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Complexity in energy systems is increasing. In this context, I ask whether more complex models are superior 

per se to provide a sound basis for decision making processes. I start with comparing two modeling 

approaches to assess the security of electricity supply with different levels of complexity as a case study: 

deterministic capacity balances and probabilistic simulations. Then, I abstract the findings by introducing a 

mathematical framework to determine the optimal level of detail for a modeling approach. Using this 

framework, I demonstrate that the optimal model design is not reached by ever increasing model complexity, 

but by maximizing the net benefit of a model considering the interpreters of the results. Further, I provide a 

stepwise approach using guiding questions to achieve this optimum. I summarize my findings as complexity 

dilemma: the more sophisticated the prevailing research question, the greater the need to depict the details 

of the underlying system, leading to more complex modeling approaches, but the less stable (well-

conditioned) and traceable the model outcome is, due to prevailing uncertainties regarding input data, and 

the more costly sensitivity analyses become. 
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1 Introduction 

The results of energy system analyses are often used to provide a sound basis for political 

discussions and to enable evidence-based decisions. According to Bale et al. (2015), current 

developments in energy systems increase the complexity of both energy systems and energy 

system models, resulting in the need to transfer insights from the field of complexity science to 

energy system modeling. Within the field of tension between complexity and accuracy, the 

appropriate level of modeling complexity needs to be chosen with care. There is the need not to 

exaggerate simplifications (Stirling, 2010), but also to be sparse with resources leading to the 

overall goal of parsimony in energy system modeling (DeCarolis et al., 2017). Further, studies 

from different fields of research have revealed that modeling with a higher degree of complexity 

does not necessarily lead to more accurate model results (see Orth et al., 2015; Li et al., 2015; 

Priesmann et al., 2019). 

In this context, I ask whether more complex modeling approaches to analyze energy systems 

provide additional benefits for the interpreters of results per se or if they come with drawbacks that 

need to be born in mind when applying the models and interpreting the results. The motivation 

behind this is the experience that modelers in the field of energy system modeling tend to keep 

expanding the complexity of their models to depict more details of the modeled energy systems 

while decision makers from policy and industry tend to rely on the results of ever more complex 

models – often even without asking for potential limits.1 I am challenging this view. 

To provide tangible insights and to make my trains of thought traceable for the reader, I start by 

comparing two modeling approaches to assessing security of electricity supply at different levels 

of complexity as a case study: rather straightforward deterministic capacity balances and quite 

complex probabilistic simulations. By implementing, applying, and comparing both models, I 

                                                

1 A recent example for this is the call by European Commission (2016) to solely rely on probabilistic methods 
for the assessment of security of electricity supply on a European level. 
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create the necessary foundation for the next step: abstracting the findings from the field of security 

of supply assessments to more general statements regarding energy system modeling and 

introducing a mathematical framework to derive the optimal Level of Detail (LoD) for modeling 

approaches. 

Overall, my research goal is to generalize findings from the field of security of supply assessments 

and to offer answers to the following guiding research questions: 

(1) What are the benefits and drawbacks of more complex models to provide policy-relevant 

insights in the field of energy sciences?  

(2) How can an optimal level of detail for an energy system model be defined? 

Thus, my research addresses the call by Bale et al. (2015) to transfer insights from complexity 

science to the field of energy system analysis. As the optimal model design strongly depends on 

the prevailing research questions, I provide a stepwise approach to reach the optimal level of 

detail for individual applications. 

Assessing the security of electricity supply in central Europe represents a particularly interesting 

case study as a starting point to assess the complexity of energy system models. One reason for 

this is that discussions on future levels of security of electricity supply in many central European 

countries such as Germany are currently gaining momentum due to a domestic nuclear phase-

out by 2023 and planned reductions in capacity of coal-fired power plants over the next 18 years, 

combined with capacity reductions in neighboring countries (Nolting and Praktiknjo, 2020). 

Another reason is the complexity of the real-world system that can be concluded from its high 

degree of variety (the amount and kind of elements in a system), connectivity (amount and kind of 

relations between elements), and dynamics (unpredictability) according to complexity 

management literature (Klabunde, 2013, p. 6)2. 

                                                

2 The roots of complexity management in economics lie in the so-called St. Galler Managment Concept by 
Schuh et al. (1998). 
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For the case study, I define future scenarios for the analysis of security of electricity supply in 

Germany, while accounting for import capacities from neighboring countries: In the base scenario, 

the security of supply situation in Germany in 2023 is examined, taking into account the decision 

to phase-out nuclear energy. In the reduction scenario, additional reductions in coal-fired power 

plant capacities of 8 GW are included, reflecting current reduction plans over the course of 

decarbonization. The comparison of these two scenarios and the investigation of the impact of 

uncertain input data allows a comprehensive and tangible evaluation of the methods and provides 

the necessary basis to abstract to more general conclusions regarding the efficient complexity of 

modeling approaches. The remainder of this paper is structured as follows. In section 2, I provide 

a literature review on relevant definitions of complexity and the current state of the art regarding 

the assessment of security of supply. In section 3, I briefly introduce the methods of conducting 

deterministic capacity balances and probabilistic simulations. In section 4, I summarize central 

assumptions and input data for the comparison. The results of both methods are demonstrated in 

section 5. Then, I discuss the influence of uncertain input data in section 6. In section 7, the 

findings of the model comparison are summarized and an abstract mathematical model to define 

the optimal level of detail as well as a guideline to achieve this level are introduced. Section 8 

concludes the paper and provides policy recommendations. 

2 Literature background 

The literature section is organized in two sub-sections: First, I provide a short overview of relevant 

literature regarding complexity in energy system modeling. Second, I summarize recent studies 

focusing on the assessment of security of electricity supply. 

2.1 Complexity in energy system modeling 

The goal of this section is to shed light on the current state of the art regarding research on 

complexity and to carve-out possibilities for its transition to the field of energy sciences. Therefore, 
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I will introduce relevant terms from system theory, then identify energy systems as special kind of 

systems, and finally summarize recent literature on complexity3 in energy system models. 

Literature on general system theory (see e.g. Bertalanffy, 1950; Straussfogel and Von Schilling, 

2009) defines systems as complexes of interacting elements and demonstrates that a system 

cannot be described by its elements alone. Today, this property is referred to as emergence. In 

his Nobel lecture, Laughlin (1999) states that by looking at individual elements of systems, the 

behavior of the overall system is in many cases not recognizable and thus the physical reductionist 

idea is “wrong a great deal of time, and perhaps always” (Laughlin, 1999).  

 

Figure 1: Illustration of modeling process as abstraction from the underlying system 

In the view of system theory, energy systems represent one particular category of systems. As 

experiments on energy systems themselves are often not possible or only possible at very high 

cost, energy system models are tools that are frequently used to analyze the systems’ behavior.4 

As has been argued by Bale et al. (2015), energy system models need to meet the requirements 

of scientific methods to provide insights in the system under investigation: they need to be 

purposeful, repeatable, unbiased, and make a novel contribution. Overall, energy system models 

                                                

3 Complexity needs not to be mistaken by the term complicated. While the latter mainly refers to the size of 
a model (e.g., measured by the number of variables and equations), complexity is a much more 
comprehensive concept.  

4 For an overview on different types of energy system models and a possible categorization, see e.g. 
Winkelmueller (2006), Ma and Nakamori (2009), Lund et al., (2017), Subramanian et al. (2018), and  Ridha 
et al., (2020). 
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are an attempt to serve a purpose (i.e. answer a specific research question) by representing the 

most relevant parts of the analyzed systems and introducing necessary simplifications. Hence, 

the model tries to depict the emergent behavior of the energy system under investigation (i.e., 

output variables) and its dependence from external circumstances (i.e., input variables). Figure 1 

illustrates this relationship. 

When abstracting from the original system to energy system models, a trade-off between the 

complexity of the modeling approach and the accuracy of results arises. This trade-off has, e.g., 

been analyzed by Bale et al. (2012) leading to the conclusion that complexity also influences the 

communicability of results to a non-scientific audience (e.g., policy-makers). Additionally, some 

recent studies analyzed the trade-off between accuracy and complexity of energy system models 

with a particular focus on optimization models (DeCarolis et al., 2017; Priesmann et al., 2019). 

These studies did not find a general superiority of more complex models. This is in line with 

findings from other fields of research that have demonstrated overfitting in cases where input data 

is of poor quality (Li et al., 2015; Orth et al., 2015). Another direction of research focuses on finding 

optimal solutions within the trade-off between computation time (as proxy for model complexity) 

and accuracy of results (Pollok and Bender, 2014).  

Hence, there is some literature on complexity in energy system models. However, a concise 

methodological comparison in the field of assessing security of electricity supply as well as an 

abstract mathematical model and a systemic guideline to define and reach the optimal Level of 

Detail (LoD) have not been published to the best of my knowledge. Hence, the prevailing work 

constitutes a novel contribution. 

2.2 Assessments of security of electricity supply 

Having introduced basic principles of complexity in energy system modeling, I will now focus on 

literature regarding the assessment of security of electricity supply, as this lays the basis for the 

model comparison to be made as a first step before abstracting to a more general level. In 
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principle, two approaches can be distinguished: On the one hand are rather straightforward 

deterministic capacity balances between secured feed-in power and electricity load during the 

hour of peak load. On the other hand, complex probabilistic simulations in hourly resolution are 

used to determine key figures of supply security under consideration of stochastic influences on 

(1) the availability of fossil power plant blocks, (2) the fluctuating feed-in of renewables, and (3) 

electricity load. Both approaches have been applied in various studies by consulting companies, 

research institutions and transmission system operators (TSOs) in different contexts. Table 1 

provides an overview of existing studies, methods used and core results achieved. Figure 2 

summarizes the essential characteristics and common implementations of the two model classes. 

Here, it can be seen that deterministic capacity balances represent rather straightforward, top-

down models to derive non-probabilistic key figures such as capacity margins. They are usually 

conducted for one hour per year (i.e. the hour with the highest electricity load) and consider only 

one (often worst-case) weather situation. On the other hand, probabilistic simulation models 

represent rather complex, bottom-up models that are used to calculate stochastic key figures such 

as expected loss of load durations per year. They are commonly performed in hourly resolution 

and reflect different weather situations (so-called historic weather years5). 

From the sheer number of studies, the range of different and often opposing key-findings and the 

heterogeneity of the authors and principals, it can be concluded that there is a considerable need 

for a structured evaluation of the methods used. It thus represents an interesting case study and 

starting point for the investigation of complexity in modeling. Hence, my work contributes to the 

existing gap of a comprehensive complexity comparison for existing approaches.

                                                

5 A weather year represents the meteorological conditions in an area and is used to calculate weather 
dependent electricity load and feed-in profiles. See e.g. Behm et al. (2020). 
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Table 1: Summary of literature review on recent studies in the field of assessing the security of electricity supply 

Reference Methodology Geographical scope Time horizon Key findings 

Matthes et al., 2012 Deterministic capacity 
balance 

Germany and neighboring 
countries 

2020, 2030 Focused capacity markets  are necessary to 
ensure security of supply 

Frontier economics and 
Formaet Services, 2014 

Probabilistic simulation Germany and neighboring 
countries 

2013-2035 Energy Only Markets can guarantee security of 
supply in central Europe 

entso-e, 2015 Deterministic capacity 
balance 

European Union 2016, 2020, 2025 High share of RES increases pressure on security 
of supply 

Heddrich and Lenck, 
2015 

Deterministic simulation 
(Power2Sim model) 

European Union 2023 It is not necessary to maintain power plant 
capacities as a reserve 

Consentec and r2b 
energy consulting (2015) 

Probabilistic simulation Germany and neighboring 
countries 

2015, 2025 Security of electricity supply is at high levels in 
future scenarios for 2025 

Hobohm et al., 2015 Probabilistic simulation Central Europe (PLEF region) 
and neighboring countries 

2009-2014  
(ex-post),  
2030 (ex-ante) 

International dependency of security of supply 
increases 

Gils et al., 2016 Probabilistic simulation Germany and neighboring 
countries 

2020, 2023, 2025 Supply shortages in Northern Germany from 2023 
at the latest, in Southern Germany from 2025 at 
the latest 

entso-e,  2017 Probabilistic simulation 
(Monte-Carlo) 

European Union 2020, 2025 International dependency of supply security, supply 
shortages are expected in Germany in 2025 

Agora, 2017 Deterministic capacity 
balance 

Germany 2020, 
2023 

Security of supply in Germany is not affected if the 
20 oldest lignite-fired power plants are shut down 

TSOs in the Pentalateral 
Energy Forum, 2018 

Probabilistic simulation Central Europe (PLEF region) Winter 2018/19 
and winter 
2023/24 

In winter 2023/24 the security of supply in 
Germany, Luxembourg and the Netherlands is at 
risk 

German TSOs, 2018 Deterministic simulation European Union 2018/19 and 
2020/21 

There is a need for grid reserve beyond 2020  

entso-e, 2018 Probabilistic simulation 
(Monte-Carlo) 

European Union 2020, 2025 Supply interruptions are to be expected in central 
Europe in capacity reduction scenarios 

Hufendiek et al., 2018 Probabilistic simulation Germany (divided into North and 
South) and neighboring countries 

2025 Electricity supply in Germany in 2025 is secured, 
but Southern Germany will depend on imports 

BUND, 2018 Deterministic capacity 
balance 

Germany and European 
Reserves 

2017, 2020, 2023 Significantly accelerated coal phase-out in 
Germany is possible without endangering the 
security of supply 

Guerrero-Mestre et al., 
2018 

Probabilistic simulation 
(Monte-Carlo) 

European Union 2025 No supply shortages are expected in most 
European countries; only Finland, Greece and 
Ireland will face problems 
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Figure 2: Summarizing comparison of modeling approaches. For references, please see Table 1. 

3 Methods 

Having identified existing research gaps, I now introduce the two different methods to assess 

security of electricity supply that I use as a starting point for comparing complexity.  Here, I provide 

only short introductions to the methods as the focus of this study is to investigate the complexity 

of the modeling approaches and to derive optimal levels of complexity rather than introducing two 

methods for assessing security of electricity supply. For a more comprehensive model description, 

see Nolting and Praktiknjo (2020). While my study is mostly based on insights form the 

assessment of security of supply, I will generalize these findings in section 7 and introduce an 

abstract mathematical framework to approach optimal levels of complexity. 

3.1 Deterministic capacity balance 

To conduct a deterministic capacity balance, the available domestic electricity supply and the 

import potential during peak load hour are summed up and compared to the electricity load during 

this hour. The key indicator, the Remaining Capacity (RC), can then directly be determined as  

Deterministic capacity balance

 Top-down approach, i.e. the modeling is based on a high 

emergence level of the system behavior.

 Low model complexity, i.e. effort and costs for 

implementation and computing time are negligible.

 Calculated key figures of supply security:

• Reliable Available Capacity (RAC): Proportion of 

the installed capacity that is available to cover load 
at peak load.

• Remaining Capacity (RC): Difference between 

RAC and peak electricity load. This surplus is 

available to cover unexpected loads and to 

compensate for power plant outages that have not 
been accounted for.

• Adequacy Reference Margin (ARM): Percentage 

of installed capacity that must always be available 

to ensure security of electricity supply.

 Common approach:

• Focus on peak load hour, which is defined in 

many studies as the 19th hour of the third 

Wednesday in January.

• Consideration of one (worst-case) weather year.

Probabilistic simulation

 Bottom-up approach, i.e. the modeling starts with sub-

elements of the overall system.

 High model complexity, i.e. significant effort and cost for 

implementation as well as long computing times despite 

frequent use of high-performance computers
.

 Calculated key figures of supply security:

• Loss of Load Probability (LoLP): Probability of 

load shortfall during the examined hour.
• Loss of Load Expectation (LoLE): Load shortfall 

duration in hours to be expected during the 

scenario year under consideration.

• Expected Energy not Served (EEnS): Amount of 

energy demand in MWh that is expected not to be 
covered during a given year.

 Common approach:

• Consideration of 8,760 hours per scenario year.

• Analysis of different weather years.
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difference between demand and supply side. A positive sign indicates that excess power is available, 

whereas a negative sign indicates a supply shortage during peak load hour.  

Although called deterministic capacity balances, this method relies on input from probabilistic 

assessments: an indirectly considered significance level results from the determination of the share of 

installed capacity per generator type that can be assumed to be available during peak load hour (so-

called capacity credit). For the calculation of the capacity credits, a significance level 𝛼 = 95% is 

commonly used. The capacity credit per generator type at this significance level is again derived from 

probabilistic analyses, such as Monte Carlo simulations of power plant availability. Portfolio effects must 

be taken into account, as the joint failure of many small generation units is less likely than the non-

availability of one large unit. Using 𝛼 = 95%, I derive the capacity credits as shown in Table 2. 

Table 2: Capacity credit per generator type, i.e. the share of installed capacity that is available during peak load hour at a 

significance level of 𝛼 = 95% 

Nuclear Natural gas 
Distributed 
generation 

Hard coal Lignite Oil Waste 
Other fossil 

fuels 

0.95 0.91 0.80 0.91 0.92 0.95 0.86 0.93 

Run-of-
the-river 

Hydro pump 
storage 

Wind Photovoltaics Biomass 
Battery 
storage 

0.30 0.80 0.07 0.00 0.65 0.50 

As can be seen in Table 2, the share of photovoltaics that are available to cover peak load emerges to 

be 0%. This is due to the fact that the peak load hour in most central European countries occurs after 5 

p.m. in the months of November, December, or January. Therefore, no yield from solar generation units 

is expected. The available contribution of wind turbines during this time is 7% of the installed capacity.  

To account for import potentials, national capacity balances are conducted for all central-European 

countries with direct electrical connections at the time of German peak load. This procedure leads to 

national balances shown in Figure 3. When calculating the import potential in Germany, the bilateral 

interconnection capacities (Net Transfer Capacities, NTCs) were taken into account (entso-e, 2018). 
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Figure 3: National capacity balances in GW as well as secured import capacity for Germany during peak load hour taking into 
account bilateral Net Transfer Capacities (NTCs) 

3.2 Probabilistic simulation model 

For the probabilistic assessment of security of electricity supply, (1) the distribution function of the 

availability of power plant capacities and (2) the residual load (i.e. the difference between electricity load 

and feed-in of renewable energies) are determined in hourly resolution. From the intersection of the 

curve of the distribution function with the residual load, the probability of covering the electricity load can 

be determined for each hour of the year. This relationship is illustrated in Figure 4. In the example shown, 

the probability of covering the load is 80%. The Loss of Load Probability (LoLP) is defined as the counter 

probability to this and emerges as 20%, here. 

 

Figure 4: Determining the probability to cover load. 
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To determine the distribution function marked blue in Figure 4, the probability of non-availability of a 

single power plant block following a Bernoulli Distribution is derived based on its probability of planned 

non-availability and the probability of unplanned non-availability during the course of a year. Then, the 

overall distribution at system level needs to be determined by aggregating the single units’ outage 

probabilities. I apply the mathematical concept of recursive convolution for this operation (Billinton et al., 

1996; Brückl, 2006). Other approaches such as Monte Carlo simulations aim at the same goal of 

representing the system’s emergent behavior based on the non-availability probabilities on single power 

plant units. As the recursive convolution allows for an exact representation of the system’s availability 

distribution, this approach is used here. By using high-performance computers and parallelizing the 

program code, an average runtime of ~2.5 hours for the scenario year considering all 30 weather years 

could be achieved. Further investigations have shown that an additional reduction of runtimes can be 

achieved by using tailor-made metamodels and approximations (Nolting et al., 2020). In order to avoid 

a distortion of the comparison due to the approximation error associated with this, the results of the 

exact calculations are presented below. Overall, hourly fluctuations occur on both the load and the feed-

in side, which must be taken into account in the simulation model and thus require an hourly resolution: 

(1) fluctuations of the electrical load due to calendar effects, (2) fluctuations in the feed-in of renewable 

energies, (3) variation of the non-availability probability of freely dispatchable power plant units. This 

relationship is illustrated in Figure 5.  

 

Figure 5: Time dependency of availability distribution and residual load. 
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4 Central assumptions and model input data 

To allow for a fair comparison of the methods to assess security of electricity supply, I make use of a 

common data basis and define a relevant case study. As mentioned in the introduction, I carry out a 

scenario analysis for the year 2023 as the basis of the complexity comparison. For this, I define two 

scenarios: The base scenario, which includes all reductions already planned in the fossil fuel power 

plant park and the nuclear phase-out in Germany by the end of 2022; and the reduction scenario, which, 

based on the proposals of the Commission on Growth, Structural Change and Employment (2019) and 

the Coal Exit Act currently in the legislative process (German Government, 2020), takes into account an 

additional reduction of coal-fired power plant capacities of 8 GW. To keep the results traceable, only 

publicly available data sets from established institutions that can be considered unbiased are used for 

both models. The following four sources serve as the main data basis: the Network Development Plan 

by German transmission system operators (BNetzA, 2017), the Mid-term Adequacy Forecasts (MAF) 

for 2016 and 2017 published by the European Network of Transmission System Operators for Electricity 

(entso-e, 2017, 2016), and the German Federal Network Agency's block-mapped list of power plants 

(BNetzA, 2018a). 

4.1 Domestic capacities per power plant type 

For the currently installed capacities per power plant type, the block-mapped list of power plants by 

Federal Network Agency (BNetzA, 2018a) was used. Future planned extensions and deconstructions 

were taken into account in accordance with BNetzA (2018b). In addition, an expansion path for 

combined heat and power units according to BNetzA (2017) was included. The expansion path for 

renewable energies in Germany is based on the data used in the MAF 2018 (entso-e, 2018). The power 

plant park used in the modelled scenario year 2023 for Germany is shown in Figure 6. 
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Figure 6: Installed capacity in Germany in year 2023, base scenario 

4.2 Electricity load 

To simulate the temperature dependence of electricity loads, country-specific polynomial regression 

functions were derived using the approach used by entso-e (2017). These functions reflect the 

relationship between electricity load and the outdoor temperature. Using this relationship, load curves 

for temperature data of 30 weather years (1986-2015) were generated.  

4.3 Feed-in time series from renewable energies 

To model the feed-in of fluctuating renewable energies, two data sets developed by the Joint Research 

Centre of the European Commission are used (González Aparicio et al., 2017, 2016). These data sets 

comprise standardized hourly feed-in hydrographs for wind (offshore and onshore) and photovoltaic for 

30 weather years (1986-2015). In addition, data from the European Union's Earth Observation Program 

(Copernicus, 2018) were used for the daily feed-in of run-of-river power plants. Based on these time 

series and the assumed installed renewable energy capacities for the scenario year (see Figure 6 and 

Figure 7), the feed-in hydrographs were derived for all weather years.  

4.4 Import potentials 

For the installed renewable energy capacities in central-European countries, the same data source as 

for Germany was used (entso-e, 2018) to ensure consistency. For the installed capacities of controllable 

power plants, the data set of MAF 2017 (entso-e, 2017) was initially used. Due to major changes in the 

data basis in the later MAF 2018 report (entso-e, 2018), the effects of these adjustments are discussed 

separately in section 6. Installed capacities in central-European countries are shown in Figure 7. 
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Figure 7: Installed capacity in central-European countries in 2023. 

5 Results 

Having briefly introduced both approaches to assess security of supply and having shown the most 

relevant input data for the case study, the results using both methods are shown in the following. 

5.1 Deterministic capacity balance 

Using the input data described in section 4 and applying the method as introduced in section 3.1, I derive 

the capacity balance as illustrated in Figure 8 for the base scenario. It can be seen that in the base 

scenario, taking all relevant influencing factors into account, there is a supply surplus of 6.4 GW at a 

significance level of 𝛼 = 95%.  It is also evident that the secured import capacity of 7.6 GW during the 

peak load hour is needed to meet the demand for power, as the national power supply of 89.2 GW would 

not be sufficient to cover the demand of 90.5 GW. 

 

Figure 8: Deterministic capacity balance for Germany in 2023, base scenario 

6.4
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In the reduction scenario, taking into account an additional shutdown of 8 GW of coal-fired power plant 

capacity, I determine the capacity balance as shown in Figure 9. I find that in the case of a reduction, 

there is no longer a surplus of services at a significance level of 𝛼 = 95%. This implies that the probability 

of a capacity shortage during the peak load hour exceeds 5%. Here, changes in the model results can 

directly be traced back to their origin in the input data. 

 

Figure 9: Deterministic capacity balance for Germany in 2023, reduction scenario 

5.2 Probabilistic simulation model 

Having shown the results of the deterministic capacity balance, I now present the outcomes of the 

probabilistic simulation model when applied to the case study under investigation. Table 3 shows 

relevant statistical parameters of the Loss of Load Expectation (LoLE) representing the main model 

output. Boxplots were chosen to visualize the resulting distributions in Figure 10, as they provide a 

condensed representation of the LoLE distribution over the weather years. 

The results for the base scenario for the year 2023 do not imply any shortages to be expected. This 

result is in line with the core statement of the deterministic capacity balance shown in Figure 8 that there 

is surplus supply during peak load hour. For the reduction scenario, a mean LoLE of 0.3 h and a 

maximum LoLE of 2.6 h for a worst-case weather year also agrees with the negative sign of the capacity 

balance shown in Figure 9. In addition, the results of the simulation model demonstrate that on average, 

supply shortages are rather unlikely, although they may occur more frequently under unfavorable 

-1.0



 

17 

weather conditions. However, the model results are not traceable to the same extent as for deterministic 

capacity balances. 

  

Figure 10: Presentation of the results of the probabilistic simulation model in boxplots, base scenario (left) and reduction 

scenario (right) for all 30 weather years under investigation 

Table 3: Loss of Load Expectation (LoLE) in h, determined by probabilistic simulations 

 Base scenario Reduction scenario 

Maximum 0.1 2.6 

Third quantile (Q3, 75%) 0.0 0.3 

Mean 0.0 0.3 

Median (Q2, 50%) 0.0 0.1 

First quantile (Q1, 25%) 0.0 0.0 

Minimum 0.0 0.0 

6 Discussion on uncertain input data 

To extend the scope of the concrete model comparison I now investigate the influence of uncertain input 

data on the models’ results. The results shown in section 5 are based on import capacities, which were 

calculated for the year 2023 on the basis of the installed capacities in Germany's neighboring countries 

as published by entso-e in the Mid-term Adequacy Forecasts (MAF) in 2017. Figure 11 illustrates the 

changes in the data basis in the MAF of 2018 published thereafter in relation to the data set according 

to MAF 2017. 
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Figure 11: Changes in installed capacity in scenario year 2023 in MAF 2018 relative to MAF 2017 

It is evident that substantial changes in the installed capacity of central-European countries occur when 

comparing the forecasts published in MAF 2018 to those of MAF 2017. In response to a written request, 

an entso-e representative stated that these changes were not the result of errors in the published data 

sets, but rather due to improved information availability. This reflects the uncertainty of the relevant input 

data for the investigated case study. Figure 12 illustrates the effect of the change in the data situation 

on the import surpluses or shortfalls of neighboring countries and the guaranteed import capacity in 

Germany at the peak load hour in the scenario year 2023. 

 

Figure 12. National power balances in GW as well as secured import capacity for Germany at peak load hour under 
consideration of bilateral NTCs, based on the new data set according to MAF 2018 

It is evident that instead of the previously found import capacity of 7.6 GW (see Figure 3), only 2.1 GW 

of excess electricity available for import remains during peak load hours. This is taken as an example of 

the uncertainty of relevant input data. There are additional uncertainties regarding (1) the future 

electricity load on a domestic and international level, (2) developments of domestic supply capacity, and 
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(3) developments of transfer capacities. The effects of the change in input data on the modeling results 

are described as examples for both methods for the case of international capacity developments. 

6.1 Modification of results: deterministic capacity balance 

Figure 13 shows that the reduction in available import capacity from 7.6 GW to 2.1 GW substantially 

lowers the power surplus in the base scenario for 2023, but does not reverse the sign.  

 

Figure 13: Deterministic capacity balance for Germany in year 2023, base scenario. Considering the new data according to 
MAF 2018 

For the reduction scenario, Figure 14 shows that the existing power shortfall is increased from 1.0 GW 

(see Figure 9) to 6.5 GW when using the new data set according to MAF 2018. Here too, the effects of 

reduced import availability for the case study are directly reflected in deterministic capacity balance. 

 

Figure 14: Deterministic capacity balance for Germany in year 2023, reduction scenario. Considering the new data according 
to MAF 2018 

0.9

-6.5
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6.2 Modification of results: probabilistic simulation model 

So far, I have presented the effects of the changed data basis on the results of the investigated case 

study using deterministic capacity balances. This section will evaluate the new results on the basis of 

the probabilistic simulation model. 

Figure 15 and Table 4 summarize the results obtained by probabilistic simulation based on the new 

input data. 

  

Figure 15: Presentation of the results of the probabilistic simulation model in boxplots, base scenario (left) and reduction 
scenario (right), consideration of the new data set according to MAF 2018. 

Table 4: Loss of Load Expectation (LoLE) in h, determined by probabilistic simulations based on new input data according to 
MAF 2018 

 Base scenario Reduction scenario 

Maximum 0.8 7.1 

Third quantile (Q3, 75%) 0.1 3.5 

Mean 0.1 2.6 

Median (Q2, 50%) 0.0 2.3 

First quantile (Q1, 25%) 0.0 1.2 

Minimum 0.0 0.0 

There are now substantial changes for the base scenario when the new input data is applied. In 

accordance with the results of the deterministic power balance (see Figure 14), even for worst-case 

weather years a LoLE of less than one hour can be expected. However, the absolute level of security 

of supply is unlikely to be maintained and an influence of the weather conditions on the supply security 

becomes apparent. 
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The changes in the results for the reduction scenario are much more severe: While a maximum LoLE 

of 2.3 h was to be expected even in worst-case weather years using the old data basis based on the 

MAF 2017, LoLEs of up to 7.1 h in the worst-case and 2.6 h emerge on basis of the new MAF 2018 

input data set. This indicates a significant deterioration in the supply security situation for the case study 

under investigation. 

In contrast to the deterministic capacity balance, the probabilistic simulation does not allow the direct 

traceability of the effects. The results also show that a tipping point is reached in the reduction scenario 

causing the model results to react highly sensitively to changes in the input data. The complexity of the 

model as well as the a-priori unforeseeable and highly non-linear relationship between input and output 

data makes it difficult to interpret the results depending on the uncertainties on the input data side.  

7 A comprehensive guideline through complexity 

Based on the application of both modeling approaches to assess security of electricity supply to a case 

study and the discussion regarding uncertain input data, in the following paragraphs I first conduct a 

comprehensive comparison of the two modeling approaches. I then abstract and generalize the findings 

by introducing a mathematical framework to derive the optimal Level of Detail (LoD) of a modeling 

approach in the field of energy sciences that provides most insights for the interpreters of the results 

and offer a guideline to reach this level.  

7.1 Comparison of modeling approaches used in the case study 

I organize the following comparison according to relevant modeling steps: from the first (implicit) 

assumptions, to the analysis of effects of uncertain input data and discussions on potential model 

expansion. 

(Implicit) assumptions  

For deterministic capacity balances, it is implicitly assumed that the peak load hour represents the 

system’s critical state. This might not be the case for energy systems with high shares of renewable 

supply, where hours with high residual load might be more critical for the supply of electricity. Further, 

the implicit significance level of 𝛼 =  95% for the calculation of capacity margins gives the results of 
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deterministic capacity balances a stochastic character that is often not mentioned. In fact, the available 

capacity used in deterministic capacity balances represents a point on the probability distribution (i.e. 

the available capacity at a probability of 95%) during peak load hour used in probabilistic simulations. It 

can thereby be defined as a reduced submodel of the more complex approach with a lower Level of 

Detail (LoD). Probabilistic simulation models also use (implicit) assumptions: potential grid bottlenecks 

on a national level are neglected (so-called copper plate assumption), international power flows are 

limited by bilateral NTCs, the number of countries under consideration is often limited to reduce 

complexity and modeling effort, and the probability of weather years is assumed to follow a uniform 

distribution. Thus, probabilistic simulation models abstract from physical load flows and from changes 

in the probability distribution of weather years (e.g. due to climate change). Overall, both methods 

abstract from the real-world system, but probabilistic simulation models depict a more comprehensive 

picture as deterministic capacity balances can be defined as submodels of such simulations. 

Data collection and preparation 

To conduct deterministic capacity balances, comprehensive data acquisition on future installed 

capacities and loads is required. This constitutes a substantial part of the modeling effort. Further, 

capacity credits need to be derived using probabilistic methods. Input data can be directly used for the 

modeling procedure as it only needs to be summed and compared for the capacity balances. For 

probabilistic simulation models, additional time series on the feed-in of renewables, electricity loads, and 

the probability for non-availability of generator units need to be acquired. Further, comprehensive data 

preparation is needed to use input data at the interfaces provided by the model. 

Model implementation 

Deterministic capacity balances require a negligible implementation effort, since the modeling is 

essentially limited to setting up spreadsheet calculations of the input data. Implementing probabilistic 

simulation models, on the other hand, comes with considerable effort. This can e.g. be concluded from 

the considerably higher number of required variables and equations to mathematically describe the 

model. Several person-months of programming work must be scheduled and the corresponding cost 

needs to be considered when deciding to implement complex probabilistic simulations. 
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Model runs 

When conducting model runs, a similar picture emerges: whereas deriving deterministic capacity 

balance comes with virtually no effort, considerable effort is required for each run of the probabilistic 

simulation model due to its high computing time per run. Further, the hardware requirements of complex 

probabilistic simulation models comprise high-performance computing clusters, while spreadsheet 

calculations needed for the deterministic capacity balance can be performed using standard hardware 

at no additional cost. For probabilistic simulation models, a trade-off between additional effort for 

implementing efficient model formulations, approximations, and metamodeling approaches and the 

effort per model run exists (see Nolting et al., 2020). Here it needs to be decided if additional costs to 

reduce runtime are overcompensated by the additional benefit of a better executability of the model. 

Visualization and interpretation of results 

For deterministic capacity balances, the visualization of results also comes with virtually no effort, as the 

main results can be plotted using rather straightforward balances. Moreover, the main outcome of 

deterministic capacity balances can be reduced to one figure: the Remaining Capacity Margin (RCM). 

This allows for an easy interpretation, and therefore the results of deterministic capacity balances are 

particularly useful for a non-scientific audience. The main outcome of probabilistic simulation models 

can also be reduced to key figures (such as the Loss of Load Expectation LoLE), but their interpretation 

is more complex: e.g. the LoLE only represents the expected shortage duration per weather year, but 

different weather years are considered in probabilistic simulations, so a probability distribution of results 

emerges. Boxplots can be used to visualize this distribution, but statistical knowledge is required to 

interpret the results. Thus, explaining the results of probabilistic simulation models to an audience 

without in-depth knowledge of statistics might lead to misinterpretations.  

Performing sensitivity analyses and investigating the effects of uncertain input data 

For deterministic capacity balances, the effects of potential inaccuracies of input data on the model 

outcome can directly be seen in the model. The number of potential sensitivity analyses is not limited 

by the modeling effort. For probabilistic simulation models, however, the number of sensitivity analyses 

is limited by the considerable amount of resources required per model run. This becomes even more 
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severe, as the effects of uncertain input data cannot directly be seen in the model. When the system 

reaches a tipping point, probabilistic simulation models become increasingly ill-conditioned causing the 

model output to react in an unpredictable way to changes in the input data. 

Sustainable model maintenance and potential model expansions 

While deterministic capacity balances only require regular updates of the database with regard to 

expected installed capacity and load, the maintenance of the comprehensive program code needed for 

probabilistic models comes at high effort and cost. Therefore, this effort needs to be considered beyond 

the implementation and runtime of models when choosing the adequate modeling approach. 

Potential model expansions for capacity balances comprise the investigation of hours with peak residual 

load beyond the focus on peak load. For probabilistic simulation models, the scope can be expanded 

by considering more details on the physical load flow on inter-national and intra-national levels. 

7.2 General mathematical model to derive the optimal Level of Detail (LoD) 

The aim of the following section is to abstract from the findings based on the model comparison in the 

field of assessments of security of electricity supply so as to derive a general mathematical framework 

to define the optimal Level of Detail (LoD*) of a modeling approach. While the idea behind the framework 

is based on the model comparison and the case study as shown above, it is intended to stand on its 

own and its generalizability is ensured by the fundamental nature of the findings. 

As the Level of Detail (LoD) determines the accuracy in which the system under investigation is depicted 

in the model, it indirectly defines the level of complexity of the modeling approach: the more granular 

the scale of representing a complex system, the more complex the resulting model. To find the optimal 

level of detail 𝐿𝑜𝐷∗, the net benefit of a modeling approach needs to be maximized. As shown in the 

case study, more detailed modeling approaches allow for the investigation of more complex research 

questions. Thus, the benefit 𝛽(𝐿𝑜𝐷) of a model at a given LoD can be defined as the ability to depict the 

system’s behavior closely and to answer prevailing research questions at a given level of complexity. 

𝑑𝛽(𝐿𝑜𝐷)

𝑑𝐿𝑜𝐷
= 𝛽´(𝐿𝑜𝐷) > 0 holds, as the usefulness of a model to provide insights on the system and to 

answer complex research questions increases with 𝐿𝑜𝐷. Further, 
𝑑2𝛽(𝐿𝑜𝐷)

𝑑𝐿𝑜𝐷2 = 𝛽´´(𝐿𝑜𝐷) < 0 because the 
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marginal benefits of increasing the level of detail towards answering more complex research questions 

decrease with the prevailing 𝐿𝑜𝐷 (a 100% representation of real-world system would not generate any 

added value). The exact functional relation 𝛽(𝐿𝑜𝐷) depends on the modelers’ and interpreters’ 

preferences and the structure of the underlying system and does not need to be known for the abstract 

analysis as presented here.6 

On the other hand, an increasing 𝐿𝑜𝐷 also comes with costs 𝑐(𝐿𝑜𝐷), as found in section 7.1. These 

costs comprise financial expenditures, the need for additional human resources, and an abstract cost 

linked to the worse traceability of complex models. This can be expressed as follows: 

𝑐(𝐿𝑜𝐷) = 𝑐𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐿𝑜𝐷) + 𝑐𝑚𝑜𝑑𝑒𝑙 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐿𝑜𝐷)

+ 𝑐𝑚𝑜𝑑𝑒𝑙 𝑟𝑢𝑛𝑠(𝐿𝑜𝐷) + 𝑐𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠(𝐿𝑜𝐷)

+ 𝑐𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑠(𝐿𝑜𝐷)

+ 𝑐𝑤𝑜𝑟𝑠𝑒 𝑡𝑟𝑎𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐿𝑜𝐷)+𝑐𝑚𝑜𝑑𝑒𝑙 𝑚𝑎𝑖𝑛𝑡𝑎𝑛𝑎𝑛𝑐𝑒(𝐿𝑜𝐷) 

(1) 

Again, the exact functional relation 𝑐(𝐿𝑜𝐷) depends on the modelers’ and interpreters’ preferences and 

the structure of the depicted system. In general, the derivation of 𝑐(𝐿𝑜𝐷),  is positive as the cost of a 

modeling approach strictly increases with the level of detail: 

𝑑𝑐(𝐿𝑜𝐷)

𝑑(𝐿𝑜𝐷)
= 𝑐´(𝐿𝑜𝐷) > 0 

(2) 

However, 
𝑑2𝑐

𝑑𝐿𝑜𝐷2 = 𝑐´´(𝐿𝑜𝐷) > 0 holds, as the additional cost for depicting details over-proportionally 

increases with the LoD of the prevailing model. Overall, the following optimization problem can be 

defined and solved: 

max
𝐿𝑜𝐷

𝛽(𝐿𝑜𝐷) − 𝑐(𝐿𝑜𝐷)  (3) 

→  𝛽′(𝐿𝑜𝐷) − 𝑐′(𝐿𝑜𝐷) = 0 (4) 

↔  𝛽′(𝐿𝑜𝐷∗) = 𝑐′(𝐿𝑜𝐷∗) (5) 

Accounting for the decreasing marginal benefit (𝛽´´(𝐿𝑜𝐷) < 0) and the increasing marginal cost 

(𝑐´´(𝐿𝑜𝐷) > 0), this results in the conclusion that the optimal level of detail 𝐿𝑜𝐷∗ is reached when the 

                                                

6 To reflect the modelers’ and interpreters’ preferences regarding LoD, e.g. Discrete Choice Models can be used 

to determine individual utility functions that reflect 𝛽(𝐿𝑜𝐷).  
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marginal benefits of increasing the model’s level of detail 𝛽′(𝐿𝑜𝐷∗) correspond to the marginal cost of 

doing so 𝑐′(𝐿𝑜𝐷∗). Eq. 5 reflects the conflict between the goal of parsimony and needed LoD as 

introduced in Section 1. Overall, I have mathematically proven that not the most detailed (and thus, the 

most complex) model maximizes net benefit, but the one, that reflects a Level of Detail where the 

marginal benefit of increasing model complexity is equivalent to the marginal cost linked to increased 

complexity, given the modelers’ and interpreters’ preferences and the structure of the depicted system. 

7.3 Stepwise approach towards finding the optimal Level of Detail (LoD) 

Having introduced a general, abstract mathematical framework to define the optimal Level of Detail 

(LoD) of a modeling approach, I now introduce a stepwise approach towards finding this optimal model 

design. As this optimum strongly depends on the use case (i.e., the guiding research questions), the 

approach is based on guiding questions that need to be answered individually. I distinguish three steps 

as follows: 

(1) Determine additional benefit by increasing the modeled level of detail (𝛽′(𝐿𝑜𝐷)) 

 To what extent does adding further details provide additional insights?  

 Is it sufficient to depict the system’s overall emergent behavior to answer the prevailing 

research question and to provide insights for decision makers from policy and industry or 

are additional details and a bottom-up modeling needed? 

 What preferences towards model complexity do the interpreters of the results have? 

 Who is the audience for the results? Does the audience have the possibility and desire 

to interpret the results of complex modeling approaches? 

(2) Determine dependence of cost on level of detail (𝑐′(𝐿𝑜𝐷)) 

 How costly is increasing the level of detail, considering all steps of the modeling chain? 

 Is the necessary data available at reasonable cost and sufficient accuracy? 

 How complex is the investigated system? Will increasing the LoD substantially increase 

the model’s complexity? 
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 Is the system close to a tipping point where increased model complexity might hinder 

necessary sensitivity analyses and lead to a worse traceability of results? 

 Might increasing the complexity of the modeling approach detract from relevant insights 

due to a worse traceability of the results back to the input data? 

(3) Determine optimal model choice that reflects both the preferences and the cost structure (LoD*) 

 Starting from the simplest possible modeling approach and step-wise increasing the LoD: 

Do the additional benefits of increasing model complexity still overcompensate the cost 

regarding time, effort and worse traceability of the results? 

 Can more straightforward research questions be answered using simpler models to gain 

a good overview? 

8 Conclusion and policy implications 

Starting with a comparison of two different modeling approaches to assess security of electricity supply 

as a case study, I generalized the findings by introducing a mathematical framework that defines the 

optimal Level of Detail (LoD*) of a modeling approach.  Further, I demonstrated a stepwise approach 

towards finding this optimal level of complexity based on guiding questions for individual applications.  

Overall, I find that complex research questions (e.g., with an intrinsically probabilistic character) require 

more sophisticated and detailed modeling approaches that come with a higher degree of complexity, as 

they need to depict a higher share of the real-world system’s complexity. To provide an overview of the 

system’s emergent behavior, rather simple approaches are suitable and more complex ones do not per 

se allow for a higher quality of results. Of even greater concern is that highly sophisticated models are 

often said to provide more reliable outputs, but their dependency on the quality of input data is higher 

(i.e., 𝑐𝑤𝑜𝑟𝑠𝑒 𝑡𝑟𝑎𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐿𝑜𝐷) increases), as the case study demonstrated for assessments of the security 

of electricity supply.  

I summarize this as the complexity dilemma: the more sophisticated the prevailing research question, 

the higher the number of details of the underlying system need to be depicted, leading to more complex 

models. However, the accuracy of complex models highly depends on the quality of input data. 
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Uncertainties regarding necessary input data for complex models, in turn, are rather high, in particular 

with regard to future scenarios. Thus, answering complex research questions focusing on future 

developments is only possible to a limited extent and high levels of uncertainty need to be considered. 

Complex models cannot compensate for this, and less detailed modeling approaches are sometimes 

more suitable considering (1) the underlying research question, (2) the quality and availability of 

necessary input data, and (3) the audience for the results.   

My results have substantial policy implications as they suggest not to unconditionally rely on the 

accuracy of most complex models for decision making: time-intensive and complex modeling 

approaches do not guarantee reliable predictions of the future when data uncertainties occur. It is a 

priori difficult to predict all consequences of market interventions in complex energy systems even using 

complex models. Thus, I suggest to use flexible, market-based mechanisms for the integration of 

externalities to avoid situations in which planned-economy approaches based on model outputs lead to 

undesired outcomes due to the complex behavior of the modeled energy system. I hypothesize that 

model outputs can serve as indications for needed market interventions but should not directly be seen 

as a basis for planned-economy system planning due to the complexity dilemma. Investigating this 

hypothesis and deriving additional valued of flexible policy options opens space for future research on 

the general applicability of system models in the field of energy sciences and the benefits of flexible 

market mechanisms that might be used to circumvent the complexity dilemma by adjusting to changing 

real-world conditions. 
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