [R(q, q0)]/q̄, which is next referred
to as the buyer’s expected cost (BEC) and taken as our criterium to evaluate the performance of
different classes of contracts.

The auction rule: We consider the first-price auction where each producer submits a bid
pair (p, q0) and where the buyer selects the offer involving the lowest price bid p. Note that
this rule selects the offer that minimizes the BEC when bidders reports truthfully their expected
production q̄ for q0.

We are interested in payment rules that provide insurance against production variability com-
pared to the linear contract. The latter appears as a natural benchmark since it is both commonly
used and strategy proof.

Definition 1. A payment rule R(q, q0) is production-insuring if for any f ∈ Fsp, any increasing
concave function U and any contract price p > 0,

Ef [U(p ·R(q, q̄))] ≥ Ef [U(p · q)] (1)
19An alternative specification would consist in letting the winning producer’s payoff be Ef [U(p · R(q, q0) − C)]

and the losing producer’s payoff be U(0). Actually, such a specification would be equivalent to ours, thanks to a
re-normalization of U that would not modify the concavity or the strict concavity properties.

20We assume implicitly that the class of contracts is such that this set is well defined for any price p.
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and where the inequality is strict (resp. stands as an equality) if the producer is strictly risk-averse
(resp. risk-neutral).

Eq. (1) reflects that, for a given price p, risk-averse producers should be better off with a
production-insuring rule compared to the linear contract. We also wish the inequality to stand as
an equality when producers are risk-neutral, or equivalently that the expected payment remains
the same in both contracts to make them comparable. Formally, this means that Ef [R(q, q0)] = q̄.

Comments: 1) In practice, the producer may be able to influence the quantity produced
in some respect, in particular to reduce production ex post at no cost. Our assumption that
q 7→ R(q, q0) is non-decreasing guarantees that producers do not wish to intervene in this way.

2) In many environments, we would like to consider the production cost function C + c(q),
where c : R+ → R+ is an increasing function with c(0) = 0. If the production cost depend linearly
on the quantity (c(q) = c̄,∀q), then the analysis presented hereafter can apply by replacing the
unit price p by (p− c̄) in the payoff of the firm.21

3) A closely related alternative model would consist in considering that the quantity q0 is
fixed ex ante by the auction rules and that producers are able to downgrade (or upgrade) their
production technology ex post. The pdf fe and the associated mean production q̄e would now
depend on a costly effort e. Truthful producers would be those that set their effort e such that
q̄e = q0. By contrast, a strategic producer could increase its payoff by choosing the optimal effort,
in particular by shirking such that q̄e < q0 if the payment rule is production-insuring. Such a
model would stand in line with the literature on the trade-off between moral hazard and insurance
(Shavell, 1979).

3.1 Strategic misreporting in production-insuring payment rules

Before deriving the equilibrium in the auction, let us analyze bidders’ incentives to misreport their
expected production when the payment rule is production-insuring.

For any payment rule and any pair q, q0 > 0, we can express the term R(q, q0) as q · zq0( qq0 )

where the function zq0 : R+ → R+ can be viewed as a correction factor with zq0(1) = 1.22 The
following lemma establishes that a production-insuring payment rule would never deflate (resp.
inflate) payments (compared to the linear contract) for production occurrences that are lower
(resp. higher) than the reported expected production, or equivalently that the correction factor is
larger (resp. smaller) than one when production is lower (resp. higher) than the reported expected

21In this case, there is no need for the buyer to know c̄. For general cost functions c(·), our analysis would
apply if the buyer knows the function c and is able to replace the payment rule pR(q, q0) (which is linear in p) by
pR(q, q0) + c(q).

22Note that the payment rule is homogeneous of degree one if the function zq0(·) does not depend on q0 and if
R(q, 0) ≡ 0.
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production. Furthermore, the fact that these correction factors should compensate in expectation
for any symmetric risk imposes a one to one relation between zq0(1 + ε) and zq0(1− ε).

Lemma 1. A payment rule is production-insuring if and only if we have for any q0 > 0, zq0(1+ε) ≤
1, zq0(1−ε) ≥ 1 and (1+ε)·zq0(1+ε)+(1−ε)·zq0(1−ε) = 2 for any ε ∈ [0, 1], and

∫ ε
0 zq0(1+t)dt < ε

if ε ∈ (0, 1].

According to the French payment rule, the function (1+ε)zq0(1+ε) can be written as 1+ε+d(ε)

where the function d : R→ R is a continuous odd function with d(ε) = 0 if |ε| ≥ 0.15 and d(ε) < 0

if ε ∈ (0, 0.15). We get thus from Lemma 1 that the French payment rule is production-insuring.
As a corollary of Lemma 1, we get that if there is no risk on production, overestimating (resp.

underestimating) future production can only be beneficial (resp. detrimental) to the producer.
Furthermore, the producer would also strictly gain from overestimating a bit production since
the correction factor zq0(x) is strictly larger than 1 for some values in the left neighborhood of 1.
Next we generalize this insight for f ∈ Fsp and when producers are risk-neutral.

Proposition 2. For any f ∈ Fsp and any contract price p > 0, any production-insuring payment
rule is manipulable if the producer is risk-neutral. Furthermore, the producer weakly increases
(resp. decreases) its expected payoff by overestimating (underestimating) its expected production.

Proposition 2 states that, at least when producers are risk-neutral, any production-insuring
payment rule is manipulable not only for a special distribution f , but for any f ∈ Fsp. In other
words, the production-insuring and strategy-proof properties are incompatible. No such result is
derived when allowing for strict risk-aversion of the bidder, but Proposition 3 formalizes that in
such case it is at least impossible to fully insure strategic producers against the production risk.

Proposition 3. Consider a payment rule that is homogeneous of degree one and a contract price
p > 0. For any f ∈ Fsp, if producers (mis)report optimally their expected production, then they
are not fully insured against production risk.

Formally, if q0 ∈ Argmaxq∈R+ Π(p, q), then the variance of p · R(q, q0) is strictly positive,
which means that the producer’s revenue is risky. The proof of Proposition 3 shows that starting
from a quantity reported q0 such that the producer is fully insured, then the producer would
strictly benefit from reporting a slightly higher q0.

The restriction to payment rules that are homogeneous of degree one is imposed here to
avoid payment rules that are tailored specifically to the distribution f and that would thus fail
to be robust.23 An alternative interpretation of Proposition 3 is that it is impossible to insure

23Without the homogeneous of degree one restriction, there is an obvious strategy-proof payment rule for any
f ∈ Fsp with the support [(1− ε)q̄, (1 + ε)q̄] (with ε ∈ (0, 1)): it is sufficient to specify the payment rule such that
R(q, q0) = q if q0 6= q̄ and R(q, q̄) = q̄ for any q ∈ [(1− ε)q̄, (1 + ε)q̄]. To be able to implement such a solution, the
contract designer should know q̄.
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strategic producers against production risk if the contract designer does not know the production
distribution up to an homothetic transformation. Proposition 3 does not claim that it is impossible
to reduce the risk faced by the producer compared to the linear contract, a question that we address
through numerical simulations: it rather formalizes that there is no hope to fully annihilate the
risk faced by the producers.

3.2 Auction prices

For a given payment rule R(., .) that is assumed to be either production-insuring or linear, we
develop the equilibrium analysis of the auction game under several paradigms regarding whether
producers are truthful or strategic: we characterize the bid pairs (p, q0) submitted by the producers
in equilibrium and then derive the corresponding risk premium, which is defined as the ratio of
the expected cost for the buyer and the producing cost. In a first step, we consider that producers
are either all truthful or all strategic. In a second step, we consider heterogeneous behavior in
the auction: first, the case where a single producer is strategic (while all others are truthful),
and second the case where each producer (independently of the others) is strategic with a given
probability α. Throughout our analysis, we assume that f ∈ Fsp. Nevertheless, our various
equilibrium characterizations are valid more generally, in particular with asymmetric distributions.

Homogeneous producers

If producers are identical, then Bertrand competition leads to zero profit. Nevertheless, the buyer’s
expected cost depends on the payment rule and the presence of strategic bidding, as both result
in different levels of insurance provision, and therefore different risk premiums.

First, we consider producers are non-strategic. Rationality imposes that winning the auction
should raise a higher expected profit than losing the auction, while having competition leading to
zero profit makes this constraint binding. Then the equilibrium price, denoted pNS , is the unique
solution of:

Ef [U(pNS ·R(q, q̄))] = U(C) (2)

When producers are risk-neutral, the production-insuring payment rule does not induce
changes in the auction’s outcome compared to the linear contract: in both cases, pNS = C

q̄ and
the buyer’s expected cost is equal to C. This equivalence, however, does not hold with risk-averse
producers.

Proposition 4. When all producers bid truthfully, the equilibrium price and the buyer’s expected
cost are smaller under a production-insuring payment rule than under the linear contract. They
are strictly smaller if producers are strictly risk-averse, and equal if producers are risk-neutral.
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Since U is concave, we obtain from equation (2) and Jensen’s inequality that p ·Ef [R(q, q0))] ≥
C, or equivalently that the buyer’s expected cost is necessarily larger than C. In the special case
where the payment rule fully insures the producer (i.e. when payment remains identical for any
possible value taken by q), then the auction’s outcome is the same as in the risk-neutral case for
any utility function U (pNS = C

q̄ , and the cost for the buyer is C).
In such equilibrium, the difference between the buyer’s expected cost and C corresponds to

a risk premium. As formalized in Proposition 4, production-insuring payment rules reduce this
risk premium. However, the fact that production-insuring payment rules outperform the linear
contract relies crucially on the assumption that producers bid truthfully.

If bidders are strategic, then the equilibrium price, denoted by pS , is characterized24 as the
unique solution of

Ef [U(pS ·R(q, qS))] = U(C) with qS ∈ Argmax
q0≥0

Ef [U(pS ·R(q, qS))] (3)

As previously, when firms are risk-neutral the expected cost for the buyer Ef [pS ·R(q, qS)] = C.
However the equilibrium price differs : pS = C

Ef [R(q,qS)]
. The definition of qS implies Ef [R(q, qS)] ≥

q̄, which in turn implies pS ≥ pNS (with strict inequalities if the payment rule is manipulable).
Proposition 5 generalizes this result to the case of risk-averse firms. However, a lower equilib-

rium price does not imply a lower cost for the buyer: it remains identical in the risk-neutral case
while we most often expect it to be inflated in the risk-averse case, as strategic reporting may
induce producers to take more risks and thus increase the risk premium. Proposition 5 points out
a case where such a phenomenon is known to happen.

Proposition 5. The equilibrium price (pS) is smaller when all producers bid strategically than
the equilibrium price when all producers bid truthfully (pNS).25 If the payment rule provides a full
insurance against production risk under truthful reporting of q0, is homogeneous of degree 1 and if
producers are strictly risk-averse, then the buyer’s expected cost is greater under strategic bidding
than under truthful bidding.

Example 1 in Appendix 2 exhibits a case where the buyer’s expected cost under strategic
producers is lower than under truthful producers. In this example, the insurance provided by the
payment rule is vanishing under truthful reporting while the payment rule is flat further away
from the production expected value and thus provides insurance when producers are misreporting
their expected production.

The lesson from the propositions 4 and 5 is that from the buyer’s perspective, production-
insuring rules outperform the linear contract under truthful reporting, but that strategic behavior

24See the proof of Proposition 5 in Appendix 2 for details on this characterization.
25The inequality is strict if the payment rule is manipulable.
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may reap out all those benefits. Which effect dominates and their order of magnitude is an
empirical question that is investigated in our simulations. Last, under risk-neutrality all those
effects have no impact on the buyer.

Nevertheless, we argue next that heterogeneity among bidders regarding strategic behavior
threatens considerably the use of production-insuring rules and still have a sizable effect even if
producers are risk-neutral.

Heterogeneous producers

Suppose first that a single producer bids strategically, knowing all other producers bid truthfully.
In order to avoid equilibrium existence problems, that are well-known in continuous games (Simon
and Zame, 1990), we assume that ties are always broken in favor of the strategic producer.
Then the equilibrium takes the following form: truthful producers bid (pNS , q̄) exactly as in the
equilibrium where all producers are truthful, while the strategic producer bids (pNS , q∗0) where
q∗0 ∈ Argmaxq0≥0 Π(pNS , q0). Next we let ∆ := Π(pNS , q∗0)−Π(pNS , q̄) = Ef [U(pNS ·R(q, q∗0))]−
U(C) ≥ 0. ∆ represents the payoff reaped out by the strategic producer from misreporting the
expected production q0. The buyer’s expected cost is then equal to pNS · Ef [R(q, q∗0)].26

If producers are risk-neutral, then the percentage increase of the buyer’s expected cost is equal
to Ef [R(q,q∗0)]

q̄ − 1.27 This increase is bounded above by (supq,q0{zq0(q/q0)}− 1) ·C, which could be
reached only for a deterministic q.28 In the French rule, we have maxq0 zq0(q/q0) = 1

0.9 and the
buyer’s expected cost increase due to such strategic misreporting cannot exceed 12%. 29

Let us now consider the case where there are N ≥ 2 producers, each independently strategic
with probability α, α being common knowledge. Truthful producers are forced to report q̄, or
equivalently do not have access to the technology or knowledge that enables to misreport the
expected production. Then they should always bid pNS , whether they are or are not aware
other bidders may bid strategically. According to this framing, our analysis is analogous to
the equilibrium analysis developed by Maskin and Riley (1985) of first price auctions with two
(possibly risk-averse) symmetric bidders having binary valuations: being strategic in our setup
corresponds to having a high valuation in Maskin and Riley (1985).30 There are nevertheless three

26As long as the payment rule is manipulable, Ef [R(q, q∗0)] > Ef [R(q, q̄)], and then the buyer’s expected cost
would have been strictly lower if a non-strategic producer were selected.

27From Proposition 2, this term is strictly positive and represents thus an increase if the payment-rule is
production-insuring.

28Provided the existence of supq,q0{zq0(q/q0).
29As illustrated with Example 1 in Appendix 2, the buyer’s expected cost is not guaranteed to increase with a

strategic producer under general production-insuring payment rules: the producer may misreport q0 (by underes-
timating production) in a way that reduces Ef [R(q, q0] < q̄ and this in order to improve its insurance against the
production risk. We conjecture that such effects have very poor empirical relevance.

30Maskin and Riley (1985) do also consider correlated valuations which we do not. Doni and Menicucci (2012)
extend the analysis to two asymmetric bidders when bidders are assumed to be risk-neutral.
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differences: 1) We consider any number of bidders, 2) Under risk aversion, the payoff of a bidder
is no longer linear in the bid price p insofar as the optimal report for the expected production
could now depend on p,31 3) Our analysis is framed into a procurement setup. In our framework,
being non-strategic (resp. strategic) corresponds to having a low (resp. high) valuation in Maskin
and Riley (1985).

The equilibrium takes the following form (see details in the Proof of Proposition 6):

• Non-strategic producers bid the price-quantity pair (pNS , q̄),

• Strategic producers bid price-quantity pairs (p, q∗0(p)) where p is distributed according

to the distribution G(p) = 1 − 1−α
α

(
N−1

√
Π(pNS ,q∗0(pNS))−U(C)

Π(p,q∗0(p))−U(C) − 1

)
and where q∗0(p) ∈

Argmaxq≥0 Π(p, q).

In equilibrium, we have that the expected payoff of a non-strategic (resp. strategic) producer
is null (resp. is equal to (1 − α)N−1∆). Next proposition converts those rents into increased
buyer’s expected costs.

Proposition 6. Suppose that producers are strategic with probability α, independently of each
other.

If producers are risk-averse (resp. risk-neutral), then the buyer’s expected cost is larger than
(resp. equal to) the sum of the buyer’s expected cost with truthful producers and the term:

Nα(1− α)N−1 [Π(pNS)− U(C)]

U ′(pNS · Ef [R(q, q̄)])
> 0.

When producers are risk-neutral, the buyer’s expected cost is equal to C plus a term that
vanishes in the two polar cases where α is equal to 0 or 1 (as covered by Propositions 4 and 5).
When N = 2, the extra cost resulting from such “miscoordinated” heterogeneity is less than the
half of the extra cost when one producer is strategic and the other is truthful. This bound is
reached for the worst case when α = 0.5. More generally, for any N ≥ 2, the extra cost can be as
large as 36% of the extra cost when one producer is strategic and the other is truthful.32

The lesson from Proposition 6 is that the rents captured by the producers are smaller with such
miscoordinated heterogeneity, but still could have a sizable effect of the same order of magnitude.
In our simulations we consider the case with a single strategic producer, while having in mind
that the rents of the producers or equivalently the buyer’s expected cost should be mitigated.

31Revenue equivalence between first-price and second-price auctions holds in Maskin and Riley (1985) when the
binary valuations are drawn independently, and then analogously in our environment when the optimal report for
the expected production does not depend on the price bid p. This later property is always satisfied under constant
relative risk aversion (Appendix 3).

32The worst case is when α = 1/N and the bound comes from the fact that (1 − 1/N)N−1 > exp(−1) which
results from a standard logarithm inequality.
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4 Performance analysis of the French rule

As described in Section 2, the French government has used a production-insuring payment rule
in the auctions for six offshore wind farm sites. These contracts were awarded separately through
first-price sealed bid auctions: the firm asking for the lowest per unit subsidy p was declared the
winning bidder and was subsidized according to this price.33

A first mild difference with our theoretical analysis is that we now explicitly consider multi-
year contracts: the length is 20 years, during which the production-insuring payment rule R(., .)

defined in Section 2 applies for each year separately, based on the expected yearly production q0

reported freely by producers in their bid.34 A second difference is that we consider both a (fixed)
investment cost IC occurring before production (which corresponds to C is our model), and
(fixed) operating costs OC occurring each year. The values we use for our analysis are reported
in Appendix 1. For a given bid (p, q0), the producer’s expected payoff difference between winning
and losing the auction can then be expressed as:

Π(p, q0) = E

[
U(

20∑
t=1

[p ·R(qt, q0)−OC]

(1 + r)t
)

]
− U(IC) (4)

where the expectation is made w.r.t to the vector of yearly production (q1, · · · , q20) and where
r denotes producers’ interest rate which is set equal to 5.7%.35 Producers’ risk aversion is captured
through the CRRA utility function, i.e. U(x) = x1−γ

1−γ , where the parameter γ ≥ 0 is the relative
risk aversion coefficient. When the payment rule is homogeneous of degree one, as is the French
rule, these utility functions induce convenient properties detailed in Appendix 6. Through the
specification of equation (4) we assume the initial wealth of the firm is equal to IC.36

33These auctions were actually scoring auctions: in addition to the per unit subsidy bid p, other criteria such as
local environmental impact or carbon footprint were taken into account to determine the winning bid. We abstract
from such “multidimensional bidding” aspects given that they do not interfere with the production-insuring payment
rule. In contrast to France, most countries use auctions that are only price-based once projects are declared to be
eligible to bid through a pre-qualification phase.

34From a practical perspective, the report of q0 corresponds to the report of the expected capacity factor.
Naturally, unrealistic capacity factors would lead to disqualification (even if there were no formal rule about this).
Our analysis implicitly assume that the optimal report of q0 is not unrealistic.

35Our choice is a choice based on an estimation of the cost of capital for onshore wind projects in France made
by Angelopoulos et al. (2016) which accounts for taxation and for compensation for other kinds of risks. Note
that our analysis abstract for many kinds of risks, including cost overruns or delays that are not entirely under the
control of the producers (e.g. connection to the grid). Those risks could induce much larger risk premiums but
they are orthogonal to the design of the payment rule.

36Considering different level of initial wealth induce small variations in the risk premium. For instance, consider-
ing the total net present cost (including the discounted cumulative operating costs) instead of the sole investment
cost as initial wealth induces risk premiums about 25-40% lower for γ ∈ [1; 3]. However, it as very little impact on
the outcome in the presence of asymmetric bidder. Additional results illustrating this are presented in Appendix
4.
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We calibrate the distribution of the vector of yearly production (q1, · · · , q20) based on historic
production simulated by models developed by Staffell and Pfenninger (2016) and whose outputs
are easily accessible through the site www.renewables.ninja. The calibration procedure, detailed
in Appendix 1, consider a wide range of possible yearly production based on recombinations of
quarterly production values randomly drawn in historic data, to which a random variable is added
to account for likely ex ante misevaluation of each site’s wind resource.

We then compute equilibrium bids under 3 paradigms analyzed in Section 3.2 : when firms all
bid truthfully, when firms all bid strategically, and when one firm bids strategically while knowing
other firms bid truthfully.37. We then evaluate the payment rule’s performance regarding the re-
sulting buyer’s expected cost, while considering the linear contract as a benchmark. The buyer’s
expected cost depending on the winning firm’s bid (p, q0) is given by38 BEC(p, q0) = p · E[R(qt,q0)]

E[qt]
.

In equilibrium, it takes as a lower bound the actual production cost per expected quantity pro-
duced (i.e. C

q̄ ), and takes higher values depending on either or both of a risk premium (when
producers are risk-averse) and a positive noncompetitive rent captured by a strategic winning
bidder (when producers are heterogeneous).

It is first noteworthy that for the 5 wind farm sites considered, the risk premium under a
linear contract are rather small: for γ = 1 they are comprised between 0.3− 0.4%, and they only
reach 0.9− 1.1% for γ = 3.39 When all producers are truthful, the BEC is as expected lower for
the French rule than for the linear payment rule (Proposition 4). However, the gain from such
a production-insuring rule happens to be very small in practice: a decrease by 0.2 − 0.3% when
γ = 1, and by 0.6 − 0.7% when γ = 3. Furthermore, these (limited) gains are entirely lost when
firms bid strategically and this for any reasonable level of risk aversion, as shown in Figure 3: only
for unrealistic degree of risk aversion (γ > 5) do we find that the French payment rule slightly
outperforms the linear contract under strategic reporting.40

As shown in section 3.2, heterogeneity among producers induces noncompetitive rents that
inflate the buyer’s expected cost. Our simulations support that such rents are of a larger order of
magnitude than the risk premium reduction that the buyer could save if producers were truthful:
with a single strategic producer, we find a BEC 3.3 − 3.6% larger than under a linear contract
when firms are risk-neutral, and 2.6 − 2.9% larger when firm’s risk aversion is up to γ = 3. For
any risk aversion level in between, the increase in BEC when a single firm is strategic is more
than four times larger than the cost reduction thanks to insurance provision when all firms bid

37The latter paradigms should be seen as a worst case of the heterogeneous paradigms presented in section 3.2.
38To get this simple expression, we use here the assumption that qt is drawn independently across years. Note

also that BEC(p, q̄) = p for any production-insuring rule R.
39All ranges presented here are the smallest ranges comprising results obtained for all five sites simulated. Detailed

results for each site are presented in Appendix ??.
40Using data on labor supply behavior, Chetty (2006) argues that the coefficient γ is bounded by 2.
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Figure 3: Buyer’s expected cost with homogeneous producers

truthfully. For a relative risk aversion γ = 1, this increase is more than 15 times larger.

5 Alternative payment rules that provide insurance

If all producers are strategic, our simulations show that for any reasonable level of risk aversion the
production-insuring payment rule chosen by the French government does not outperform the linear
contract. Furthermore, under such payment rules bidders’ asymmetry regarding the adoption of
strategic behavior induce a loss for the buyer much larger than the gain obtained in the best
case scenario, when all firms are truthful. These results suggest that auctioneers should give up
production-insuring contracts in the face of strategic misreporting of expected production. In an
attempt to find a better performing class of contract, possibly by discouraging such misreporting
of expected production, we propose the following class of homogeneous of degree 1 payment rules
R(w,η) parameterized by the pair of coefficients (w, η) ∈ [0, 1]2 and defined in the following way:

• R(w,η)(q, q0) = q0 if q ∈ [q0(1− w), q0(1 + w)],

• R(w,η)(q, q0) = (1− η)q + ηq0(1 + w) if q > q0(1 + w)

• R(w,η)(q, q0) = max{ 1
1−η q + (1− 1

1−η )q0(1− w), 0} if q < q0(1 + w).41

The parameters w and η capture respectively the width of a range around q0 where producers
are fully insured and the strength of the punishment when the realized production lies outside
this range. If η = 0, then the payment rule matches the linear payment rule outside the insured
range and the payment rule R(w,η) is production-insuring. On the contrary, when η > 0 then

41If η = 1, then we adopt the convention that R(w,η)(q, q0) = 0 if q < q0(1 + w).
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payment to the firm decreases more rapidly (resp. increases more slowly) when production falls
below (resp. goes above) the insured range.42 Therefore misreporting its expected production
may come at the price of an increased risk of ex post production falling outside the insured range,
which would be punished by a per unit payment lower than p.

This specification is closely related to the payment rule adopted by Brazil in 2013 in order to
punish departures from the contracted production. If the realized spot market price stands below
the (auction-determined) contract price p, the contractor should pay 1.06 ·p for each quantity that
he/she fails to deliver at the end of the contract, which corresponds to η ≈ 5.7%. In the case of
overproduction, the contractor sells the surplus on the spot market.43 The rationale behind such
punishments is to provide incentives to producers to stick to their initial production plan.

As before, we study this new class of payment rules through simulations. Throughout this
section, we consider a single year contract44 and a CRRA utility function with γ = 0.9. The
production distributions considered are, first, a normal distribution where the standard devia-
tion is equal to 20% of the mean (Figure 4) and, second, a uniform distribution on the interval
[0.5q̄, 1.5q̄]45 (Figure 5). Since U is a CRRA and the payment rules considered are homogeneous
of degree one, the simulations’ outcome are strictly proportional to the production cost C and
the mean of the production distribution q̄ (Lemma 7 in Appendix 3) which we both normalize to
1. In the Figures 4 and 5 we report our results for the parameters (w, η) varying over the square
[0, 0.5]2.

In Figures 4 and 5, the three panels (a), (b), and (c) depict the buyer’s expected cost, re-
spectively when all firms are truthful, when all firms are strategic, and last when only one firm is
strategic. All these values lie above C = 1 as the buyer’s expected cost includes a risk premium
in both first cases and both a risk premium and a rent captured by the winning firm in the third
case. Panel (d) depicts the reported expected production when firms are strategic q∗0.46

With truthful bidders, the impact of both parameters on the BEC through the risk premium
is straightforward: the larger is the insurance range and the less punished firms are, the lower is
the risk premium, as shown in panels (a) in both Figures 4 and 5. It is not as straightforward
in the presence of strategic bidders. Panels (d) in both Figures 4 and 5 shows that, overall,

42Note that R(w,η) is not production-insuring when η > 0, since Ef [R(q, q̄)] < q̄ if the support of f is not a subset
of [q0(1− w), q0(1 + w)] which stands in contraction with (1).

43Note that the Brazilian rule does not depend solely on the auction price but also on the electricity market
price. It is indeed slightly more intricate since both under and over-production can be compensated (partly) across
years.

44Unlike previous simulations in section 4 and as in the theoretical section, costs are to be covered on a single
realization of production and not over several years.

45Then the standard deviation is equal to
√

1
12
≈ 29 % of the mean.

46Since the chosen utility function is a CRRA, the optimal quantity reported by a strategic firm is independent of
the price p (as detailed in Appendix 3). Therefore the values presented in panel (d) correspond to the equilibrium
bid of the winning firm both when all firms are strategic and when only one is strategic.
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Figure 4: Auction outcome depending on payment rule for a normally distributed production

Figure 5: Auction outcome depending on payment rule for a uniformly distributed production
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the larger is the insurance range w the more firms overstate their expected production, in an
attempt to maximize their expected benefit from the insurance mechanism. On the other hand,
harsher punishments η induce firms to understate their expected production in an attempt to
avoid realized production falling below the lower bound of the insurance range (which would
be punished by rapidly decreasing revenue). A striking difference between both figures is the
discontinuity regarding the optimal q∗0 depending on the payment rules parameters, which appears
only for the uniform distribution (i.e. in Figure 5). This discontinuity is due to the existence of
two local maximums, each moving in different directions with w and η. The first local maximum
(dominating for small w and large η) reflects a strategy which consists in insuring oneself against
low production realizations (punished by rapidly decreasing revenue) by declaring q∗0 such that a
limited part of realization falls below (and not too far below) the lower bound of the plateau. The
second strategy (local maximum), which dominates for large w and small η, consists in overstating
expected production so that the lower part of the plateau inflates the expected revenue while the
upper part of the plateau does not deflate it as much. The global maximum switches from the first
to the second when crossing the discontinuity, as w grows or η decreases (see Figure 6). Under
the normal distribution case, we note a set of parameters (w, η) leading to truthful reporting (i.e.
a set of strategy-proof payment rules) which corresponds roughly to the line where η = 0.2 ·w in
Figure 4(d). However, as a consequence of the discontinuity in q∗0, under the uniform distribution
case such a set does not exists (Figure 5(d)).

Figure 6: Bias in expected production max-
imizing expected utility of revenue under
uniform production distribution

Under the normal distribution and when all firms are strategic, we see in Figure 4(b) that a
higher w or a higher η are everywhere associated with a higher BEC, resulting from a higher risk
faced by the producer. Then, the lowest BEC is obtained through the linear contract (w, η = 0).
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We note however that the pace at which the buyer’s expected cost increases is the slowest when
moving along the set of strategy-proof payment rules. Moreover, if a strategic firm is facing
truthful firms in the auction the strategy-proof set of payment rules is associated with the lowest
values of the buyer’s expected cost (Figure 4(c)). Intuitively, the further is the payment rule from
the strategy-proof set the larger is the rent the strategic firm will be able to capture (due to its
ability to adjust its reported q0). But among strategy-proof payment rules, where the rent of the
strategic firm is null, the lowest BEC is obtained when the producer faces the lowest risk, which
is, as seen before on panel (b), under the linear contract. Overall, in the presence of strategic
bidders, no payment rule within the set considered seem preferable to the linear contract: all
increase the risk premium and are equally or more exposed to the risk that a strategic firm may
capture a large rent. Even though punishments mitigate firms’ incentive to take more risk by
overstating their expected production, the additional risk punishments represent by themselves
exceeds this gain.

The interpretation is more complex in the case of the uniform distribution as such a set of
strategy-proof payment rule does not exist, and the space of payment rules is divided in two
regions where two different strategies dominate. Figure 5(b) suggests the strategy consisting in
insuring oneself against low realizations of q (which dominates for low w and high η) is the least
risky: any payment rule (w, η) inciting firms to chose this strategy appear to induce less risk
than any payment rule inducing the choice of the second strategy (as they result in lower BEC).
In addition, as long as the payment rule ensures this strategy remains preferable, increasing the
width of the plateau or the harshness of punishments (within [.5, .5]2) lowers the BEC.

Two paths appear to bring more rapidly decreasing risk premiums. The first one is when
only punishments (η) grows while w remains small (or null): then firms understate their expected
production so that production is most likely to fall above the plateau, where revenue is getting
flatter as punishment get harsher. For very high η, firms benefit this way from nearly full insurance.
However, payment rules imposing a narrow plateau and strong punishments are subject to other
concerns: They result in very large risk premiums if firms are truthful (see panel (a)), and may
allow strategic firms to capture large rents if they do not face other strategic firms in the auction
(see panel (c)).

The second path is when both w and η grow along the left side of the discontinuity line: Firms
then chose to benefit from the insurance offered by the plateau by declaring an expected production
rather close to the real one. The best contract within the square [0.5, 0.5]2 (w = 0.375, η = 0.5)
even induce a BEC lower (1.0325) than the linear contract do (1.0462) when all firms are strategic.
For the same contract, we note that when firms are all truthful the BEC is slightly lower (1.0341)
than under the linear contract as well (see panel (a)), while a strategic firm facing only truthful
bidders would barely be able to capture any rent from it: the BEC is only 1.0319 (see panel (c)).
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However, such payment rules might be risky in practice: The regulator would most likely not have
sufficient information to precisely determine the optimal payment rule, and a slight mistake may
result in companies choosing the risky strategy, which would dramatically increase the BEC. For
instance, if the bidder’s relative risk aversion is γ = 0.9 instead of 1, then the contract that was
optimal in the previous setup actually may result in a BEC much larger than the linear contract
do: if one or all firms are strategic, the BEC is 1.0730 while it would be only 1.0413 under the
linear contract.

In conclusion, such production-insuring payment rules may bring a better outcome than a
standard linear payment rule in some cases, namely for widely spread distribution of q. However,
adopting such payment rules would remain risky as imprecise information about the production
distribution or firms’ preferences may induce the regulator to choose an inadequate payment rule
resulting in significantly inflated costs.

6 Conclusion

This paper analyses the pitfalls of a kind of procurement contract which attempts to insure the
supplier against an exogenous risk, the expected value of which being reported by the supplier in
its bid. Such contracts have in particular been used by the French government in some auctions
for wind farm projects, to insure the producer against the production risk due to weather or
estimation errors. However, to the best of our knowledge, such contracts have not been studied
from an economic perspective. Expanding the peculiar payment rule used in France for wind farm
projects to a general class of production-insuring payment rules, we find that such contracts are
likely to fail their initial objective because they give producers incentive to misreport their ex-
pected production. Furthermore, when firms are heterogeneous regarding their “gaming” abilities,
strategic firms would capture rents in the auctions for such production-insuring contracts, and
this at the expense of the buyer. We estimate that gaming in the production-insuring payment
rule used in France could have inflated by 3 to 4% the project cost compared to the linear FiT
contract which is immune to gaming.

Beyond the specific case of RES electricity production, such contracts (and their pitfalls)
could be extended to other applications with little variation needed in the model. Considering
a positive marginal cost of production, we would reach equivalent conclusions47 if production-
insuring payment rules were to be used in the auctioning of leases for other natural resources
whose extraction is exposed to an exogenous risk (availability of the resource), e.g. oil auctions
or timber auctions. Moreover, such contracts could be used in procurement auction, e.g. for
infrastructure projects, where the risk to be insured against would be the quantity of input instead

47In particular when the marginal cost is assumed constant, as emphasized at the beginning of section 3.
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of the production. Payment rules analogous to the production-insuring payment rule discussed
here could be use to partially insure the contractor against cost-overruns, but similar pitfalls
would then result from the contractor benefiting from an underestimation of the needed quantity
of inputs.

An apparently easy answer to these pitfalls would be to drop the feature that firms self-report
their expected production: One could argue that the auctioneer may be better off by estimating
the expected production herself (or through a third party). But such rules would still open the
door to welfare inefficiencies: An advantage would still be granted to the firm which actively
succeeds in making the production of reference the closest to its optimal report (e.g. through
manipulation or corruption of the third party), or if the firm simply happens to be lucky in the
determination of that production of reference. Then such a “lucky” firm might win the auction
even though it is not the most efficient one.
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Appendix 1: Modelling production risk and our assumptions on
producers’ costs

Our simulations of producers’ equilibrium bidding behaviour and then of the corresponding ex-
pected public spending are based on a production distribution built from historic simulated data
and this for each of the six offshore wind farm sites that were actually auctioned under the produc-
tion insuring payment rule we have presented in Section 2. The characteristics of those projects
(name, location, size in MW) are listed in Table 1.

Hourly electricity productions of these farms are simulated for 19 years (from 2000 to 2018)
using the model developed by Staffell and Pfenninger (2016) and this thanks to the website
https://www.renewables.ninja/ to which the location and the characteristics of the turbines
have been given as inputs. The production is simulated considering the full capacity of each farm.48

In most cases, data needed to simulate production with the turbine type actually implemented
by the winning bidder (most often the Adwen AD 8-180 turbine) was not available. For the six
projects, we consider instead the Vestas V164 8000 turbine which seems the most closely related
kind of turbine for such projects.

Historic hourly production obtained from the simulator is then aggregated at the quarterly
level. Then we bootstrap our 19 years of aggregated quarterly data to generate the distribution

48Staffell and Pfenninger’s (2016) model is for an isolated turbine. Therefore, the production of each farm (which
consists of many turbines) is likely to be slightly overestimated due wake effects.
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of yearly production: quarters are randomly drawn and summed to generate yearly production
points. This resampling approach to generate more than our 19 original years of production is
relevant if there is no significant autocorrelation between quarterly aggregate production.49

At the bidding stage, firms do not have a perfect knowledge on their average capacity factor
which does not depend solely on their technological choice (e.g., the size and height of the turbine
) but also on the local meteorological conditions which are estimated from measurement mats. In
the past, such estimations suffer from important bias: Lee and Fields’ (2020) survey report an
over-prediction of the median of the capacity factor distribution around 4%. The methodologies
have been improved with the aim to reduce bias, but they involve economically relevant errors:
e.g. Jourdier and Drobinski (2017) show that the commonly used statistical model based on
Weibull distributions lead to a mean average error around 4 or 5% of the electricity production.
In order to account for such noise in the estimation of the capacity factor, the distribution of
the vector of yearly-production (q1, . . . , q20) is build in the following way: each yearly-production
qt is the product of a yearly-dependent production drawn independently across years according
to the bootstrapped distribution defined above with 1 + ε where ε is a non-year-dependant noise
distributed according to a centered normal distribution with the variance σ2. We assume that
σ2 = 6.3%, which matches a mean average error of 5%. The noise ε for the capacity factor
estimation is the main driver for the risk premiums relative to net present value of the subsidy
contracts: contrary to meteorological risk, this additional risk is not averaged out over the 20
years of production.

Table 1: Characteristics on the wind farm projects (source : European Commission (2019) and
French Energy Regulatory Commission (2011, 2013)

Site Location Capacity IC (CAPEX) OC (OPEX/year) FiT awarded
(lat.,long.) in MW M e M e e/MWh

Le Tréport (50.1, 1.1) 496 2000 105 131
Ile d’Yeu (46.9, -2.5) 496 1860 110 137
Fécamp (49.9, 0.2) 497 1850 75 135.2

Courceulles (49.5, -0.5) 448 1600 69 138.7
Saint-Brieuc (48.8, -2.5) 496 2200 63 155
Saint-Nazaire (47.2, -2.6) 496 1800 78 143.6

We consider throughout the paper that producers are fully homogeneous, meaning :

• Producers do not receive any private information on future production distribution which
does not depend on the winning bidder’s identity. The revenue distribution derived from
any given contract is thus the same across all producers.

49The Saint-Brieuc site suffers from significant autocorrelation between quarterly aggregate production. There-
fore we do not further consider results related to this site which differ importantly from the other sites.
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• Producers have the same costs made of two components: a fixed cost C0 (reflecting the
initial investment) and a yearly operational cost Ct, t = 1, · · · , 20 (reflecting operation and
maintenance). Our assumptions for the cost for the various projects come from a reported
of the European Commission.50 are reported in Table 1.

Appendix 2: Proofs

Proof of Lemma 1
"Only if" part For a given q0 > 0 and a given ε ∈ [0, 1), let f∗q0,ε denote the uniform

distribution on the interval [q0(1− ε), q0(1 + ε)]. We have that f∗q0,ε ∈ Fsp and that q̄ = q0.
Applying definition 1 to the contract price p = 1 and when U is linear, we have that :

Ef∗q0,ε [q · zq0(
q

q0
)] =

∫ q0(1+ε)

q0(1−ε)
q · zq0(

q

q0
) · dq

2q0ε
=

1

2ε

∫ ε

−ε
q0(1 + t) · zq0(1 + t)dt = Ef∗q0,ε [q] = q0.

We obtain then that
∫ ε

0 [(1 + t) · zq0(1 + t) + (1 − t) · zq0(1 − t)]dt = 2ε for any ε ∈ [0, 1).
The left-hand side of this later equation has a derivative almost everywhere which is equal to
(1 + ε) · zq0(1 + ε) + (1 − ε) · zq0(1 − ε), and which should thus be equal to the derivative of the
right-hand side almost everywhere. Since the function zq0(.) is continuous (because the function
q → R(q, q0) is assumed to be continuous), we obtain that

(1 + ε) · zq0(1 + ε) + (1− ε) · zq0(1− ε) = 2 (5)

for any ε ∈ [0, 1).
In order to show that zq0(1+ε) ≤ 1 for any ε ∈ [0, 1], let us proceed by contradiction. Suppose

on the contrary that zq0(1+ε) > 1 for some ε ∈ [0, 1] and let then δ := inf{ε ∈ [0, 1]|zq0(1+ε) > 1}.
Since zq0(.) is continuous, we have then δ < 1 and we can also define δ ∈ (δ, 1] such that
zq0(1 + ε) > 1 for any ε ∈]δ, δ[. Since zq0(·) is continuous, we also have zq0(1 + δ) = 1.

Consider then f∗
q0,δ

the uniform distribution on [q0(1 − δ), q0(1 + δ)]. Consider a continuous
function U such that U(x) = x for x ≤ q0(1 + δ) and U ′(x) ∈]0, 1[ being strictly decreasing for
x > q0(1 + δ).51 Note that U is then increasing and concave.

Given that the function q 7→ q ·zq0( qq0 ) is non-decreasing and that zq0(1+δ) = 1 (which implies
zq0(1−δ) = 1 given (5)), we have that q·zq0( qq0 ) ∈ [q0(1−δ), q0(1+δ)] for any q ∈ [q0(1−δ), q0(1+δ)].
Therefore using U(x) = x for x ∈ [q0(1−δ), q0(1+δ)], the symmetry of f∗

q0,δ
around q0, and making

the change of variable ε = q
q0
− 1 in (5) we get:

50https://ec.europa.eu/competition/state_aid/cases1/201933/265141_2088479_221_2.pdf
51How to build a function U satisfying such properties (which will guarantee then its existence) is left to the

reader.
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∫ q0(1+δ)

q0(1−δ)
U(q · zq0(

q

q0
))dF ∗

q0,δ
(q) =

∫ δ

−δ
q0(1 + ε) · zq0(1 + ε)dF ∗

q0,δ
(q0(1 + ε))

= q0

∫ δ

0
[(1 + ε) · zq0(1 + ε) + (1− ε) · zq0(1− ε)]dF ∗

q0,δ
(q0(1 + ε))

= 2q0 · [f∗q0,δ(q0(1 + δ))− 1

2
] =

∫ q0(1+δ)

q0(1−δ)
U(q)dF ∗

q0,δ
(q).

We obtain thus that the difference Ef∗
q0,δ

[U(q)]− Ef∗
q0,δ

[U(q · zq0( qq0 ))] resumes to

∫ q0(1−δ)

q0(1−δ)
[U(q)− U(q · zq0(

q

q0
))]

1

2δ
dq +

∫ q0(1+δ)

q0(1+δ)
[U(q)− U(q · zq0(

q

q0
))]

1

2δ
dq

Thanks to the change of variable ε = 1 − q
q0

and ε = q
q0
− 1 in the first and second integrals,

respectively, we get :

Ef∗
q0,δ

[U(q)]− Ef∗
q0,δ

[U(q · zq0(
q

q0
))] =

q0

2δ

∫ δ

δ
[U(q0(1− ε))− U(q0(1− ε)zq0(1− ε))]dε

+
q0

2δ

∫ δ

δ
[U(q0(1 + ε))− U(q0(1 + ε)zq0(1 + ε))]dε.

Let us show below that in the first (resp. second) integral the function U is applied to values
where it is linear (resp. strictly concave).

For ε ∈ [δ, δ], we have zq0(1+ε) ≥ 1. From (5), we get for any ε ∈ [δ, δ] that zq0(1−ε) ≤ 1, which
further implies that q0(1− ε)zq0(1− ε) ≤ q0(1− ε) ≤ q0(1+δ). For q ≤ q0(1+δ), U is defined such
that U(q) = q: in the first interval, the function U is thus applied only for values below q0(1 + δ).
We have thus that ∀ε ∈ [δ, δ], U(q0(1− ε)−U(q0(1− ε)zq0(1− ε)) = q0(1− ε)− q0(1− ε)zq0(1− ε).

Since the function ε 7→ q0(1 + ε)zq0(1 + ε) is non-decreasing and zq0(1 + δ) = 1, then for
ε ∈ [δ, δ], we have that q0(1 + ε)zq0(1 + ε) ≥ q0(1 + δ)zq0(1 + δ) = q0(1 + δ). Besides, we note
that q0(1 + t) ≥ q0(1 + δ). For q ≥ q0(1 + δ), U is strictly concave (U ′(q) < 1): in the second
interval, the function U is thus applied only for values above q0(1 + δ). We have thus that
∀ε ∈ (δ, δ], U(q0(1 + ε))−U(q0(1 + ε)zq0(1 + ε)) ≥ [q0(1 + ε)− q0(1 + ε)zq0(1 + ε)] ·U ′(q0(1 + ε)) >

q0(1 + ε)− q0(1 + ε)zq0(1 + ε).
Finally, using (1 + ε)zq0(1 + ε) + (1− ε)zq0(1− ε) = 2 and the inequality above, we get:

Ef∗
q0,δ

[U(q)]− Ef∗
q0,δ

[U(q · zq0(
q

q0
))] >

q2
0

2δ

∫ δ

δ
[2− (1− ε)zq0(1− ε)− (1 + ε)zq0(1 + ε)]︸ ︷︷ ︸

=0

dε.
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We have thus shown that Ef∗
q0,δ

[U(q)] > Ef∗
q0,δ

[U(q · zq0( qq0 ))], which stands in contradiction
with the production-insuring assumption.

On the whole we have shown that zq0(1 + ε) ≤ 1 for any ε ∈ [0, 1]. From (5), we get then that
zq0(1− ε) ≤ 1 for any ε ∈ [0, 1].

The remaining part of Lemma 1 to be shown is that zq0 can not be equal (uniformly) to one
in the neighborhood of one or equivalently (given that we have shown that zq0(1 + ε) ≤ 1 for
ε ∈ [0, 1] and that zq0 is continuous) that for all ε ∈ (0, 1] we verify

∫ ε
0 zq0(1 + t)dt < ε. Suppose

that zq0(t) = 1 for any t ∈ [−ε, ε] (with ε > 0) and let us establish a contradiction. Consider a
strictly concave payoff function U , the contract price p = 1 and the uniform distribution f∗q0,ε, the
production-insuring property guarantees that Ef∗

q0,δ
[U(q)] < Ef∗

q0,δ
[U(q · zq0( qq0 ))] or equivalently

∫ ε

0
[U(q0(1 + t)zq0(1 + t)) + U(q0(1− t)zq0(1− t))] dt >

∫ ε

0
[U(q0(1 + t)) + U(q0(1− t))] dt.

This inequality can not hold once zq0(t) = 1 for any t ∈ [−ε, ε] which concludes the proof.
"If" part
Consider first the case where U is linear. If Eq. (5) holds for any q0 > 0 and ε ∈ [0, 1], then

for any contract price p and any symmetric distribution f with expected value q̄ (such that the
support of f is a subset of [0, 2q̄]), using the change of variable q = q̄(1 + ε), we obtain below that
Eq. (1) stands as an equality (note that it is the first and the last equality that uses that U is
linear):

Ef [U(pqzq̄(
q

q̄
))] = U

(
Ef [pqzq̄(

q

q̄
)]

)
= U

(
pq̄

∫ 1

−1
(1 + ε)zq̄(1 + ε)f(q̄(1 + ε))dε

)
= U

(
pq̄

∫ 1

0
[(1 + ε)zq̄(1 + ε) + (1− ε)zq̄(1− ε)] f(q̄(1 + ε))dε

)
= U

(
pq̄

∫ 1

0
2f(q̄(1 + ε))dε

)
= U(pq̄) = Ef [U(pq)].

Let us now consider the case where U is strictly concave. Consider the function ϕ : λ →
U(pq̄λ) + U(pq̄(2− λ)). If U is strictly concave, then U ′(pq̄λ) < U ′(pq̄(2− λ)) as long as λ > 1.
We have thus that ϕ′(λ) = pq̄ [U ′(pq̄λ)− U ′(pq̄(2− λ))] < 0 for λ > 1.
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Moreover, since f is symmetric, we have both following equations for any function U :

Ef [U(p · q)] =

∫ 1

0

=ϕ(1+ε)︷ ︸︸ ︷
[U(p · q̄(1 + ε)) + U(p · q̄(1− ε))] dF (q̄(1 + ε))

Ef [U(p · q · zq̄(
q

q̄
))] =

∫ 1

0
[U(p · q̄(1 + ε)zq̄(1 + ε)) + U(p · q̄(1− ε)zq̄(1− ε))]︸ ︷︷ ︸

=ϕ((1+ε)zq0 (1+ε))

dF (q̄(1 + ε))

In addition to (5), we also assume that zq0(1 + ε) ≤ 1 for any ε ∈ [0, 1] and that for any ε′ > 0,
there exists a subset S of [0, ε′] with positive measure such that zq0(1 + t) < 1 for any t ∈ S. We
obtain then that (1 + ε)zq0(1 + ε) ≤ 1 + ε for any ε ∈ [0, 1] and that for any ε′ > 0, there exists a
subset S of [0, ε′] with positive measure such that (1+ t)zq0(1+ t) < 1+ t for any t ∈ S. Moreover,
since q 7→ q · zq0( qq0 is non decreasing, we have 1 ≤ (1 + ε)zq0(1 + ε) for ε ∈ [0, 1].

The function ϕ is strictly decreasing [1, 2]. From the previous inequalities, we have thus that
ϕ is strictly decreasing on the interval [(1 + ε)zq0(1 + ε), 1 + ε] for any ε ∈ [0, 1].

Finally we have for any ε ∈ [0, 1],

U(p · q̄(1 + ε)zq̄(1 + ε)) + U(p · q̄(1− ε)zq̄(1− ε)) ≥ U(p · q̄(1 + ε)) + U(p · q̄(1− ε)).

Furthermore, for any ε′ > 0, there exists a subset S of [0, ε′] with positive measure such that
for any t ∈ S:

U(p · q̄(1 + t)zq̄(1 + t)) + U(p · q̄(1− t)zq̄(1− t)) > U(p · q̄(1 + t)) + U(p · q̄(1− t)). (6)

Since f ∈ Fsp, then there exists ε′ > 0 such that f is strictly positive on [0, ε′]. Therefore, by
integration we get the strict inequality:∫ 1

0
[U(p · q̄(1 + t)zq̄(1 + t)) + U(p · q̄(1− t)zq̄(1− t))]dF (q̄(1 + t))

>

∫ 1

0
[U(p · q̄(1 + t)) + U(p · q̄(1− t))]dF (q̄(1 + t))

⇔ Ef [U(p · q · zq̄(
q

q̄
))] > Ef [U(p · q)]

Last, in the remaining case where U is concave, it is straightforward according to the arguments
above (it is sufficient to integrate the inequality (6)) that the inequality Ef [U(p · q · zq̄( qq̄ ))] =

Ef [U(p · R(q, q̄))] ≥ Ef [U(p · q)], i.e. Eq. (1), holds for any symmetric distribution f (even if it
is not single-peaked). On the whole, we have established that any payment rule associated to the
correction factors {zq0(.)}q0>0 is production-insuring.
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Q.E.D.
Proof of Proposition 2
Let us first show that if q0 ≥ q̄, then Ef [R(q, q0)] ≥ Ef [R(q̄, q0)] = p · q̄ or equivalently

Ef [q · zq0( qq0 )] ≥ q̄. Take q0 ≥ q̄ and let α := 1− F (q0).
Suppose first that α = 0. Then Ef [R(q, q0)] =

∫ q0
0 q · zq0( qq0 )dF (q) ≥

∫ q0
0 qdF (q) = q̄, since

from Lemma 1 we have ∀q ≤ q0, zq0( qq0 ) ≥ 1.
Suppose now that α > 0. Let Gq0 : R+ → R+ denote the function defined by:

for q ≥ q0, Gq0(q) =
1 + F (q)− 2F (q0)

2α

for q ≤ q0, Gq0(q) = 1−Gq0(2q0 − q).

Since the CDF F is non-decreasing, then Gq0 is also non-decreasing. Since f ∈ Fsp, we have
F (2q̄) = 1 and then F (2q0) = 1 (since q0 ≥ q̄). We have then that Gq0(2q0) = 1, and therefore
Gq0(0) = 0. Finally, we have that Gq0 is a symmetric CDF function with expected value q0. Let
gq0 denote the corresponding pdf. We have then that Egq0 [q · zq0( qq0 )] = Egq0 [q] = q0.

Let us define the function Hq0 : R+ → R+ by Hq0(q) := F (q) − 2α · Gq0(q), and therefore
f(q) = H ′q0(q) + 2α · gq0(q). Then we may write :

Ef [qzq0(
q

q0
)] =

∫ 2q̄

0
qzq0(

q

q0
)dF (q) =

∫ 2q0

0
qzq0(

q

q0
)dF (q)

=

∫ 2q0

0
qzq0(

q

q0
)H ′q0(q)dq + 2α

∫ 2q0

0
qzq0(

q

q0
)dGq0(q) =

∫ 2q0

0
qzq0(

q

q0
)H ′q0(q)dq + 2α · q0

where the second equality uses the assumption q0 ≥ q̄ and the last the fact that g ∈ Fsp with
the expected value q0.

For q ≥ q0, 2αgq0(q) = f(q) and therefore H ′q0(q) = 0. Moreover, ∀q ≤ q0, z( qq0 ) ≥ 1. We
obtain therefore :

Ef [q · zq0(
q

q0
)]− 2α · q0 =

∫ q0

0
q · zq0(

q

q0
)H ′q0(q)dq

≥
∫ q0

0
q ·H ′q0(q)dq =

∫ q0

0
qdF (q)− 2α

∫ q0

0
qdGq0(q)

= q̄ −
∫ 2q̄

q0

qdF (q)− 2α

∫ q0

0
qdGq0(q)

= q̄ − 2α

(∫ 2q̄

q0

qdGq0(q) +

∫ q0

0
qdGq0(q)

)
︸ ︷︷ ︸

=Egq0 [q]=q0

= q̄ − 2α · q0.
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Finally, Ef [R(q, q0)] ≥ q̄ = Ef [R(q, q̄)] (for any q0 ≥ q̄). By symmetry, we can show that
Ef [R(q, q0)] ≤ q̄ for any q0 ≤ q̄.

To prove that the payment rule is manipulable, then for any given f ∈ Fsp, let us build q0 > q̄

such that Ef [R(q, q0)] > q̄.
Consider first the case where there exists a pair (q0, ε) with q0 > q̄ and ε > 0 such that

f(q0 − t) > f(q0 + t) > 0 for any t ∈ (0, ε]. The pdf f is either continuous and strictly decreasing
around q0, or discontinuous. The existence of ε > 0 such that f(q0 + ε) > 0 ensures that α > 0.
Therefore using the same arguments as above, in order to show that Ef [R(q, q0)] > q̄ = Ef [R(q, q̄)],
it is sufficient to show that

∫ q0
0 qzq0( qq0 )H ′q0(q)dq >

∫ q0
0 qH ′q0(q)dq.

For q ∈ [q̄, q0], we have H ′q0(q) = f(q)−2αgq0(q) = f(q)−f(2q0−q). Since f is non-increasing
for q > q̄, then q̄ < q < q0 < 2q0 − q implies f(q) > f(2q0 − q) and therefore H ′(q) > 0 for any
q ∈ [q̄, q0]. Moreover we know from Lemma 1 that there is a subset of [q̄, q0] with positive measure
in which zq0( qq0 ) > 1. We obtain then

∫ q0
q̄ qzq0( qq0 )H ′q0(q)dq >

∫ q0
q̄ qH ′q0(q)dq which further implies∫ q0

0 qzq0( qq0 )H ′q0(q)dq >
∫ q0

0 qH ′q0(q)dq (since zq0(q) ≥ 1 and H ′q0(q) = 2F (q0) − 1 ≥ 0 for q ≤ q0

given that q0 ≥ q̄).
Consider the other case where f is locally constant for any q > q̄ on its support. Therefore,

there exists a threshold q′ > q̄ such that f is constant and strictly positive on (q̄, q′) and then
f(q) = 0 for q > q′. In other words, f is a uniform distribution on the interval [2q̄ − q′, q′]. Then
zq′(

q
q′ ) ≥ 1 for any realization of q on the support [2q̄− q′, q′]. Furthermore, from Lemma 1, there

is a subset of [2q̄− q′, q′] with positive measure on which zq0( qq0 ) > 1. Finally, we have shown that
Ef [q · zq′( qq′ )] > Ef [q]. Q.E.D.

Proof of Proposition 3
Suppose there is payment rule homogeneous of degree 1 such that for p > 0, f ∈ Fsp and q∗0 ∈

Arg maxq0 Π(p, q0), the bidder is fully insured against production risk, meaning Varf [p·R(q, q∗0)] =

0. Note first that the payment rule being homogeneous of degree 1 implies that the function zq0(·)
does not depend on q0: ∀λ, q, q0 > 0, R(λq, λq0) = λR(q, q0)⇒ λqzλq0( qq0 ) = λqzq0( qq0 ).

Denote [qmin, qmax] the support of f . Having p > 0, the bidder being fully insured against
production risk implies that ∀q ∈ (qmin, qmax), R(q, q∗0) = q·z( qq∗0 ) = k ∈ R+∗ a constant. Therefore
z is defined on ( qminq∗0

, qmaxq∗0
) by z(x) = k

q∗0

1
x .

Take q′0 ≥ q∗0, then the bidders payoff is given by:

Π(p, q′0) =

∫ qmax

qmin

U

(
pqz(

q

q′0
)

)
dF (q) =

∫ qmin
q′0
q∗0

qmin

U

(
pqz(

q

q′0
)

)
dF (q) +

∫ qmax

qmin
q′0
q∗0

U

(
pk
q′0
q∗0

)
dF (q)

=

∫ q′0

q∗0

U

(
pqmin

x

q∗0
z(
qmin
q′0

x

q∗0
)

)
dF (qmin

x

q∗0
) + U

(
pk
q′0
q∗0

)[
1− F (qmin

q′0
q∗0

)

]
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From the payment rule R(·, q0) being continuous and increasing we know it is derivable almost
everywhere. As z(x) = R(x · q0, q0)/x · q0, it is also derivable almost everywhere, and therefore
z( qmin

q′0

x
q∗0

) admits a derivative with respect to q′0 for some q′0 > q∗0 close to q∗0. Then, the derivative
of the bidder’s payoff can be written for such q′0 as:

∂Π(p, q′0)

∂q′0
=U

(
pqmin

q′0
q∗0
z(
qmin
q∗0

)

)
qmin
q∗0

f(qmin
q′0
q∗0

) +

∫ q′0

q∗0

∂U(pqmin
x
q∗0
z( qmin

q′0

x
q∗0

))

∂q′0

qmin
q∗0

dF (qmin
x

q∗0
)

+
pk

q∗0
U ′
(
pk
q′0
q∗0

)
[1− F (qmin

q′0
q∗0

)]− U
(
pk
q′0
q∗0

)
qmin
q∗0

f(qmin
q′0
q∗0

)

Then the derivative to the right in q∗0 is given by:

∂Π(p, q′0)

∂q′0
−→
q′0→q∗0

U

(
pqminz(

qmin
q∗0

)

)
qmin
q∗0

f(qmin) +
pk

q∗0
U ′(pk)[1− F (qmin)]− U(pk)

qmin
q∗0

f(qmin)

=
pk

q0∗
U ′(pk) +

[
U(pqminz(

qmin
q∗0

)− U(pk)

]
qmin
q∗0

f(qmin)

=
pk

q∗0
U ′(pk) > 0

since by continuity of R(·, q∗0) we have qminz(
qmin
q∗0

) = k. 52 Therefore the bidder can in-
crease its expected payoff by increasing its report of q0, which stands in contradiction with
q∗0 ∈ Arg maxq0∈R+ Π(p, q0).

Q.E.D.
Proof of Proposition 4
Let us denote plc the equilibrium price under the linear contract. Based on the same argument

as for equation (2), plc is characterized by Ef [U(plc · q)] = U(C). Therefore combining with
equation (2) we get Ef [U(plc ·q)] = Ef [U(pNS ·R(q, q̄))] = U(C). From definition 1, we know that
for any production-insuring payment rule Ef [U(plc·R(q, q̄))] ≥ Ef [U(plc·q)] = Ef [U(pNS ·R(q, q̄))],
the inequality being strict if producers are strictly risk-averse and stands as an equality if producers
are risk-neutral.

Moreover, we know on the one hand that U is strictly increasing, and on the other hand
that R(q, q̄) does not take negative values and takes a strictly positive value with a probability
strictly superior to zero. Therefore the function p 7→ Ef [U(p ·R(q, q̄))] is strictly increasing. From
there and the inequality Ef [U(plc · R(q, q̄))] ≥ Ef [U(pNS · R(q, q̄))] we get that pNS ≤ plc, and
in consequence that the expected buyer’s cost Ef [pNS · R(q, q̄)] ≥ Ef [plc · R(q, q̄)]. The previous

52Note that the assumption of R(·, q0) being continuous could here be replaced by the continuity of f as it would
imply f(qmin) = 0. However the present proof would still require to have z(·) derivable to the left of qmin

q∗0
to be

able to express ∂Π(p,q′0)

∂q′0
.
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inequalities are strict if producers are strictly risk-averse, and stands as equalities of producers
are risk-neutral.

Q.E.D.
Proof of Proposition 5
Let us first show that the characterization of the equilibrium (pS , qS) is valid. Based on the

same argument as in the proof of Proposition 4, we obtain that the function p 7→ Ef [U(p·R(q, q0))]

is strictly increasing for any q0 such that R(q, q0) is not null for all possible q.53 Then for any report
q∗, there is a unique price p∗ leading to the zero profit condition Ef [U(p∗ · R(q, q∗))] = U(C).
Only such p∗ would be consistent with equilibrium behavior: if p < p∗, the winning bidder
would prefer to deviate to lose the auction. If p > p∗, then (for any given tie-breaking rule)
at least one bidder would prefer to deviate to be sure to win the auction with probability one.
Furthermore, in equilibrium, for any given price p∗, a strategic producer should report an expected
quantity belonging to Argmaxq0≥0 EfU(p∗ · R(q, q0)). On the whole, we have thus shown that
any equilibrium bid pair (pS , qS) satisfies the condition in equation (3).

Let us now show the existence and uniqueness of such consistent equilibrium bid pair (pS , qS).
Let H(p) := maxq0≥0 Ef [U(p ·R(q, q0))]. From the conditions above, the equilibrium price p must
belong to the set of prices p such that H(p) = U(C). To get that there exists a unique equilibrium
price pS , we show below that the function H is increasing. Take q0 such that Ef [R(q, q0)] > 0

and any pair (p, p′) such that p′ > p > 0. We have Ef [U(p′ · R(q, q0))] > Ef [U(p · R(q, q0))]. We
have then H(p′) ≥ Ef [U(p′ · R(q, q0))] > Ef [U(p · R(q, q0))] for any q0 with Ef [R(q, q0)] > 0 and
then in particular for an optimal q0 at the price p > 0. We have thus shown that H is increasing
on R+. Furthermore, Ef [U(p · R(q, q0))] is equal to U(0) for p = 0 and goes to limx→+∞ U(x)

when p goes to infinity. Therefore there exists a unique pS with its associated qS satisfying the
condition in equation (3).

In order to show that pS ≤ pNS , we proceed by contradiction. Suppose that on the contrary
that pS > pNS . Then we have maxq0≥0 Ef [U(pS · R(q, q0))] ≥ Ef [U(pS · R(q, q̄))] > Ef [U(pNS ·
R(q, q̄))]. From (2) (resp. (3)), the last (resp. first) term is equal to U(C) and we have thus raised
a contradiction.

If the payment rule is manipulable at the price pNS , then we have maxq0≥0 Ef [U(pNS ·
R(q, q0))] > Ef [U(pNS ·R(q, q̄))]. Given (2), then the last term is equal to U(C). If pS = pNS and
given (3), then maxq0≥0 Ef [U(pNS ·R(q, q0))] = U(C) and we have thus raised a contradiction. We
have thus shown that if the payment rule is manipulable at the price pNS , then pS < pNS . Note
that Proposition 2 establishes that if producers are risk-neutral, all production-insuring payment
rule are manipulable.

53Note that this latter case could not be part of an equilibrium bid since the producer’s payoff would then be
U(0) < U(C).
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If the payment rule provides full insurance against production risk to truthful bidders and
is homogeneous of degree 1, then we get from proposition 3 that a strategic bidder will not be
fully insured against production risk: Varf [R(q, qS0 )] > Varf [R(q, q̄)] = 0. In equilibrium, we
have Ef [U(pSR(q, qS0 ))] = U(pNS q̄) since the payoff of the truthful bidder is certain thanks to full
insurance by the payment rule. If bidders are strictly risk-averse then U(·) is strictly concave, and
therefore U(Ef [pSR(q, qS0 )]) > Ef [U(pSR(q, qS0 ))]. Then U(·) being increasing implies that the
buyer’s expected cost under strategic bidding Ef [pSR(q, qS0 )] is greater than its equivalent under
truthful bidding pNS q̄.

Example 1: Let us build a production-insuring rule R(., .) and a distribution f such that the
cost to the buyer is larger under truthful reporting than under strategic reporting.

Take ε ∈ (0, 1). For each q0 > 0, let us define the function R(., q0) : R+ → R+ recursively in
the following way: for q ∈ [5

6q0,
7
6q0], we let R(q, q0) := q0 + (1 − ε) · (q − q0) so that payment

is almost equivalent to the linear contract for ε small, but with a slightly smaller slope; for
q ∈ [(1

2 +ε)q0,
5
6q0[ we let R(q, q0) := R(5

6q0, q0), for q ∈]7
6q0, (

3
2−ε)q0] we let R(q, q0) := R(7

6q0, q0)

so that payment is flat in these two intervals; for q ∈ [0, 1
2q0[ and for q ≥ 3

2q0 we let R(q, q0) := q,
then the payment is equivalent to the linear contract on these intervals; finally we define R(., .)

in [1
2q0, (

1
2 + ε)q0[ and in [(3

2 − ε)q0,
3
2q0[ so that payment is continuous in q: on the first segment

R(q, q0) := q( 1
3ε + 1

6) + q0( 5
12 −

1
6ε), and on the second segment R(q, q0) := q( 1

3ε + 1
6) + q0(5

4 −
1
2ε).

For the distribution f , take the uniform distribution on [1−δ, 1+δ] where δ < 1
6 . Under truthful

reporting, we have that the equilibrium price pNS is characterized by
∫ 1+δ

1−δ U(pNS ·(1−ε)q) = U(C).
Under strategic reporting, we have that the producer overestimates its production by reporting
q∗ > q̄ in order to benefit from the payment being largely inflated in lower flat areas.

Through simulations with δ = 1/6, a CRRA utility with γ = 1 and ε = 0.01, we find the
optimal reporting of q0 being 1.6605. For such reporting, the lower bound of the distribution
(relative to the average realization q̄), 1− δ, is slightly below 1/2 (0.044), while the upper bound
is slightly below 5/6 (0.77). Then most of the support of the distribution stands on the flat part
of the payment rule, which results in a smaller risk premium. With the firm’s cost being 1, the
buyer’s expected cost drops from 1.0045 when producers àre truthful to 1.0009 when producers
are strategic.

Proof of Proposition 6
The equilibrium analysis is analogous to Maskin and Riley (1985): having a low (high) valu-

ation corresponds here to being a truthful (strategic) producer. As in Maskin and Riley (1985),
we have in equilibrium that truthful bidders make no profit and bid thus (pNS , q̄) and that the
bidding strategy of strategic bidders involves no atoms but rather a mixed strategy where the
supremum of the price bids pmax is equal pNS (if pmax < pNS , then strategic bidders submitting
the price bid around pmax would have a strictly profitable deviation by bidding just below pNS).
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Let G(.) denote the CDF of the strategic producers price bid and let ΠS(p) := maxq0≥0 Π(p, q0).
In equilibrium, any price bid p made as part of a mixed strategy must generate the same expected
payoff for a strategic producer. Therefore, for any price bid p in the support of G, the distribution
G satisfies

[1− α+ α(1−G(p))]N−1 · [ΠS(p)− U(C)] = (1− α)N−1 · [ΠS(pNS)− U(C)]. (7)

We obtain then that G(p) = 1− 1−α
α

(
N−1

√
ΠS(pNS)−U(C)

ΠS(p)−U(C) − 1

)
. Let pmin denote the infimum

of the prices bids (and we have thus that G(pmin) = 0). For any α ∈ (0, 1), we have ΠS(pmin)−
U(C) = (1−α)N−1 · [ΠS(pNS)−U(C)] > 0 = ΠS(pS) = U(C), and then that ΠS(pmin) > ΠS(pS)

which further implies that pmin > pS .
The payoff of a producer from an ex ante perspective (i.e. before knowing that he/she is

strategic or truthful) is equal to U(C) + α · [(1 − α)N−1ΠS(pNS)]. The rent of all the producers
is then equal to Nα · [(1− α)N−1ΠS(pNS)].

We now consider the buyer’s expected cost. It can be written as

(1− α)N · pNS · Ef [R(q, q̄)] +

∫ pmax

pmin

p · Ef [R(q, q∗0(p))]dK(p)

where q∗0(p) ∈ Argmaxq≥0 Π(p, q) and K(p) := 1− (1− α+ α(1−G(p)))N denotes the CDF
of the price bid of the winning bidder. We obtain then that the buyer’s expected cost is equal to

pNS ·Ef [R(q, q̄)]+Nα

∫ pmax

pmin

[p · Ef [R(q, q∗0(p))]− pNS · Ef [R(q, q̄)]] · [1− α+ α(1−G(p))]N−1dG(p).

From (7) and since U(C) = Ef [U(pNS ·R(q, q̄))], the latter expression is equal to

pNS ·Ef [R(q, q̄)]+Nα(1−α)N−1[ΠS(pNS)−U(C)]

∫ pmax

pmin

p · Ef [R(q, q∗0(p))]− pNS · Ef [R(q, q̄)]

Ef [U(p ·R(q, q∗0(p)))]− Ef [U(pNS ·R(q, q̄))]
· dG(p).

Note that the term pNS · Ef [R(q, q̄)] corresponds to the buyer’s expected cost with truthful
producers.

Furthermore, since U is concave, then:

Ef [U(p ·R(q, q∗0(p)))]− U(pNS · Ef [R(q, q̄)]) ≤ U(p · Ef [R(q, q∗0(p))])− U(pNS · Ef [R(q, q̄)])

≤ U ′(pNS · Ef [R(q, q̄)]) · [p · Ef [R(q, q∗0(p))]− pNS · Ef [R(q, q̄)]]
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and the inequalities stand as equalities if U is linear (or equivalently if producers are risk-
neutral).

We conclude after noting G is a CDF on the support [pmin, pmax] such that
∫ pmax
pmin

dG(p) = 1

and that ΠS(pNS) ≥ U(C) Q.E.D.
Q.E.D.

Appendix 3: Useful properties with CRRA utility functions

For a given payment rule and a given utility function, let us use the notation Sf (p) :=

maxq0≥0 Ef [U(p ·R(q, q0))]. For a set S ⊂ R and λ ∈ R, we let λ × S := {x ∈ R|∃s ∈
S such that λ · s = x}.

For a given production distribution f (with the corresponding CDF F ) and λ > 0, we let
denote fλ(.) the pdf (with the corresponding CDF Fλ) such that Fλ(q) = F (λ · q) for any q ∈ R+.
The distribution fλ corresponds to a homothetic transformation of the distribution f . The mean
of fλ is then equal to q̄

λ .

Lemma 7. Suppose that the utility function U is a CRRA utility function and consider a produc-
tion distribution f on R+.

Then the set Sf (p) does not depend on p for any p > 0 and the ratios
pNS ·Efλ [R(q,q̄)]

C ,
pS ·Efλ [R(q,q∗0(pS))]

C and
pNS ·Efλ [R(q,q∗0(pNS))]

C do not depend on C.
If the payment rule R is homogeneous of degree 1, then Sfλ(p) = 1

λ × Sf (p) for any p, λ > 0

and the ratios
pNS ·Efλ [R(q,q̄)]

C ,
pS ·Efλ [R(q,q∗0(pS))]

C and
pNS ·Efλ [R(q,q∗0(pNS))]

C do not depend on λ.

Proof of Lemma 7
If U is a CRRA utility function, then U(p · R(q, q0)) = p1−γ · U(R(q, q0)). For any p > 0, we

have then Sf (p) = Sf (1).
Let us now consider the ratios between the cost for the buyer and the cost for the producer

under our various bidding paradigms. From (2) and (3) with a CRRA utility function, the
equilibrium prices pNS and pS are such that the ratios pNS

C and pS

C do not depend on C. Since
Sf (p) does not depend on C, we have that Ef [R(q, q̄)] and Ef [R(q, q∗0(pS)] and Ef [R(q, q∗0(pNS)]

do not depend on C and finally that the three ratios in Lemma 7 do not depend on C.
Consider now that R is homogeneous of degree 1. We have then Efλ [U(p · R(q, q0))] =∫∞

0 U(p ·R(q, q0))fλ(q)dq =
∫∞

0 U(p ·R(q, q0))f(λq)d(λq) =
∫∞

0 U(p ·R( qλ , q0))f(q)dq = Ef [U(p ·
R( qλ , q0))] = 1

λ1−γ · Ef [U(p · R(q, λ · q0))] where the last equality uses the homogeneity of degree
one assumption. Since Eflambda[U(p ·R(q, q0))] = 1

λ1−γ ·Ef [U(p ·R(q, λ · q0))], we obtain then than
Sf (p) = λ× Sfλ(p).
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If R is homogeneous of degree 1 and using that U is a CRRA utility function, let us show
that the equilibrium prices pNS and pS are linear in λ. Below we explicit in our notation the
dependence in λ and in particular use the notation q̄λ, q∗0,λ(p), pNSλ and pSλ . Note that we have

pNS = pNS1 and pS = pS1 . We have also q̄λ = q̄
λ and q∗0,λ(p) =

q∗0(p)
λ if the sets Sf (p) is a singleton

(if Sf (p) is not a singleton, the selection does not play any role and without loss of generality, we
can thus pick a selection such that q∗0,λ(p) =

q∗0(p)
λ ).

From (2), we have that for any λ:

Ef [U(pNS ·R(q, q̄))] = U(C) = Efλ [U(pNSλ ·R(q, q̄λ))] = Ef [U(pNSλ ·R(
q

λ
,
q̄

λ
))] = Ef [U(

pNSλ
λ
·R(q, q̄))].

The equality Ef [U(pNS ·R(q, q̄))] = Ef [U(
pNSλ
λ ·R(q, q̄))] implies then that pNSλ = λ · pNS .

Similarly, from (3), we have that for any λ:

U(C) = Efλ [U(pSλ ·R(q, q∗0,λ(pSλ)))] = Ef [U(pSλ ·R(
q

λ
,
q∗0(pSλ)

λ
))] = Ef [U(

pSλ
λ
·R(q, q∗0(pS)))]

and
U(C) = Ef [U(pS ·R(q, q∗0(pS)))] = Ef [U(pS ·R(q, q∗0(pSlambda)))]

where the last equality comes from the fact that the optimal report q∗0(p) does not depend on
p. Finally, this implies that pSλ = λ · pS .

We conclude the proof by noting that the buyer’s expected cost can be written then in the
tree bidding paradigms:

• pNSλ · Efλ [R(q, q̄λ)] = pNSλ · Ef [R( qλ ,
q̄
λ)] = pNS · Ef [R(q, q̄)],

• pSλ ·Efλ [R(q, q∗0,λ(pSλ))] = pSλ ·Ef [R( qλ ,
q∗0(pSλ)
λ )] = pS ·Ef [R(q, q∗0(pSλ))] = pS ·Ef [R(q, q∗0(pS))]

(the last equality results from the fact that q∗0(p) is independent of p),

• pNSλ · Efλ [R(q, q∗0,λ(pNSλ ))] = pNSλ · Ef [R( qλ ,
q∗0(pNSλ )

λ )] = pNS · Ef [R(q, q∗0(pNSλ ))] = pNS ·
Ef [R(q, q∗0(pNS))] (the last equality results from the fact that q∗0(p) is independent of p).

Q.E.D.
Remark: under the multi-year contracts used in France and in presence of operating costs,

we could extend Lemma 7.

Lemma 8. Suppose that the utility function U is a CRRA utility function and consider a produc-
tion distribution f on R+.

Then the set Sf (p) does not depend on p for any p > 0 and the ratios
pNS ·Efλ [R(q,q̄)]

C ,
pS ·Efλ [R(q,q∗0(pS))]

C and
pNS ·Efλ [R(q,q∗0(pNS))]

C do not depend on C.
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If the payment rule R is homogeneous of degree 1, then Sf (p) = λ × Sfλ(p) for any p, λ > 0

and the ratios
pNS ·Efλ [R(q,q̄)]

C ,
pS ·Efλ [R(q,q∗0(pS))]

C and
pNS ·Efλ [R(q,q∗0(pNS))]

C do not depend on λ.
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Appendix 4: Additional Results

Table 2: Buyers Expected Cost ratio to producer’s cost - Investment cost as initial wealth

Site γ Linear Con-
tract

Non-
strategic
bidders

All strategic
bidders

One strategic
bidder

Courseulles 0 1.000 1.000 1.000 1.035
1 1.003 1.001 1.004 1.036
3 1.009 1.003 1.010 1.038
5 1.016 1.006 1.016 1.038
10 1.033 1.014 1.028 1.038

Fécamp 0 1.000 1.000 1.000 1.036
1 1.003 1.001 1.003 1.037
3 1.009 1.003 1.010 1.038
5 1.015 1.006 1.016 1.039
10 1.032 1.013 1.028 1.039

Le Tréport 0 1.000 1.000 1.000 1.033
1 1.003 1.001 1.004 1.034
3 1.010 1.004 1.011 1.036
5 1.017 1.008 1.018 1.038
10 1.037 1.019 1.033 1.040

Saint-Nazaire 0 1.000 1.000 1.000 1.036
1 1.003 1.001 1.004 1.037
3 1.009 1.003 1.010 1.038
5 1.016 1.006 1.016 1.039
10 1.033 1.014 1.028 1.039

Noirmoutier 0 1.000 1.000 1.000 1.035
1 1.004 1.001 1.004 1.036
3 1.011 1.004 1.012 1.038
5 1.019 1.007 1.019 1.039
10 1.039 1.019 1.032 1.038
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Table 3: Buyers Expected Cost ratio to producer’s cost - Total Net Present Cost as initial wealth

Site γ Linear Con-
tract

Non-
strategic
bidders

All strategic
bidders

One strategic
bidder

Courseulles 0 1.000 1.000 1.000 1.035
1 1.002 1.001 1.002 1.036
3 1.006 1.002 1.007 1.037
5 1.010 1.004 1.011 1.038
10 1.021 1.008 1.020 1.038

Fécamp 0 1.000 1.000 1.000 1.036
1 1.002 1.001 1.002 1.036
3 1.006 1.002 1.007 1.037
5 1.010 1.004 1.011 1.038
10 1.021 1.008 1.020 1.039

Le Tréport 0 1.000 1.000 1.000 1.033
1 1.002 1.001 1.002 1.033
3 1.006 1.003 1.007 1.035
5 1.011 1.004 1.011 1.036
10 1.022 1.009 1.021 1.038

Saint-Nazaire 0 1.000 1.000 1.000 1.037
1 1.002 1.001 1.003 1.036
3 1.007 1.003 1.008 1.038
5 1.012 1.004 1.012 1.039
10 1.024 1.009 1.023 1.039

Noirmoutier 0 1.000 1.000 1.000 1.035
1 1.002 1.001 1.002 1.035
3 1.006 1.002 1.007 1.037
5 1.011 1.004 1.011 1.038
10 1.022 1.009 1.021 1.038
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