
   
 

Overview 

Night storage heaters [4] are still used in Germany and facilitated in the past cheaper electrical energy during the 

night. In recent years no new installations were made due to higher costs of electrical energy compared to fossil fuels 

like natural gas and oil, which are commonly used for heating. Moreover, electric heating uses more primary energy 

compared to e.g. natural gas, due to the losses resulting from the energy conversion of electric power plants using 

fossil fuels. Nevertheless, night storage heaters are still in use in many apartments, which were built between the 1960s 

to 1980s. However, night storage heaters can facilitate and contribute some share of reducing greenhouse gas 

emissions by using electric power for heating in times of surplus renewable energy in the grid instead of using natural 

gas or other fossil fuels. Additionally, night storage heaters have the potential to allow demand-side-management of 

electrical energy. Hereby, explicit knowledge of room temperature profiles over time is mandatory. 

In this contribution, an approach of modeling temperature profiles and simulating the temperature over time is 

shown. The used data were derived from a laboratory test room. Several differential equations, which are based on 

thermodynamically principles, are used for modeling and parameter estimation is used to compute unknown 

parameters of the differential equations. Finally, the model computes the room temperature based only on the 

knowledge of electric power and the outside ambient temperature. Parameter estimation computes the maximum 

deviation of the test room temperature to the measured temperature to 0.96 Kelvin, and average deviation is calculated 

to 0.21 Kelvin. 

With the presented model of energy flow and temperature calculation considering a night storage heater, which 

is installed in a test room, the switch-on periods over a complete year and given outside ambient temperatures of 

Düsseldorf in 2017 are predetermined.  

In further investigations, additional constraints will be integrated in the model to compute the optimal electrical 

power switch-on points of time in order to reduce fluctuations in room temperature or minimize electricity 

procurement costs.  

Climate test environment and measurement setup 

For measuring the energy flow and temperature, a test room were built, which corresponds to a model of a living 

room equipped with a conventional electrical night storage heater, shown in Fig. 1. Built in drywall construction 

method, the test room is divided into two accessible rooms by a sand-lime brick wall as a model of a common outer 

wall. One of these rooms corresponds to the actual test area and the other one to a climate area for simulating different 

environmental conditions. The test area is prepared to analyze different charging strategies for night storage heaters. 

It is equipped with a four kilowatt electrical night storage heater, controlled by a charging control system. The climate 

area is equipped with a two kilowatt air conditioning unit providing a cooling range of -5 to 20 degrees Celsius, 

regulated by a programmable logic controller (PLC).  

 

Fig. 1: Test room view and setup 
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Temperature is measured by multiple resistance sensors in the test area and two resistance sensors in the climate 

area (Fig. 2). In addition, the surface temperature of the sand-lime brick wall, and the surface temperature of the night 

storage heater as well as the core temperature and the electrical power consumption of the night storage heater are 

measured. 

To reduce heat losses through the walls, ceiling and floor, they are insulated on test area side with glass wool 

mats (thermal conductivity 𝜆  = 0.4 W/mK, th = 80 mm) and on climate area side with polyurethane rigid foam panels 

(thermal conductivity 𝜆  = 0.2 W/mK, th = 160 mm). In addition, all walls are equipped with a steam barrier (0.125 

mm) on the warm air side to protect against water vapor diffusion and thus moistening of the insulation layers. Due 

to the different insulation of existing apartments which are equipped with night storage heater, a direct transfer of the 

model to real apartments is not possible and an individual parameter estimation for each apartment is required. 

 
Fig. 2: Test room’s schematically representation 

Reference Scenario 

The reference scenario describes a nine-day period with huge steps in average ambient air temperature from one 

day to the next, which is shown in Fig. 3. In general, huge steps in average ambient air temperature are difficult to 

handle by night storage heaters, especially, when an old charging control system is used. Those charging control 

systems calculate the energy demand for the next day based on the local 24-hour-average ambient air temperature of 

the previous day. Thus, major differences between the ambient air temperature of two consecutive days usually leads 

to false energy forecast for the electrical night storage heater. Modern charging control systems consider larger periods 

in past or even utilize weather forecast data to keep the error in forecast as small as possible. Such a charging control 

system is used in the present investigation. 

In general, the 24-hour-average ambient temperature differs from day to day up to six degrees Celsius referring 

to German Meteorological Service (DWD) weather data from Düsseldorf of the years 2009 to 2017 [2]. 

 
Fig. 3: Predetermined Ambient Air Temperature during nine Days Test Run 

For this investigation, the ambient air temperature will change from warm to cold after the third day and vice 

versa from day six to day seven of the nine-day period with about three days of persistence between. For the rates of 

change in temperature, the above mentioned weather data were analyzed and the local average maximum temperature 

range Δ𝑇 and average temporal gradient Δ𝑇/Δ𝑡 of weather changes were determined. The resulting course of ambient 

air temperature is shown in Fig. 3 with upper and lower bounds set to six and zero degrees Celsius. Regular peaks 

along the curve of ambient air temperature arise from defrosting ceiling cooling unit, which is started automatically 

about every four hours.  



Heating with night storage heaters can be restricted to certain time periods. In the last century, these charging 

release periods were situated in night times, when electrical power was cheaper, respectively there was a surplus of 

electrical energy in the power grid. As a default for heating in this given test scenario, charging release periods for the 

electric night storage heater was set from 10:00 p.m. to 6:00 a.m. 

With the given course of ambient air temperature, the measured average charging times amounts to approximately 

1 hour and 20 minutes by six degrees Celsius and about 1 hour and 30 minutes by zero degrees Celsius. The decreasing 

in temperature from six degrees Celsius to zero degrees Celsius in the night between day three and day four leads to 

a subsequent charging of about 30 minutes at the end of charging release. So the total time of charging in the night 

between day three and day four amounts to 1 hour and 50 minutes. In contrast, the increasing of temperature from 

zero degrees Celsius to six degrees Celsius in the night between day six and day seven leads to a significant shorter 

charging time in the following night of nearly 50 minutes in total. The charging releases at night results in a saw-tooth 

pattern of room temperature that is typical for operating with electrical night storage heaters. During the nine-day test 

run the fluctuations in room temperature are measured with approximately 3 Kelvin and moves within the range of 19 

degrees Celsius and 22 degrees Celsius. 

Methodology 

To compute the room temperature, a thermodynamically approach is applied using the Fouriers´s heat conduction 

law 

𝜕𝑇

𝜕𝑡
= 𝑎 ∙ ∇2𝑇 = 𝑎 ∙ div(grad 𝑇), (1) 

where 𝑇 is the temperature in Kelvin, 𝑡 is the time in seconds and 𝑎 is the thermal diffusivity in square meters per 

second. The system to be solved consists of several layers of solid and fluid respectively gaseous materials. This can 

be solved e. g. by a finite difference approach [5]. A numerical solution for large time scales is very difficult and time 

consuming, a relaxation of the given problem would increase the effort by orders of magnitude. Additionally, the 

material properties of all layers must be known exactly to compute 𝑎  in (1), which is usually difficult, as manufacturers 

of night storage heaters do not provide these data. This leads to the result, that classical thermodynamic approaches 

cannot be applied straight forward to our optimization problem, and a relaxed approach has to be used. Thus, isotropic 

conditions are assumed, which leads to thermal conductivity equation [3] 

�̇� = −𝑘 ∇𝑇 =  −𝑘 (𝑇1 − 𝑇2) with 𝑇1 > 𝑇2, (2) 

whereby �̇� represents the energy flux and 𝑘 denotes the material's conductivity in watts per Kelvin and meters. In (2) 

𝑇1 and 𝑇2 represents the temperatures in an one-dimensional coordinate space, which is shown in Fig. 4. Thus, it is 

considered, that in this given relaxed examination energy transfer takes place only in the illustrated x-direction, and 

no energy flow occurs in y- and z-direction. With parameters area 𝐴𝑖 heat transfer 𝑈𝑖 the thermal conductivity equation 

is rewritten to 

𝑚 𝑐 
𝑑𝑞

𝑑𝑡
= 𝑈1𝐴1𝑇1 − 𝑈2𝐴2𝑇2. 

Considering adiabatic conditions, our approach is based on the above thermal conductivity equations and can be stated 

with 

𝑑𝑇

𝑑𝑡
=
𝑈1𝐴1
𝑚 𝑐 ∆𝑆

𝑇1 −
𝑈2𝐴2
𝑚 𝑐 ∆𝑆

𝑇2⇔
𝑑𝑇

𝑑𝑡
= 𝑝1 ∙ 𝑇1 − 𝑝2 ∙ 𝑇2 with 𝑇1 > 𝑇 > 𝑇2, (3) 

where 𝑚 is the mass in (kg), 𝑐 the specific heat capacity in (J/kg K), 𝑈𝑖 the heat transfer coefficient in (W/m² K) and 

𝐴𝑖  the area in (m²). ∆𝑆 represents the change rate of entropy. In the right part of (3), parameters 𝑝1 und 𝑝2 summarize 

all unknown material properties and the presumed constant entropy change rate. The temperature 𝑇 lies in x-direction 

between 𝑇1 and 𝑇2. The exact position is unknown, but stays constant. Thus, the room temperature can be modelled 

as shown in Fig. 4. 

 
Fig. 4: One-dimensional heat transfer model 



Derived from (3), the test room temperatures can be modeled as a linear 8th order ordinary different equation 

(ODE), using the test room structure given in Fig. 2. 

 
𝑑𝑇Core
𝑑𝑡

= 𝑝1  ∙ 𝑞𝐼𝑛 − 𝑝2  ∙ ∆𝑇𝐴  (3) 

 
𝑑𝑇2
𝑑𝑡

= 𝑝3  ∙ ∆𝑇𝐴 − 𝑝4  ∙ ∆𝑇𝐵   

 
𝑑𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝑡
= 𝑝5  ∙ ∆𝑇𝐵 − 𝑝6  ∙ ∆𝑇𝐶   

𝑑𝑇Room
𝑑𝑡

= 𝑝7  ∙ ∆𝑇𝐶 − 𝑝8  ∙ ∆𝑇𝐷  

𝑑𝑇5
𝑑𝑡

= 𝑝9  ∙ ∆𝑇𝐷 − 𝑝10 ∙ ∆𝑇𝐸   

𝑑𝑇𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙
𝑑𝑡

= 𝑝11 ∙ ∆𝑇𝐸 − 𝑝12 ∙ ∆𝑇𝐹   

𝑑𝑇7
𝑑𝑡

= 𝑝13 ∙ ∆𝑇𝐹 − 𝑝14 ∙ ∆𝑇𝐺   

𝑑𝑇𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙
𝑑𝑡

= 𝑝15 ∙ ∆𝑇𝐺 − 𝑝16 ∙ ∆𝑇𝐻  

whereby ∆𝑇𝐴 to ∆𝑇𝐻 represents temperature gradients, which are causative for the energy transfer. This is a simplified 

model, because expansion of the space and wall due to temperature change and non-isotropic conditions are not taken 

into account. Moreover, this ODE is a linear model and does not model convective heat transfer nor radiation, which 

results in ODEs of third respectively fourth order. This model assumes thermal conduction as the predominant heat 

transfer method. In further research, a nonlinear heat transfer differential equation could be investigated to reduce this 

modelling error. 

In the given ODE system (4) surface and room temperature are coupled directly due to the direct temperature 

influence of the night storage heater’s surface temperature to the average room temperature. All other temperature 

couplings are done with an additional state variable in between. Thus, this temperature coupling, which is using two 

differential equations, can be understood as an LTI system of second order, which is able to store thermal energy. 

 
Fig. 5: Test Room with Placement of Temperature and Heat Transfer Measuring Points 

The reduction of unknown or uncertain parameters can be done by reformulation the ODE system (4) the same 

way as in the right hand side of (3). With the states 𝑥1 = 𝑥𝐶𝑜𝑟𝑒, 𝑥3 = 𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒 , 𝑥4 = 𝑥𝑅𝑜𝑜𝑚 , 𝑥6 = 𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙  and 𝑥8 =

𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙  and facilitating (4), the heat transfer and its temperature coupling is derived by 

�̇�𝐶𝑜𝑟𝑒 = �̇�1 = 𝑝1 ∙ 𝑃𝐸𝑛𝑒𝑟𝑔𝑦(t) − 𝑝2(𝑥𝐶𝑜𝑟𝑒 − 𝑥2) (5) 

�̇�2 = 𝑝3(𝑥𝐶𝑜𝑟𝑒 − 𝑥2) − 𝑝4(𝑥2 − 𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒)  

�̇�𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = �̇�3 = 𝑝5(𝑥2 − 𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒) − 𝑝6(𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑥𝑅𝑜𝑜𝑚)  

�̇�𝑅𝑜𝑜𝑚 = �̇�4 = 𝑝7(𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑥𝑅𝑜𝑜𝑚) − 𝑝8(𝑥𝑅𝑜𝑜𝑚 − 𝑥5)  

�̇�5 = 𝑝9(𝑥𝑅𝑜𝑜𝑚 − 𝑥5) − 𝑝10(𝑥5 − 𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙)  

�̇�𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙 = �̇�6 = 𝑝11(𝑥5 − 𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙) − 𝑝12(𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙 − 𝑥7)  

�̇�7 = 𝑝13(𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙 − 𝑥7) − 𝑝14(𝑥7 − 𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙)  

�̇�𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙 = �̇�8 = 𝑝15(𝑥7 − 𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙) − 𝑝16(𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙 − 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡(t))  

This ODE system can be rewritten in state-space representation  

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡), 𝑥(0) = 𝑥0, 𝑥 ∈ ℝ
8, 𝐴 ∈ ℝ8×8, 𝐵 ∈ ℝ8×2, 𝑢 ∈ ℝ2. (6) 



Hereby, system matrix 𝐴 and input matrix 𝐵  consists of parameters 𝑝1 to 𝑝16, and input vector 𝑢(𝑡) =

(𝑃𝐸𝑛𝑒𝑟𝑔𝑦(t); 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡(t))
𝑇
 contains time variant signals of electrical power and ambient temperature. The solution of 

(5) can be derived from  

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0  + 𝑒
𝐴𝑡∫ 𝑒−𝐴𝜏

𝑡

0

𝐵 𝑢(𝜏)𝑑𝜏 (7) 

but solving the integral on the right hand side is very difficult and cannot be done without further investigation in the 

wide field of control theory. Thus, this system is solved numerically using ODE45-solver of Matlab [7,8]. 

The initial temperatures for solving (5) are set to 

𝑥0 = 𝑥(0) =

(

 
 
 
 
 

104.3113403320
98.1622664268
29.6006927490
20.1605898539
17.6835182491
14.9594917297
12.5007693350
8.2465286255 )

 
 
 
 
 

°𝐶.  

Solving ODE (5) leads to numerical solutions 𝑓1 to 𝑓5, which represent time discrete series of temperatures of 

𝑥𝐶𝑜𝑟𝑒(𝑡k; 𝑝) = 𝑥1(𝑡k; 𝑝) = 𝑓1(𝑡k; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡) (8) 

𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑡k; 𝑝) = 𝑥2(𝑡k; 𝑝) = 𝑓2(𝑡k; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡)  

𝑥𝑅𝑜𝑜𝑚(𝑡k; 𝑝) = 𝑥3(𝑡k; 𝑝) = 𝑓3(𝑡k; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡)  

𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡k; 𝑝) = 𝑥4(𝑡k; 𝑝) = 𝑓4(𝑡k; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡)  

𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(𝑡k; 𝑝) = 𝑥5(𝑡k; 𝑝) = 𝑓5(𝑡k; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡)  

depending on the unknown parameters 𝑝1 to 𝑝16 and the known time variant input data 𝑃𝐸𝑛𝑒𝑟𝑔𝑦(t) and 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡(t). 

A least squares method [1] is applied for estimating the sixteen parameters by fitting ODE solutions to the 

experimental data measured during the nine-day test run. In general, the parameter estimation is gathered be applying 

an unconstrained optimization problem [7] as 

𝑝∗ = argmin
𝑝

∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑘) − 𝑥𝑀𝑜𝑑𝑒𝑙 (𝑘; 𝑝))
2

𝑘𝑚𝑎𝑥

𝑘=1

, (9) 

whereby 𝑘max reperesents the count of all measurements and 𝑘 itself the kth measurement. Empirical data is stored in 

𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑘) and the model output 𝑥𝑀𝑜𝑑𝑒𝑙(𝑘; 𝑝) depends on the unknown parameters 𝑝. The given problem of 

modeling the temperatures an energy flow on a night storage heaters provides five temperature time series and an 

unknown parameter set with 𝑝 ∈  ℝ16. Thus, parameter estimation is noted with 

𝑝∗ = argmin
𝑝

∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝐶𝑜𝑟𝑒(𝑡𝑘) − 𝑥𝐶𝑜𝑟𝑒 (𝑡𝑘; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡))
2

𝑘𝑚𝑎𝑥

𝑘=1

 (10a) 

+ ∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑡𝑘) − 𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒 (𝑡𝑘; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡))
2

𝑘𝑚𝑎𝑥

𝑘=1

 (10b) 

+2 ∙ ∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝑅𝑜𝑜𝑚(𝑡𝑘) − 𝑥𝑅𝑜𝑜𝑚 (𝑡𝑘; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡))
2

𝑘𝑚𝑎𝑥

𝑘=1

 (10c) 

+ ∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡𝑘) − 𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙 (𝑡𝑘; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡))
2

𝑘𝑚𝑎𝑥

𝑘=1

 (10d) 

+ ∑ (𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(𝑡𝑘) − 𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙 (𝑡𝑘; 𝑝, 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡))
2

𝑘𝑚𝑎𝑥

𝑘=1

 (10e) 

which represents the computation of the Gaussian 𝐿2 norm summed up over all five measurement time series and over 

all temperature measuring points of time 𝑘𝑚𝑎𝑥. The room temperature is weighted with a double rate, because this is 

the target model output for latter computations.  



The target function (right hand side of (10)) is neither a linear nor a convex function, thus, identifying the optimal 

parameter set providing the guaranteed lowest target function output of the least squares computation was not achieved 

in this contribution. Identifying a parameter set providing a sufficient low target function output was reached by 

computing stepwise a smaller ODE system, which also reduce the parameter set to the size of four parameters. Thus, 

the first parameter estimation for 𝑝1 to 𝑝4 is computed by applying the ODE system 

�̇�𝐶𝑜𝑟𝑒(𝑡) = �̇�1(𝑡) = 𝑝1 ∙ 𝑃𝐸𝑛𝑒𝑟𝑦(t) − 𝑝2(𝑥𝐶𝑜𝑟𝑒(𝑡) − 𝑥2(𝑡))  

�̇�2(𝑡) = 𝑝3(𝑥𝐶𝑜𝑟𝑒(𝑡) − 𝑥2(𝑡)) − 𝑝4(𝑥2(𝑡) − 𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒(t))  

to (10a). Hereby the given measurements of the surface temperature 𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒(t) are used as one of the time variant 

parameters. The same approach is applied for identifying  𝑝5 and 𝑝6 using ODEs 

�̇�𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) = �̇�3(𝑡) = 𝑝5(𝑥2(𝑡) − 𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑡)) − 𝑝6(𝑥𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) − 𝑇𝑅𝑜𝑜𝑚(t))  

and computing the optimal parameters with (10b). This method is repeated for 𝑝7 to 𝑝9 using the ODE system 

�̇�𝑅𝑜𝑜𝑚(𝑡) = �̇�4(𝑡) = 𝑝7(𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒(t) − 𝑥𝑅𝑜𝑜𝑚(𝑡)) − 𝑝8(𝑥𝑅𝑜𝑜𝑚(𝑡) − 𝑥5(𝑡))  

�̇�5(𝑡) = 𝑝9(𝑥𝑅𝑜𝑜𝑚(𝑡) − 𝑥5(𝑡)) − 𝑝10(𝑥5(𝑡) − 𝑇𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(t))  

with (10c). Moreover, the parameters  𝑝11 to 𝑝14 are identified with 

�̇�𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡) = �̇�6(𝑡) = 𝑝11(𝑥5(𝑡) − 𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡)) − 𝑝12(𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡) − 𝑥7(𝑡))  

�̇�7(𝑡) = 𝑝13(𝑥𝑖𝑛𝑛𝑒𝑟𝑊𝑎𝑙𝑙(𝑡) − 𝑥7(𝑡)) − 𝑝14(𝑥7(𝑡) − 𝑇𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(t))  

together with (10d). And, finally, the last two parameters 𝑝15 and 𝑝16 are computed with 

�̇�𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(𝑡) = �̇�8(𝑡) = 𝑝15(𝑥7(𝑡) − 𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(𝑡)) − 𝑝16(𝑥𝑜𝑢𝑡𝑒𝑟𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡(t))  

and a parameter estimation using (10e). With this, the best computed parameter set 𝑝∗ is derived from the above 

described stepwise local optimization algorithm provided by Matlab’s Optimization Toolbox [3] with 

𝑝∗ =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

7.711390906572707 ∙ 10−6

5.070895673299722 ∙ 10−4

1.279915574253624 ∙ 10−2

3.179727995259820 ∙ 10−4

1.024185195967078 ∙ 10−4

7.886733957407758 ∙ 10−4

2.610319575218490 ∙ 10−5

3.151320103865306 ∙ 10−4

1.273220737747616 ∙ 10−4

3.988458075696419 ∙ 10−5

6.254330656917015 ∙ 10−4

7.956221589171986 ∙ 10−4

1.011355181029409 ∙ 10−4

7.867464077439637 ∙ 10−5

1.273220737747612 ∙ 10−3

2.017918879756508 ∙ 10−3)

 
 
 
 
 
 
 
 
 
 
 
 
 

.  

The time series of core, surface, room, inner and outer wall temperature is now computed with the above identified 

parameter set. Simulations of these temperatures over nine days are plotted in Fig. 6. 

We have to express, that this result is not the global minimum for the nonlinear optimization problem in (10). The 

here given parameter set could be a local minimum. There are some methods to solve this problem globally. An 

interval arithmetic approach [6] could be applied to compute the global optimum and its optimal parameter set. 

A direct comparison of the measured room temperature and the modeled room temperature is shown in Fig. 6. At the 

beginning the modeled temperature drops due to the predetermined initial conditions. The aberration of the modeled 

temperature from the measured could be caused by the above mentioned modelling errors. Even it looks flawed in the 

first hours of the nine-day simulation period, this temperature model results from best found parameter set.  



 
Fig. 6: Modeling Results versus Temperature Measurement 

The repeated increase in the course of measured room temperature at noon results from additional heat input from 

the sun, which heats up the technical center in which the test room is located. Here, if the temperature in the technical 

center deviates by more than three Kelvin from the test room’s temperature, an effect on the temperature in test room 

is visible. This second order measurement error has meanwhile remedied by an additional air conditioning unit in the 

technical center and the previous investigation will be repeated in further test runs. 

Results 

The computed results of a nine-day simulation period are shown in Fig. 6 and Fig. 7, whereas the room 

temperature maximum deviation is 0.96 Kelvin and the average deviation is 0.21 Kelvin (see Fig. 7). This represents 

an excellent result, considering the length of its underlying nine-day simulation period, disturbances, the relaxed 

modelling approach ans its modelling errors. 

Furthermore, the room temperature is simulated for two months with the specification of ambient air temperature 

for January of 2017 as a winter month and July of 2017 as a summer month. A permissible lower limit of the room 

temperature of 20 degrees Celsius was defined as a constraint for a 15-minute look-ahead algorithm, which sets a 

charging signal, if the room temperature could drop below the given lower limit starting from the actual temperature. 

The computed results are shown in Fig. 8 and Fig. 9. In both cases the night storage heater is charged at regular 

intervals, whereby the lower limit room temperature of 20 degrees Celsius is never violated. Charging the night storage 

heater often occurs, although it would not be necessary with the given limit. Thus, the room temperature often rises 

unnecessarily and results in a wide fluctuation range. The definition of a second upper limit for the room temperature 

could avoid this charging events. 

 
Fig. 7: Detailed Room Temperature Measurement and Modeling Results 



 

Fig. 8: Simulation over 31 Days in January with Ambient Temperatures of 2017  

With the two limits, an upper and a lower bound for room temperature, it would be possible to keep the 

temperature within a small temperature range. In this way, additional heat input can be prevented and in order to that 

maybe energy saved. 

 
Fig. 9: Simulation over 31 Days in July with Ambient Temperatures of 2017 



During the summer months, in general it is not necessary to operate night storage heaters, because the 24h-hour-

average ambient air temperature is located above a recommended limit for heating, which is usually set to 18 degrees 

Celsius. In this summer month simulation, there are some days in which the room temperature could drop below the 

lower bound, which can be seen in Fig. 8. For this reason, the night storage heater charged a few times in the summer 

month. In July the problem with the rising room temperature above the defined limit due to charging is less pronounced 

than in winter month and occurs only by the additional heat input from rising ambient air temperature. 

Conclusions 

In this contribution a method is presented to simulate the temporal room temperature solving ODEs. Parameter 

estimation provides unknown parameters of the ODE-model by fitting the model output to real measurement data, 

whereby the given electric power consumption and outside ambient temperature are time variant data series. 

With the presented method the room temperature for a given test room is computed depending on night storage 

heater’s energy supply and predetermined outside ambient temperature, which can be provided by meteorological 

service providers. This facilitate the computation of controlled energy supply periods to comply with the temperature 

requirements in the test room. 

In a second step this method enables the possibility to detect and define optimal charging times. It allows to 

operate night storage heaters more flexible and even offers the opportunity to integrate them into the energy market. 

Following this, it is possible e. g. to charge the night storage heaters, if a surplus of renewable energy is available, or 

not to charge them if an overload in the power grid threatens. Finally, this method of temperature modelling could 

also be applied to other scheduled loading and unloading problems or energy storage challenges.  

In further research room temperature will be restricted to lower an upper bounds by controlling the electrical 

power input. Thereby the charging releases will be extended to the entire day instead of the conventional charging 

releases for electric night storage heaters at night like shown in the first simulation for one winter and one summer 

month with set lower limit. A further step will be the additional integration of electricity prices to determine optimal 

charging times taking into account to the electricity procurement costs. 
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