

New Zealand's energy consumption and energy-related greenhouse gas emissions between 2006/2007 and 2012/2013

Le Wen*, Fengtao Guang, Yiqing Wang, Basil Sharp Energy Centre, University of Auckland 7 – 9 June 2021 Presentation for the 1st IAEE Online Conference 2021 I.wen@auckland.ac.nz

Outline

- Background
- Literature
- Research Questions
- Models
- Results
- Conclusions

NZ context

Low-emissions transition

- Government's target of net-zero carbon by 2050
- Energy sector accounts for 40% of the total GHG emissions
- Achieving government's target relies on the understanding of NZ's energy consumption
- Studying factors that influence energy consumption.

Energy consumption

Energy consumption (Terajoules)

Energy related greenhouse gas emissions (kt CO2 - e)

■ Total output (million NZ\$)

Research questions

INESS SCHOOL

ENERGY CENTRE

- What drives changes in energy consumption and co₂-e emissions?
- Which factor has increased/decreased energy consumption and co₂-e emissions ?
- Do the factors that influence energy consumption and co₂-e emissions vary across sectors?
- What key sectors should we pay attention to when designing energy and climate policies?

Sample of literature

Environmentally-extended input-output (EEIO) analysis:

- > An extended of traditional IO analysis first proposed by Leontief (1936).
- EEIO analysis establishes the linkage between economic activities and related natural resource utilization or pollutant emissions, thus integrating monetary flows with resource and emission flows (Cao et al., 2019).
- Moreover, it enables the calculation of direct and embodied resources consumption or pollutants emissions induced by different economic sectors and different final demand (Xie et al., 2019).
- Wide application:

Estimate patterns of energy consumption (He et al.,2019a; Liang et al., 2010), carbon emissions (Jiang et al., 2019; Zhang 2019), NOx emissions (He et al., 2019b), and evaluate the consequences of energy policies (Wu et al., 2019)

Structural decomposition analysis (SDA):

- SDA is based on IO analysis (Bagheri et al., 2018).
- The implementation of the SDA method is always for a given period (Guevara and Domingos 2017).
- > The D&L technique Dietzenbacher and Los (1998) because it involves fewer calculations.

Data

Year ended March 2007 and 2013

Energy consumption data (MfE)

Fuel combustion activities: Liquid fuels, Solid fuels, Gaseous fuels.

Energy-related greenhouse gas emissions data (MBIE)

BUSINESS SCHOOL

Wen et al. (2021)

Methodology

Scheme of input-output table of national economy

Sector	Intermediate use				Final use				Total output
	1	2		п	Household expenditures	Government expenditures	Capital investment	Exports	
1	<i>x</i> ₁₁	<i>x</i> ₁₂		X_{ln}	\mathcal{Y}_{11}	\mathcal{Y}_{12}	\mathcal{Y}_{13}	\mathcal{Y}_{14}	X_1
2	<i>x</i> ₂₁	<i>x</i> ₂₂		X_{2n}	\mathcal{Y}_{21}	\mathcal{Y}_{22}	\mathcal{Y}_{23}	Y_{24}	X_2
п	X_{nl}	X_{n2}		X_{nn}	\mathcal{Y}_{nl}	\mathcal{Y}_{n2}	Y_{n3}	\mathcal{Y}_{n4}	X_n
Imports	M 1	M ₂		Mn					
Value added	v_1	v_2		V_n					
Total input	X_1	X_2		X_n					

BUSINESS SCHOOL

ENERGY CENTRE

Factors driving energy-related emissions change

Structural decomposition analysis

Direct and indirect energyrelated CO₂ equivalent emissions by sector in 2006/2007 and 2012/2013

Contribution of each factor to the decrease in energyrelated CO₂ equivalent emissions

Contribution of decomposition factor to the decrease in energy-related CO_2 equivalent emissions by sector between 2006/2007 and 2012/2013

Carbon intensity by sector in 2006/2007 and 2012/2013

Energy consumption

Energy-related greenhouse gas emissions

THE UNIVERSITY OF AUCKLEASE Ware Values James Automatic New Zealand

BUSINESS SCHOOL

Carbon intensity by final demand category

Energy-related CO₂ equivalent emissions changes during this period by sector and demand component

Conclusions

- Reducing carbon intensity has been proven to be the most effective way to restrict the growth of energy-related GHG emissions.
- Changes in the structure of production and demand contributed to a decline in energy-related GHG emissions.
- Changes in population and consumption volume increased energy-related GHG emissions.
- Private consumption and exports were the main sources of energy-related GHG emissions.
- "Energy Generation" and "Transport" are the two key sectors for decarbonization in New Zealand.

Policy recommendations

- Promoting renewable energy
 - 100% renewable electricity by 2030
 - NZ battery project pumped hydro storage (Lake Onslow)
 - Hydrogen projects
 - Offshore wind potential coupling with hydrogen production
- Decarbonize transportation electrification of transport
 - Phase out fossil-fuel vehicles & increase low-carbon transport alternatives
 - Incentives for EV purchases (charging infrastructure, range anxiety, and peer effects)
 - Smart integrated traffic systems
 - Strict emissions standards

Policy recommendations

- Changes in carbon intensity drove emissions up for "Chemicals", "Non-Metallic Mineral" and "Food Processing, Beverage & Tobacco".
 - Electrification of those sectors may be a solution to reduce emissions
 - Coal/gas boilers transition
 - Adoption of the efficient production process
 - Replacement of outdated machinery equipment
- Private consumption and exports were the main sources of indirect energy-related emissions.
 - Retrofit insulation schemes
 - Energy-efficient building standards
 - Energy Star certificated appliances, e.g., hot water cylinder and refrigerator, washing machine, etc.
 - Optimize the mix of exports, e.g., increase the share of less carbonintensive products.

References

Bagheri, M., Guevara, Z., Alikarami, M., Kennedy, C.A., Doluweera, G. (2018). 'Green growth planning: A multi-factor energy inputoutput analysis of the Canadian economy', *Energy Economics*, 74, pp. 708-720.

• Cao, Y., Zhao, Y., Wang, H., Li, H., Wang, S., Liu, Y., Shi, Q., Zhang, Y. (2019). 'Driving forces of national and regional carbon intensity changes in China: Temporal and spatial multiplicative structural decomposition analysis', *Journal of Cleaner Production*, 213, pp. 1380-1410.

• Dietzenbacher, E., Los, B. (1998). 'Structural Decomposition Techniques: Sense and Sensitivity', *Economic Systems Research*, 10, pp. 307-324.

• Guevara, Z., Domingos, T. (2017). 'Three-level decoupling of energy use in Portugal 1995–2010', *Energy Policy*, 108, pp. 134-142.

• He, P., Ng, T.S., Su, B. (2019a). 'Energy-economic resilience with multi-region input–output linear programming models', *Energy Economics*, 84, p. 104569.

• He, S., Zhao, L., Ding, S., Liang, S., Dong, L., Wang, J., Feng, Y., Liu, L. (2019b). 'Mapping economic drivers of China's NOx emissions due to energy consumption', *Journal of Cleaner Production*, 241, p.118130.

• Jiang, T., Huang, S., Yang, J. (2019). 'Structural carbon emissions from industry and energy systems in China: An input-output analysis', *Journal of Cleaner Production*, 240, p. 118116.

• Leontief, W.W. (1936). 'Quantitative input and output relations in the economic systems of the United States', *The review of economics statistics*, 18, pp. 105-125.

• Liang, S., Wang, C., Zhang, T. (2010). 'An improved input-output model for energy analysis: a case study of Suzhou', *Ecological Economics*, 69, pp. 1805-1813.

• Wen, L., Guang, FT. & Sharp, B. (2021). Dynamics in Aotearoa New Zealand's energy consumption between 2006/2007 and 2012/2013. *Energy*. (10.1016/j.energy.2021.120186)

• Xie, R., Huang, L., Tian, B., Fang, J. (2019). 'Differences in Changes in Carbon Dioxide Emissions among China's Transportation Subsectors: A Structural Decomposition Analysis', *Emerging Markets Finance and Trade*, 55, pp. 1294-1311.

• Zhang, Y. (2009). 'Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006', *Ecological Economics*, 68, pp. 2399-2405.

Thank you for your attention!

Dr Le Wen

- Research fellow, Energy Centre, University of Auckland
- Research interests:
 - Renewable energy & electricity price
 - Energy efficiency & energy consumption
 - EV adoption via consumer behaviour
 - GHG emissions & climate change
 - Offshore wind coupling with hydrogen production
- https://unidirectory.auckland.ac.nz/profile/l-wen
- Email: I.wen@auckland.ac.nz