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Overview 

This study intends to raise and answer a question: what is the interaction between capacity 

remuneration mechanism and carbon pricing in a liberalized electricity market, and how it ultimately 

affects the trajectory of power mix change? This study firstly constructs a conceptual model to explain 

the interactions between carbon pricing and capacity pricing. Secondly, a semi-quantitative dynamic 

simulation model based on the System Dynamics method is proposed based on the conceptual model 

to investigate the question. At last, choose Hokkaido Japan as a case study, several scenarios including 

energy only, carbon pricing only, capacity pricing only, and carbon price with capacity pricing are 

simulated through the semi-quantitative model. The results show that carbon price will promote the 

introduction of wind power as well as the reduction of fossil fuels, while the capacity price will 

mitigate the boom and bust investment cycle and stabilize electricity prices. However, when the two 

policy-based prices act on the power system simultaneously, the advantages will be offset by each 

other. The existence of the capacity price partially offsets the emission reduction effect of the carbon 

price, and the carbon price with the lower floor also indirectly squeezes the generation space of flexible 

power plants. We propose that if the capacity price focus on subsidizing flexible power plants coupled 

with a higher floor carbon price, thereby form a consistent incentive and promote the decommissioning 

of carbon-intensive base-load power plants and significantly reduce CO2 emissions with relatively 

stable electricity prices during the transition period. 

Introduction 

In the liberalized electricity market, the investments and decommissions of power generation 

capacity are made by many profit-driven companies as commercial decisions. These market 

participants' plans for power generation technology capacity depend on the impacts from price signals. 

In order to guide market participants' behavior, some policy-based markets are designed to evaluate 

the electricity commodities and bring appropriate price signals, as well as to resolve the market failures 

that have occurred during the liberalization process. Meanwhile, to deal with climate change issues, 

the current electricity industry is undergoing a paradigm transition from fossil fuel-based technologies 

to low CO2 emissions technologies in a very limited time. Carbon pricing which is a powerful policy 



instrument is designed to internalize the environmental cost of CO2 emissions, thereby driving and 

accelerating the transition of electricity system. During the transition of electricity system in the 

liberalized market, the increasingly complex designs may cause unexpected side effects through the 

interactions among policy instruments [1]. 

The capacity remuneration mechanisms are implemented as incentive tools for reliable investment, 

in order to ensure power adequacy in the liberalized electricity market. For the capacity pricing, there 

are mainly two objectives: first, providing subsidies for the fixed cost of the technologies which 

contribute to the security of electricity systems supply-demand balance operating [2], e.g. marginal 

power plants. Second, the price formation through auction based on the forecasted capacity demand, 

thereby ensure the electricity system adequacy and avoid the boom-bust investment phenomenon [3]. 

Meanwhile, carbon pricing is designed to handle climate change issues. The main objective of carbon 

pricing is to internalize the CO2 environmental externality of fossil fuel, in order to promote the 

variable renewable energy penetration and gradually reduce the proportion of fossil fuel energy [4]. 

However, fossil fuel power plants are still dominating in most of the current electricity system, to 

provide system adequacy as well as flexibility, which lead to the CO2 intensive power capacity be 

charged through carbon pricing while receiving payment from capacity pricing. Although both policies 

have achieved the direct goal, which is pricing certain objects through market-based policy 

instruments, the interaction between these two prices and the subsequent impacts on the electricity 

market is less investigated. Some previous qualitative studies [5-7] focused on the barrier and 

misalignment of integration among electricity system related mechanisms such as variable renewable 

energy (VRE) incentives, CO2 emission trading or taxing, capacity remuneration mechanism et. al. 

There is a growing number of studies have invested the interaction between VRE incentive and carbon 

pricing [8,9], increasing VRE share and capacity remuneration mechanism [10]. Nevertheless, there 

are few studies [11-13] that approach the unclear interaction between capacity pricing and carbon 

pricing, which may affect power generation investment decisions during the energy system transition. 

In order to fill this knowledge gap and contribute to a better understanding of electricity system 

related policy design during the energy transition period. This study intends to raise and answer a 

question: what is the interaction between capacity pricing and carbon pricing in a liberalized electricity 

market during the low-carbon transition period, and how this interaction ultimately affects the 

trajectory of power mix change? 

This study firstly constructed a subjective conceptual model to explain the interactions between 

carbon pricing and capacity pricing. Secondly, the System Dynamic approach is adapted to conduct 

the simulation of capacity changing based on the conceptual model. Thirdly, we use the real data from 

Hokkaido, Japan as a case study. Several scenarios including energy only, carbon pricing only. capacity 

pricing only and carbon pricing with capacity pricing are designed for the simulation. The results show 

the comparison among different scenarios of long-term capacity changing, CO2 emission changing, 



carbon price changing, capacity pricing changing, and electricity pricing changing. At last, we 

discussed the impact of the interaction among policy-based markets on the energy system. 

 

Methods 

This study chooses System Dynamics as the modeling method in order to simulate the dynamic 

change of the complex system which including interaction among policy, technology, and economic 

factors. System Dynamics derived from control theory and systems thinking, provides concepts and 

semi-quantitative methods for analyzing feedback loops and non-linear interactions among system 

elements [1]. System Dynamics is a problem-oriented modeling method, which means all the factors 

and system boundaries are determined by focusing on the problem itself. Following this principle, this 

study focuses on the potential problem observed in the real world: the CO2 intensive power capacity 

be charged through carbon pricing while receiving payment from capacity pricing. 

The Causality Loop Diagram is the first step in System Dynamics, which consists of variables and 

arrows to demonstrate the causal links and influences. Through establishing the subjective conceptual 

models based on observation and causal inference, thereby understanding and clarifying the 

relationships among phenomena or behaviors. The positive link means if the cause increase or 

decreases, the effect increases or decreases compared to what it would have been, and the negative 

link is the opposite [1]. Figure 1 shows the Causality Loop Diagram of the conceptual model in this 

study, which is the basis of the long-term dynamic simulation model. The polarity of some arrows is 

not marked, due to their being purely data input or logic judgments. 

 
Figure 1 Causal loops diagram of the proposed simulation model 



The model shown in Figure 1 consists of five modules, which are capacity changing module, 

electricity price module, carbon price module, capacity price module, and investment decision module. 

we consider three power generation technologies in the model, wind power as a representative of 

renewable energy, coal as a representative of baseload fossil fuel power plants, and liquid natural gas 

(LNG) as a representative of flexible fossil fuel power plants. The comparison of the three technologies 

characteristics are summarized in Table 1. The unit time step of the model is a week, the weekly time 

resolution can reflect the short-term supply and demand balance and the long-term capacity changes 

simultaneously. Due to space limitations, we have omitted the stock-flow diagram of the System 

Dynamics model. The stock-flow diagram is of great help to think about how to model, but the 

mathematical equations are more refined expressions. The equations of each module are listed below. 

Table 1 comparison of the three technologies characteristics 

 Power output CO2 emission Capacity value 

VRE: Wind Fluctuate Zero emission Low value 

Fossil fuel: Coal Stable High emission High value 

Fossil fuel: LNG Flexible Medium emission High value 

 

The capacity change module simulates the investment, decommissioning and retirement of 

different technologies. At the end of each year, the capacity CP of the current technology i consists of 

the new capacity NewIn join into the market, the deficit capacity Decom exits the market, and the life-

expiring capacity Retire retires. As shown in Equation 1, where t is the number of weeks. 

𝐶𝑃!(𝑡) = 𝐶𝑃!(𝑡") + ( 𝑁𝑒𝑤𝐼𝑛!(𝑡)
#

#!
− 𝐷𝑒𝑐𝑜𝑚!(𝑡) − 𝑅𝑒𝑡𝑖𝑟𝑒!(𝑡)  ⋅ 𝑑𝑡 (1) 

the new investment and decommission capacity are decided by market participants based on the 

profits, and the life-expire retirement does not relate to business, it only depends on the lifetime of the 

equipment. The newly added capacity takes construction time ConsTime after the investment decision, 

which is modeled as pipeline delay. The annual retirement capacity is modeled as the first-order delay 

of the technology lifetime lifetime, as shown in Equations 2 and 3, where j is the number of years a 

year is calculated as 52 weeks. 

𝑁𝑒𝑤𝐼𝑛!(𝑗 + 𝐶𝑜𝑛𝑠𝑇𝑖𝑚𝑒) = 𝐷𝑒𝑙𝑎𝑦(𝑁𝑒𝑤𝐼𝑛𝑣𝑒𝑠𝑡(𝑗), 𝐶𝑜𝑛𝑠𝑇𝑖𝑚𝑒) (2) 

𝑅𝑒𝑡𝑖𝑟𝑒!(𝑡) =
𝐶𝑃!(𝑡)

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒!
 (3) 

The electricity price module uses the concept of merit-order to calculate electricity prices based 

on marginal costs, by simulating the balance of power supply and demand per unit time. As shown in 

Figure 2, the VRE has priority scheduling since its marginal cost is almost zero. The dispatch of coal 

and LNG depends on the order of their marginal cost. 



 

Figure 2 Concept of merit-order electricity pricing 

As the equations below, the marginal fuel cost MarFuel is calculated through the power plant 

thermal efficiency Heff and heating value of fossil fuel Hval and the average fuel price Fuelprice as 

exogenous variables. The marginal cost of a thermal power plant is equal to the sum of the marginal 

fuel cost and carbon price CarbonPrice multiplied by the unit emission coefficient EF of the fuel. 

Since fuel cost and emission intensity are exogenous variables, the calculated value of the marginal 

cost of two technologies in the model depends on the carbon price. 

𝑀𝑎𝑟𝐹𝑢𝑒𝑙$%&',)*+ =
3600

𝐻𝑒𝑓𝑓$%&',)*+ × 𝐻𝑣𝑎𝑙$%&'.)*+
× 𝐹𝑢𝑒𝑙𝑝𝑟𝑖𝑐𝑒$%&',)*+  (4) 

𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&',)*+(𝑡) = 𝑀𝑎𝑟𝐹𝑢𝑒𝑙$%&',)*+ + 𝐸𝐹$%&',)*+ × 𝐶𝑎𝑟𝑏𝑜𝑛𝑃𝑟𝑖𝑐𝑒(𝑡) (5) 

The traditional coal power is mostly used as baseload power plants since the ramp rate, which is 

the speed of adjusting output is slower and the cost is higher compared with other technologies. 

Therefore, we assume that power generation Generate of coal has a fixed output, which equals to the 

product of its capacity, annual operating factor OF, and weekly hours. The wind power is modeled as 

a constant weekly output with volatility in which its capacity is multiplied by a capacity factor CF and 

weekly hours. The annual operating factor and the VRE capacity factor are input into the model as 

exogenous variables. 

𝐺𝑒𝑛𝑒𝑎𝑟𝑎𝑡𝑒$%&'(𝑡) = 𝐶𝑃$%&' × 𝑂𝐹$%&' × 168ℎ𝑜𝑢𝑟𝑠 (6) 

𝐺𝑒𝑛𝑒𝑎𝑟𝑎𝑡𝑒-!./(𝑡) = 𝐶𝑃-!./ × 𝐶𝐹-!./ ×  168 ℎ𝑜𝑢𝑟𝑠 (7) 

LNG is the representative of flexible power sources in the model, its output is assumed to equal to 

the residual load ResidualLord, that is, the total demand Demand minus the uncontrollable VRE 

generation which is the NetLord, and then minus the fixed output of the baseload power plant, thereby 

maintaining the system supply and demand balance. 

𝑁𝑒𝑡𝐿𝑜𝑎𝑑(𝑡) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) − 𝐺𝑒𝑛𝑒𝑎𝑟𝑎𝑡𝑒-!./(𝑡) (8) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐿𝑜𝑎𝑑(𝑡) = 𝑁𝑒𝑡𝐿𝑜𝑎𝑑(𝑡) − 𝐺𝑒𝑛𝑒𝑎𝑟𝑎𝑡𝑒$%&'(𝑡) (9) 

The balance of supply and demand SDbalan equals the total supply minus TotalSup the total 



demand, where the weekly electricity demands are input as exogenous variables of the model. The 

total supply is the sum of VRE, coal, and LNG power generation per unit time. 

𝑆𝐷𝑏𝑎𝑙𝑎𝑛(𝑡) = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝(𝑡) − 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) (10) 

The electricity price is calculated by the following equations. The current state of the system is 

indicated by the balance of supply and demand, and whether the flexible power source LNG is 

generating electricity is indicated by the residual lord. When the supply and demand are loose and 

LNG generating, the electricity price is the highest marginal cost of thermal power plants. When the 

supply and demand are loose and LNG is not generating, the electricity price is the weighted average 

marginal cost of coal generation and VRE generation. When supply and demand are tight and LNG 

generating, the electricity price is the highest marginal cost of the thermal power plants multiplied by 

the scarcity electricity price coefficient a. When supply and demand are tight and LNG is not 

generating, the electricity price is the weighted average marginal cost of coal generation and VRE 

generation multiplied by the scarcity electricity price coefficient. 

In a perfect competition liberalized power market, the electricity price equal to the highest 

marginal cost of the online generating technology. Therefore, the fixed cost of marginal power plants 

is not included in the electricity price the most of time, and the fixed cost recovery depends on the 

scarcity price when the supply-demand balance is tight, or the capacity price [14]. Since this study 

considering the existence of capacity prices, the electricity price in our model has a relatively lower 

price ceiling. 

 𝑆𝐷𝑏𝑎𝑙𝑎𝑛(𝑡) ≧ 0 𝑆𝐷𝑏𝑎𝑙𝑎𝑛(𝑡) < 0 

(11) 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐿𝑜𝑎𝑑(𝑡) > 0 

max{𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&'(𝑡), 

𝑀𝑎𝑟𝐶𝑜𝑠𝑡)*+(𝑡)} 

max{𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&'(𝑡)

× α,𝑀𝑎𝑟𝐶𝑜𝑠𝑡)*+(𝑡) × α} 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐿𝑜𝑎𝑑(𝑡) ≦ 0 

𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&'(𝑡)

×
𝑁𝑒𝑡𝐿𝑜𝑎𝑑(𝑡)
𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) 

𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&'(𝑡) ×
𝑁𝑒𝑡𝐿𝑜𝑎𝑑(𝑡)
𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) × 𝛼 

The capacity remuneration mechanism subsidies the power plants which contribute to the 

adequacy of power generation capacity. In this study, we model the capacity remuneration mechanism 

as a capacity auction market. The total capacity is evaluated at the end of each year. If the current 

capacity is lower than the capacity requirement, a full-price subsidy will be provided which is the 

difference between the fixed cost per MW capacity and the expected return per MW capacity of a new 

building LNG power plant. If the current capacity is higher than the requirement, the subsidy price 

will be reduced in proportion and become zero after exceeding a certain range of the requirement. We 

use the traditional planning reserve margin method to calculate the capacity requirement, which is 15% 

higher than the yearly peak demand. Different power generation technologies have different weights 

of contributions to capacity adequacy. This study assumes the capacity value of VRE calculated by its 



installed capacity times with the average yearly capacity factor. Equation 12, 13 describes the changes 

in capacity prices, where g is the sensitivity coefficient of capacity prices increase. 

𝐶𝑃𝑅𝑎𝑡𝑖𝑜(𝑡) =
𝐶𝑃$%&',)*+(𝑡) + 𝐶𝑃-!./(𝑡) × γ

𝐶𝑃𝑅𝑒𝑞  (12) 

 
(13) 

This study made very strong assumptions to simulate the capacity price. The real-world capacity 

price calculation involves the evaluation method of the reliability of the power system. In particular, 

how to calculate the capacity value of VRE's random output is a complicated topic. This part is 

temporarily beyond the scope of this study. We focus on the mutual influence of the behavior of 

subsidizing capacity itself on other price mechanisms in the electricity market. The definition and 

evaluation of power system reliability are very important, this study includes the main factors that may 

affect the capacity price and simplified them for modeling. These strong assumptions are the major 

constraints of this study and will be improved in future work. 

We model the carbon price mechanism as a cap-trade emission allowance trading system with floor 

prices that is limited to the power system in the target area. The annual quota emission allowance will 

be auctioned at the floor price at the beginning of the year. If the current annual cumulative emissions 

are less than the annual emissions cap, then the carbon price is the floor price. If the current cumulative 

emissions exceed the emissions cap, the carbon price will increase. Equation 14, 15 describes the 

changes in carbon prices, where b is the sensitivity coefficient of carbon prices increase. 

𝐸𝑚𝑅𝑎𝑡𝑖𝑜(𝑡) =
𝑇𝑜𝑡𝑎𝑙𝐸𝑚(𝑡)
𝐸𝑚𝐶𝑎𝑝  (14) 

 
(15) 

The emission per time step is equal to the generation of thermal power plants multiplied by the 

corresponding fuel emission factor. The cumulative amount of emissions within a year is the total 

annual emissions. 

𝐶𝑂0𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡) = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒$%&',)*+(𝑡) × 𝐸𝐹$%&',)*+  (16) 

𝑇𝑜𝑡𝑎𝑙𝐸𝑚(𝑗) = ( 𝐶𝑂0𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡)
#120

#
⋅ 𝑑𝑡 (17) 

The revenue from the auction of carbon allowances will be used to additionally subsidize the 

introduction of VRE, where the annual carbon revenue is the annual accumulated CO2 emissions 

multiplied by the weekly updating carbon price. In the real world, the carbon price revenue of the 

regulator is limited to the primary auction market, and the real-time carbon price arbitrage revenue 

belongs to the secondary market. We assume that, to a certain extent, the expectations generated by 

carbon prices in the secondary market will eventually be reflected back to the primary auction market. 



For example, if the demand for carbon allowances in the secondary market is strong, it will raise 

participants bidding prices in the primary auction market. Therefore, rather than multiplying the total 

amount by the floor auction price, our calculation can reflect the impact of the auction price and 

secondary market revenue on the overall carbon price revenue to a certain extent. 

𝐶𝑎𝑟𝑏𝑜𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒(𝑗) = ( 𝐶𝑂0𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡)
#120

#
× 𝐶𝑎𝑟𝑏𝑜𝑛𝑃𝑟𝑖𝑐𝑒(𝑡) ⋅ 𝑑𝑡 (18) 

The decisions of market participants in the free market are assumed as purely commercial 

behaviors, thereby their decisions depend on the profits from the project. When the expected profits 

of the project are higher than its costs, participants will choose to make new investments. We use the 

internal rate of return (IRR) to evaluate the project’s return, which is the project’s return rate when the 

net present value (NPV) is equal to zero. When the IRR is greater than the expected return rate, the 

model chooses to make a new investment. As shown in Equations 19, 20, 21, the calculation of NPV 

includes the fixed cost in the initial year and the decommissioning cost in the last year of the power 

plant lifetime. The annual cash flow is equal to the revenue per MW during the year minus the 

maintenance costs and variable cost per MW. 

𝑛𝑝𝑣!(𝑡) = −𝐹𝑖𝑥𝐶𝑜𝑠𝑡! + b
𝐸𝐶𝐹!,.

(1 + 𝐼𝑅𝑅))!34#!5467

)!34#!5467

.87

+
𝐸𝐶𝐹!,)!34#!54 − 𝐷𝑒𝑐𝑜𝑚𝐶!

(1 + 𝐼𝑅𝑅))!34#!54  (19) 

𝐸𝐶𝐹!(𝑡) = 𝑈𝑛𝑖𝑡𝑅𝑒𝑣! − 𝑈𝑛𝑖𝑡𝑉𝑎𝑟! − 𝑈𝑛𝑖𝑡𝑀𝑎𝑖𝑛𝑡𝑒𝑛! (20) 

𝐷𝑒𝑐𝑜𝑚𝐶! = 𝐹𝑖𝑥𝐶𝑜𝑠𝑡! × 𝐷𝑒𝑐𝑜𝑚𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜! (21) 

The previous research [15-17] chose to use trends prediction when estimating the future cash flow 

of NPV. The implicit assumption of this method is that future electricity prices will continue to develop 

in accordance with the fluctuation trend during the reference period. However, the current energy 

system is under a policy-driven fast transition period, compared with stable policy subsidies, the 

changing of electricity prices from the market reflects more about the short-term supply and demand 

balance, thereby its fluctuation trend does not accurately reflect the long-term expectations of the 

policies-driven transition. For example, the investment of VRE driven by FIT/FIP mechanism assumes 

stable returns will be guaranteed during its lifetimes. Many power plants also tend to sign long-term 

power purchase agreements for a large amount of electricity trading to avoid risks, so as to ensure that 

there is a stable revenue every year.  

 Since this study focuses on the interaction between policies-based market pricing and the impact 

on the trajectory of long-term system transition, we adopt a constant status quo investment strategy 

that ignores fluctuation trends, that is, reviewing the current revenue and cost at the end of each year, 

make decision based on the price of the past year, assuming that the situation will be constant for the 

entire project lifetime, and there is no trend forecast for electricity price fluctuations. Similar 

assumptions have found in previous research [18] as well. More sophisticated investment strategies or 



cash flow calculation methods will be tested as part of future work. 

The investments of new power plants are modeled as discrete investments in the number of 

generating units. The new investment is equal to the ratio of the expected return to the fixed cost 

multiplied by the investment sensitivity coefficient, then the rounded integer result is multiplied by 

the minimum size of generator sets, as shown in Equation 22. 

𝑁𝑒𝑤𝐼𝑛𝑣𝑒𝑠𝑡!(𝑡) = e
𝑛𝑝𝑣!(𝑡) + 𝐹𝑖𝑥𝐶𝑜𝑠𝑡!

𝐹𝑖𝑥𝐶𝑜𝑠𝑡!
× 𝐼𝑛𝑣𝐶𝑜𝑒!f × 𝑈𝑛𝑖𝑡𝐶𝑃! (22) 

Equations 23 and 24 describe the decommission decision. The annual operating cash flow of all 

existing power plants includes revenue, variable costs, annualized fixed costs, and annualized 

decommission costs. When the operating cash flow is negative, that is, when the revenue is lower than 

its operating cost, the market participants will choose to close the power plant and exit the market. 

This is due to the assumption of the constant status quo strategy, if the current revenue is less than the 

operating cost, it is considered this situation will be continuous in the future and there is no chance to 

recover the losses, thereby decommission is a rational decision. The decommissioned capacity is equal 

to the ratio of the annual loss to the annual revenue, multiplied by the decommission sensitivity 

coefficient and then times the minimum size of generator sets. 

𝐶𝑎𝑠ℎ!(𝑡) = 𝑈𝑛𝑖𝑡𝑅𝑒𝑣! − 𝑈𝑛𝑖𝑡𝑉𝑎𝑟! − 𝑈𝑛𝑖𝑡𝑀𝑎𝑖𝑛𝑡𝑒𝑛! − 𝐴𝑛𝑛𝑢𝑙𝐹𝑖𝑥𝐶! − 𝐴𝑛𝑛𝑢𝑙𝐷𝑒𝑐𝑜𝑚𝐶! (23) 

𝐷𝑒𝑐𝑜𝑚!(𝑡) = e
𝑅𝑒𝑣𝑒𝑛𝑢𝑒!(𝑡) − 𝐶𝑎𝑠ℎ!(𝑡)

𝑅𝑒𝑣𝑒𝑛𝑢𝑒!(𝑡)
× 𝐷𝑒𝑐𝑜𝑚𝐶𝑜𝑒!f × 𝑈𝑛𝑖𝑡𝐶𝑃! (24) 

Although the investment decisions in the real world are decentralized, in this study, we assume 

that all investors of the same technology make a unified decision within a year. This assumption allows 

the model to ignore the risk. The actual decision of a single company highly depends on the decision 

maker's own risk perception threshold, while the unified decision in a year after aggregation ignores 

the fluctuations of micro-individuals and reflects the overall changing of expected returns. 

Based on this assumption, we calculate the annual revenue of thermal power plants as the 

accumulation of power generation multiplied by the electricity price, and the annual revenue of wind 

power generation is the power generation multiplied by the FIT price. The annual revenue per MW is 

calculated by Equations 27 and 28. Wind power has additional revenue from the emission trading 

system, as well as the thermal power plant receives a subsidy of the capacity market. Wind power is 

excluded from the capacity market due to the FIT subsidy. 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒$%&',)*+(𝑗) = ( 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒$%&',)*+(𝑡)
#120

#
× 𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒(𝑡) ⋅ 𝑑𝑡 (25) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒-!./(𝑗) = ( 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒-!./(𝑡)
#120

#
× 𝐹𝐼𝑇 ⋅ 𝑑𝑡 (26) 

𝑈𝑛𝑖𝑡𝑅𝑒𝑣-!./(𝑡) =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒-!./(𝑗) + 𝐶𝑎𝑟𝑏𝑜𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒(𝑗)

𝐶𝑃-!./
 (27) 



𝑈𝑛𝑖𝑡𝑅𝑒𝑣$%&',)*+(𝑡) =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒$%&',)*+(𝑗)

𝐶𝑃$%&',)*+
+ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒(𝑡) (28) 

Similarly, the annual variable cost is calculated as the accumulation of the power generation times 

the marginal cost. The annual variable cost per MW is calculated by Equation 30. The variable cost of 

wind power is ignored due to the extremely low marginal cost. 

𝑉𝑎𝑟𝐶$%&',)*+(𝑗) = ( 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒$%&',)*+(𝑡)
#120

#
×𝑀𝑎𝑟𝐶𝑜𝑠𝑡$%&',)*+(𝑡) ⋅ 𝑑𝑡 (29) 

𝑈𝑛𝑖𝑡𝑉𝑎𝑟𝐶$%&',)*+(𝑡) =
𝑉𝑎𝑟𝐶$%&',)*+(𝑗)
𝐶𝑃$%&',)*+

 (30) 

Figure 3 is a more detailed causality diagram to clarify the relationship among all the modules and 

identified the endogenous and exogenous variables of the model. 

 
Figure 3 a more detailed causality diagram based according to the modeling equations 

We choose Hokkaido as a case study to simulate the capacity changing. Hokkaido is isolated from 

the main state and only has few connections with the main grid, which means it more dependent on its 

own generation capacity to meet the demand. The initial installed capacity of each technology is the 

real data of Hokkaido in 2019. LNG capacity also includes a part of biomass thermal power plants 

which fit well into the flexible power characteristic. 

We assume that the initial state of the system is in equilibrium, and the lifetime of all power plants 

starts counting from the beginning of simulation time period. The real supply-demand data in 2019 

[19] is chosen as the input data of electricity demand as shown in Figure 4. We assume that the demand 

for each year in the future will be the same as in 2019. This is a very strong assumption that does not 

match the reality, but it helps us eliminate the less question-related factors from the complex reality to 

better focusing on the interactions among our main study targets. 



 

Figure 4 the real electricity consumption data of Hokkaido 2019 

Similarly, we use the real wind power data [19] and the installed wind power capacity of Hokkaido 

in 2019 to calculate the wind power factor as shown in Figure 5. We assume that the wind power factor 

for each year in the future is the same as in 2019. The excessive randomness will make the results 

from the model uninterpretable the data from real world with fixed fluctuations will improve the 

interpretability of the model and access better insight. 

 

Figure 5 the capacity factor of wind generation in Hokkaido 2019 

Since the Hokkaido Electric Power Company owns 87% of all thermal power plants in Hokkaido, 

we assume that the CO2 emission factor of Hokkaido is the same as Hokkaido Electricity [20]. The 

total CO2 emission value of the power department in Hokkaido 2019 is calculated based on the actual 

power consumption multiplied by the emission factor. The annual emission allowance is calculated 

based on the total emission in 2019, as shown in the figure6, the fixed value of emissions will be 

reduced every year until the emissions become zero in 2050. 



 
Figure 6 the emission allowance during the simulation period 

Compare to the capital-intensive thermal power plants, the size of a single investment in wind 

power is much smaller, thereby the same return rate will stimulate more diversified investors in the 

market, thereby we assume that the sensitivity coefficient of wind power is much higher than other 

technologies. The wind power receives continuous FIT subsidies, so it will only retire when life-

expired instead of decommissioning due to losses, so the sensitivity coefficient of decommission of 

the wind power is zero. We assume the expected return rate on investment of market participants 

cannot be lower than the interest rate. The detailed parameter as well as input data is shown in the 

table below: 

Table 2 Main assumptions and input data of case study [21-24] 
 Wind Coal LNG 

Initial Capacity [MW] 534 2520 3507 

Minimum size of generators set [MW] 5 100 200 

Construction time [yr] 1 3 3 

Sensitivity coefficient of new investment [-] 40 1 1 

Sensitivity coefficient of Decommission [-] - 1 1 

Wind capacity value factor [-] 0.236 1 1 

Mean Fuel Price in 2019 [$/ton] - 108.58 512.99 

Marginal Fuel Cost [$/MWh] - 35.84 67.14 

Emission Factor [ton-CO2/MWh] - 0.943 0.474 

Heat value[MJ/ton] - 25970 55010 

Heat effiency [-] - 0.42 0.5 

Fixed Cost [$/MWh] 2590476 2380952 1142857 

Maintance Cost [$/MW/yr] 2590 119047 57142 

Decommission Cost Ratio [-] 0.01 0.07 0.07 

Lifetime [yr] 20 40 40 



 

Table 3 the assumptions and input data of economic related coefficients of case study [21-24] 

Item Value 

Interest rate [-] 0.03 

Sensitivity coefficient of carbon price 1 

Sensitivity coefficient of capacity price* 130725.8 

Sensitivity coefficient of electricity price 10 

Sensitivity coefficient of decommission 1 

FIT [$/MWh] 95 

CO2 floor price [$/ton-CO2] 30 

Capacity price cap** [$/MW] 134647.6 

Electricity price cap [$/MWh] 1905 

Exchange rate [JPY/$] 105 

*the coefficient is calculated to ensure zero capacity price when total capacity are 

over 5% of requirement 

**the cap is the difference between fixed cost and expected revenue for a new LNG 

power plant 

In order to investigate the linkage between carbon pricing and capacity pricing, five scenarios are 

designed. The basic scenario, assuming that there is no capacity pricing nor carbon pricing in the 

electricity market. The capacity scenario, assuming that only capacity pricing exists in the electricity 

market. The carbon scenario assuming that only carbon pricing exists in the electricity market. The 

interaction scenario assuming that both capacity pricing and carbon pricing exist in the electricity 

market. The advance scenario assuming that high floor price carbon prices and flexible power source 

only capacity pricing, which means that all capacity contributes to the adequacy are counted, but only 

the capacity which provides flexibility are subsidized. The model simulates the long-term capacity 

changing, CO2 emission changing, carbon price changing, capacity pricing changing, and electricity 

pricing changing of all scenarios. The simulation period is from 2019 to 2050, with weeks as the time 

unit. The model is built in the python environment using BPTK-Py packages [25], which provided the 

basic modeling framework of System Dynamics model. 

 

Results 

Figure 7 shows the simulation results of the capacity change of coal power plants in five scenarios. 

It can be observed that without the introduction of the carbon price, coal power plant capacity will 

maintain in the range of 3000MW to 4000MW. The capacity scenario has the highest coal capacity, 

followed by the base scenario. By comparing the results of the interaction scenario and carbon scenario, 



the subsidy from capacity price has significantly weakened the emission reduction effect from the 

carbon price. Among all the scenarios, only the advance scenario achieved complete decommissioning 

of coal. This is due to the strong price signal generated by the carbon price with higher floor in the 

early stage, as well as cut the capacity subsidy of inflexible power source, which leads to the 

investment of coal stopped. As a result of coaction, coal is not subject to additional capacity subsidies 

and bears the high carbon price, thereby decommissioned early. 

 
Figure 7 The trajectory of coal power plants capacity changing 

Figure 8 shows the simulation results of the capacity change of LNG power plants in five scenarios. 

In all scenarios without capacity price, the capacity changing of LNG power plants show clear cyclical 

fluctuations, especially in the base scenario, where the maximum capacity is about 7 times the 

minimum. This reflecting the restraint of the capacity price on investment fluctuations. 

 
Figure 8 The trajectory of LNG power plants capacity changing 

Compared with the base scenario, the introduction of carbon prices reduced the installed capacity 

of LNG in the early period before the base scenario starts to enter the bust cycle, however, the advance 

scenario is an exception, it has the highest installed capacity of LNG at the end of the simulation period. 

This is because the higher floor carbon price changed the order of marginal costs of coal and gas, 

which promote the decommission of coal, and the gas has entered the market as a substitute. The point 



is that carbon price needs to be high enough to cover the marginal cost gap between coal and gas 

thereby internalizing the cost of emissions and correctly distinguish the price of coal and gas from the 

perspective of CO2 emissions. 

Nevertheless, except for the capacity scenario, all scenarios with capacity prices bring higher LNG 

capacity. It looks contradictory but the reason is that in the capacity scenario, the capacity subsidy 

guarantees the fixed output of coal power plants, thereby reducing the use of flexible power sources. 

The limited power generation space of LNG leads to the decrease of revenue and eventually capacity. 

From the results of the advance scenario, it shows that distinguish the subsidy of flexible power 

sources in the capacity price will promote each other with the high floor carbon price, which increases 

the capacity of flexible and relatively less emission LNG power plants. 

 

Figure 9 The trajectory of wind power plants capacity changing 

Figure 9 shows the simulation results of wind capacity change in five scenarios. Wind power has 

ensured revenue due to FIT subsidies, so its capacity steadily increases during the simulation period. 

Furthermore, since wind power also receives the auction revenue from the emission trading system, 

the wind power capacity in the scenario with carbon prices greatly improved. If we take a closer look 

by comparing the capacity of wind power and other fossil fuel power, during the simulation period, 

wind power can barely reach the same capacity as fossil fuels with FIT subsidy alone, only with the 

additional revenue from the carbon price, the installed capacity of wind power significantly can exceed 

either one of the fossil fuel power plants. 

Moreover, the growth rate of wind power in the early stage is significantly higher than that in the 

later stage. This is due to the fact that although the carbon price is higher in the late stage when the 

cap getting low, the carbon emissions are lower than it in the early stage, resulting in the subsidies 

derived from the emission trading system become less and less along with the cap decreases. The same 

reason also explains why the wind capacity in advance scenario is lower than the interaction scenario. 

In the advance scenario, carbon emissions are less, so the carbon price source subsidy for wind is less, 

which leads to the rapid introduction of wind power in the early stage, but the final value is slightly 



lower than the interaction scenario. 

 
Figure 10 The trajectory of total CO2 emission changing 

Figure 10 shows the simulation results of the CO2 emissions change in five scenarios. The capacity 

scenario has the highest CO2 emissions, even higher than the base scenario, due to its subsidies for 

fossil fuels. The advance scenario achieved about 65% of emission reductions compares with the 

beginning at the end of simulation period. This is due to the consistent incentive from high floor carbon 

price with flexibility focusing capacity price promotes the decommissioning of coal while retaining 

the LNG power plants to maintain the system's supply and demand balance.  

Comparing the carbon scenario, the capacity scenario, and the interaction scenario shows that the 

existence of the unreformed capacity price in the interaction scenario weakens the emission reduction 

effect from the carbon price. Although the wind capacity in the interaction scenario is higher than it in 

the advance scenario, capacity price and carbon price offsetting each other and end up with a large 

number of coal power plants, which squeezes the power generation of flexible gas resources with 

relatively lower carbon emissions, resulting in the scenario with highest wind capacity still cannot 

reduce CO2 emissions. 

 
Figure 11 The changing of carbon price 



Figure 11 shows the simulation results of carbon price change in three scenarios with carbon prices. 

The results of the three scenarios have similar trends, besides although the two scenarios have the 

same carbon floor price, the price of the interaction scenario is higher than the carbon scenario at the 

end of the simulation period. The reason is that when facing the same amounts of carbon allowance at 

the end, the mutual offset of the capacity price and carbon price leads to more CO2 emissions in the 

power mix of the interaction scenario, which causes an increase in carbon prices. 

 

Figure 12 The changing of capacity price 

Figure 12 shows the simulation results of capacity price change in three scenarios with capacity 

price. Since the capacity price will quickly drop to zero after the capacity reaches the requirement, the 

price shows scatter. Because the new investment capacity has a delay of construction time, the 

unsatisfied capacity requirement often takes four to five years to be reflected and then the capacity 

price starts to change. The advance scenario generates the most capacity price signal due to the massive 

promotion of LNG to replace the decommissioned coal. 

 

Figure 13 The changing of electricity price 

Figure 13 shows the simulation results of electricity price changes in five scenarios. Compare with 

the base scenario, the capacity prices in the capacity scenario significantly reduces the number of 

electricity prices spike. Scenarios with a carbon price are affected by carbon prices, the prices, 



especially spike prices, are higher than the base scenario. Similarly, compare to the interaction scenario 

and the advance scenario, the subsidy for flexible power sources has significantly reduced the number 

of electricity price spikes. Even if the carbon price is higher, the electricity price has remained at a 

relatively stable level. 

Since carbon prices are directly transmitted to the wholesale electricity market, the impact of 

carbon prices on wholesale electricity prices is more significant. Although the introduction of capacity 

prices reduces the number of electricity price spikes which may benefit the electricity retailers who 

face the risk of price changes, the cost of capacity subsidies is not directly reflected in the wholesale 

electricity price, and end-users will eventually bear it in the retail electricity price implicitly. 

 

Conclusions 

The increasingly complex designs of liberalized electricity market may cause unexpected side 

effects through the interactions among policy instruments during the energy system transition period. 

This study proposed that the design of capacity pricing needs to link with the carbon pricing, otherwise 

the offset of two mechanisms may lead to inefficiency and slow down the energy system transition. 

When the design of capacity pricing only focuses on fossil fuel power plants without any 

distinction between emissions or flexibility among different technologies, then the payment from 

capacity pricing will partially counteract the incentives from carbon pricing. Furthermore, the carbon 

prices with the lower floor cannot achieve the complete retirement of coal, which leads to the relatively 

high carbon emissions, bring more investment of VRE from allowance auction instead. However, the 

carbon price is not high enough to distinguish the emission gap between coal and LNG in the merit 

order mechanism, eventually, increasing VRE squeezed the low emission flexible LNG out of the 

market, reduced the reliability of the system. Nevertheless, in the case of flexibility technology 

focusing on capacity pricing alone with a high floor carbon price will bring out consistent incentives, 

diverting the capacity payment from coal power plant to more flexible and low emission LNG, thereby 

accelerate the coal power plants decommissioning and reduce CO2 emissions by 2050. 
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