
Introduction 
A discovery is a petroleum deposit or several petroleum deposits, which have been discovered in the 

same well, in which through testing, sampling or logging there has been established a probability of 

the existence of mobile petroleum.1 The definition covers both commercial and technical discoveries. 

A total of 53 exploration wells were spudded on the Norwegian continental shelf (NCS) in 2018. Many 

more wells were drilled in the North Sea (31) and the Norwegian Sea (15) than in 2017, while there 

has been a decline in the Barents Sea (7).2 Both large and small exploration companies have 

contributed to the strong resource growth in the last few years. The Norwegian Petroleum Directorate 

(NPD) has estimated the undiscovered resources on the Norwegian shelf at approximately four billion 

standard cubic metres (Sm3) of recoverable oil equivalents. This corresponds to around 47 per cent of 

all the remaining resources on the shelf. By applying an econometric analysis on crossectional data 

from the NCS, we will determine key drivers of exploration success rates. 

Iledare and Pulsipher (1999) analyse reserve additions in the mature onshore Lousiana, 1977-1994, 

finding that while technical progress in exploration is considerable it was not able to fully compensate 

for depletion. They consider both exploration and development wells and explain variations in added 

reserves. In their econometric model, among the explanatory factors are expected price of 

hydrocarbons, corporate income tax, severance tax, royalty, extraction and operating cost and the 

discount rate, and a time trend used as a proxy variable for technical progress.    

Forbes and Zampelli (2000) use an econometric model on offshore US data from 1978 to 1995 to 

disentangle and quantify major factors affecting the commercial exploration success rate. They find 

that key drivers are oil and gas prices, drilling depth (affecting drilling cost), hydrocarbon type, stock 

of unexplored acreage, and technical advances (represented by a trend variable). We complement this 

article by focusing on the technical success rate, by introducing rig rates and drilling speed that are 

known to affect drilling cost (Skjerpen et al., 2018; Roll et al., 2012), by distinguishing between wildcat 

and appraisal wells, by using a data set that covers the three regions on the NCS.  

 

Methodology 
Pertaining to offshore exploration (wildcat) wells, we define technical success as a wellbore that is not 

a dry well and constitute a new discovery of previously unknown deposits of hydrocarbons. Technical 

success should not be confused with commercial success, which not only requires discovery but also a 

sufficiently large discovery size to constitute further development and commercialization3. Technical 

 
1 https://www.norskpetroleum.no/en/facts/discoveries/ 
2 https://www.norskpetroleum.no/en/exploration/exploration-activity/ 
3 A commercial success is not only a function of discovery size and reservoir quality It is also dependent on 
variables such as cost, available technology and oil price. A discovery might at the present be considered only a 

                                                                   

KEY DRIVERS OF EXPLORATION SUCCESS RATES ON THE NCS 

 

Sindre Lorentzen, University of Stavanger NO-4036, Stavanger, Norway, +47 51502055, Sindre.Lorentzen@uis.no 

Petter Osmundsen, University of Stavanger NO-4036, Stavanger, Norway, +47 51831568, Petter.Osmundsens@uis.no 

https://www.norskpetroleum.no/en/facts/discoveries/
https://www.norskpetroleum.no/en/exploration/exploration-activity/
mailto:Sindre.Lorentzen@uis.no
mailto:Petter.Osmundsens@uis.no


success rates are important to study, for several reasons. Commercial success rates are contingent on 

several discretionary assumptions with respect to revenue and cost, and the commerciality status 

typically change with the business cycle. Technical success rates are to a larger extent an objective 

measure and represent the first step in a sequence for qualifying for a future development project. In 

addition, technical success rates represent crucial geological input to determine further exploration 

effort in or near a given location. 

Let 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖  denote a dichotomous variable that is equal to one if a particular wildcat exploration well  

𝑖 on the NCS results in technical success and zero otherwise. See Equation (1). 

 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = {
1 𝑖𝑓 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
 (1) 

 

Our econometric approach involves running a logit model, using robust standard error, with the 

conditional probability of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 being equal to 1, Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 1|𝑋), as the dependent variable 

and a set of independent explanatory variables. In order to avoid a violation of Kolmogorov’s axioms 

of probability theory4, it is not feasible to use a linear model estimated with ordinary least squares 

(OLS). See Figure 1 for an illustration of the differences between a linear and logit model, where the 

former violates the axioms of probability theory and the latter does not. 

Figure 1: Comparison of functional forms 
(a) Linear probability model (b) Logit model 

  
Subfigure (a) shows the a linear functional form associated with running a OLS regression. On the other hand, 
Subfigure (b) shows a logistic function obtained by applying a logit regression. 

 
The multivariate logit model is given as specified in Equation 2.  

 Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 1|𝑋) = 𝐹(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘)

=
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘)
,

𝑜𝑟

ln (
Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 1|𝑋)

1 − Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 1|𝑋)
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘

 (2) 

 

 
technical discovery, but subsequently be retroactively reclassified as commercial if technological improvements 
allow for a higher extraction rate and/or the business cycle has become more favourable.  
4 Specifically, the probability of any event (𝐸) in the event space (𝐹) cannot be negative, 𝑃(𝐸) ∈ ℝ, 𝑃(𝐸) ≥
0 ∀ 𝐸 ∈ 𝐹, and that the probability of an event from the entire sample space to occur is a hundred percent, 
𝑃(Ω) = 1. 



As observed from Equation (2), the regression model is nonlinear in its parameters. Consequently, we 

cannot utilize ordinary least squares to estimate the coefficients. Hence, the maximum likelihood 

estimation approach must be utilized. The log-likelihood function to be maximized in this approach is 

shown in Equation (3). Depending on the difficulty of the log-likelihood function, a combination of the 

Newton–Raphson, Berndt–Hall–Hall–Hausman, Davidon–Fletcher–Powell and Broyden–Fletcher–

Goldfarb–Shanno algorithms are applied.  

 ln 𝐿 = ∑ 𝑤𝑗 ln 𝐹(𝑥𝑗𝑏)

𝑗∈𝑆

+ ∑ 𝑤𝑗 ln{1 − 𝐹(𝑥𝑗𝑏)}

𝑗∉𝑆

 (3) 

 
The model specification is based on both subject matter expertise and a more data driven approach. 

A set of potential variables is suggested based theoretical considerations, previous literature and 

dialogue with industry experts. The proposed variables are then subjected to a forward selection 

procedure where the model moves from its most parsimonious specification towards a specification 

including all variables. Variables are added incrementally based on which can provide the highest 

increase of the explanatory power conditional on all independent variables being statistically 

significant. Explanatory power is here measured in terms of McFadden’s pseudo-R2, which compares 

the estimated likelihood of the estimated model (ln �̂�(𝑀𝐹𝑢𝑙𝑙)) with the likelihood of an intercept only 

model (ln �̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)). Note that pseudo-R2 does not have the same interpretation that is 

associated with the standard R2. See Equation (4). 

 Pseudo-R2 = 1 −
ln �̂�(𝑀𝐹𝑢𝑙𝑙)

ln �̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
 (4) 

 

The forward selection procedure is terminated either when all variables have been included or when 

any further inclusion causes any of the independent variables to be insignificant.   

 

Data 
Our data set was gathered from the Norwegian Petroleum Directorate and Thomson Reuters Eikon 

and consist mostly of wellbore information from exploration wells on the NCS between 1966 and 2019. 

Technical success is the main variable of interest in this study. The prevalence and development of 

technical success is shown in Figure 2. Subfigure (a) shows a bar plot indicating the absolute frequency 

of exploration effort (annual number of drilled wildcat wells) and the number of wells with technical 

success. As observed, there are large fluctuations in the number of wells drilled. Subfigure (b) shows 

the technical success rate, which is the ratio between number of successful wells and total drilled wells. 

While the success rate exhibits some variability, it appears to be on an upward sloping trend 

throughout the entire sample period. This can be illustrated by drawing a linear deterministic trend 

using ordinary least squares5. To address the possibility of nonlinearity, we apply locally weighted 

regression (LOWESS)6. As can be gleaned from the subfigure, the linear and nonlinear trends are 

 
5 Applying an OLS regression line in the pursuit causal inference would arguably violate Kolmogorov’s axioms of 
probability theory. However, for the purpose of descriptive statistics, which limits itself to describe the data at 
hand, this is not an issue. 
6 For each observation of the dependent variable (𝑦𝑖), as smoothed value (𝑦𝑖

𝑠) is estimated using the 
surrounding observations, 𝑖 ∈ [max(1, 𝑖 − 𝑘) , min(𝑖 + 𝑘, 𝑁)] 𝑤ℎ𝑒𝑟𝑒 𝑘 = ⌊(𝑁 × 𝑏𝑤𝑖𝑑𝑡ℎ − 0.5)/2⌋. The 

weights (𝑥𝑗) for the observations are given as follows: 𝑤𝑗 = {1 − (
|𝑥𝑗−𝑥𝑖|

1.0001 max(min(𝑖+𝑘,𝑁)−𝑥𝑖,𝑥𝑖−max(1,𝑖−𝑘))
)}

3

. 𝑦𝑖
𝑠 is 

then the weighted average of the sub-sample of surrounding observations.  



predominantly coinciding. However, the success rate appears to have been experiencing a declining 

trend in the last decade according to this nonlinear specification.  

Figure 2: Exploration effort and technical success on the NCS (1966-2019) 
(a) Number of wells and successes (b) Probability of success 

  
Subfigure (a) shows a bar plot for the number of technical successes and number of wildcat wells on the NCS 
between 1966 and 2019. Subfigure (b) shows the technical success rate (ratio between the number of 
successful wells and the total number of wells) 

 

Figure 3 shows the statistical distribution of the annual number of wildcat wells, numbers of technical 

successful wells and the technical success rate. A histogram coupled with an Epanechnikov kernel 

density plot is used to approximate the distributions. Throughout the history of the petroleum industry 

on the NCS, the average number of wildcat wells is 22.48 with a standard deviation of 10.60. 

Exploration effort appears to follow a normal distribution as there is only a small amount of positive 

skewness and the tails are close to being mesokurtic. A Jarque-Bera normality test lends support to 

this notion. In terms of normality, similar results are found for the annual number of technical 

successes and success rate. On average, there are 9.52 success on the NCS per year with a standard 

deviation of 6.03. Analogously, the success rate is on average 39.46 percent with a standard deviation 

of 13.84 percentage points. It should be noted these statistics pertain to the entirety of the history of 

the Norwegian petroleum industry. As there appear to be a positive trend in the data, the prevalence 

of technical success tends to be higher towards the end of the sample period.  

  



Figure 3: Statistical distributions 
(a) Number of wildcat wells (b) Number of technical success 

  
(c) Success rate  

 

 

Statistical distribution is approximated through a histogram (where number of bins are equal to 

min{√𝑁, 10 ln(𝑁) / ln(10)}) and an Epanechnikov kernel density plot where the bandwidth is 

chosen such that the mean integrated squared error is minimized if the data were Gaussian and a 
Gaussian kernel were used.  

 

Figure 4 shows the relationship between exploration success and exploration effort using a scatter plot 

with a fitted OLS regression line and a LOWESS curve. Subfigure (a) compares number of annual 

technical successes with the annual number of wildcat wells. As expected, the more wells that are 

drilled, the higher the number of successes tend to be. According to the estimated beta coefficient, an 

additional wildcat well tends to result in 0.52 additional success. Subfigure (b) substitutes the number 

of technical successful wells with the technical success rate. Analogously, an additional well tend to 

increase the annual success rate by 0.59 percent.   

  



Figure 4: Relationship between exploration effort and technical success 
(a) Number of technical successes (b) Technical success rate 

  
Subfigure (a) shows the scatter plot between the number of technical successes and number of 
wildcat wells on the NCS between 1966 and 2019. An ordinary least regression line and a LOWSS 
(locally weighted scatterplot smoothing) curve is also added. Similarly, subfigure (b) shows the 
relationship between the technical success rate and number of wildcat wells. 

 

To explain technical success rates, we are considering the following independent variables for our 

regression: Brent crude oil price (OilPrice), the year when the well was drilled (EntryYear), drilling depth 

(DrillingDepth) and drilling speed (DrillingSpeed). Table 1 shows the correlation between the 

dependent and independent variables.  

Table 1: Correlation matrix 

  Success DrillingSpeed DrillingDepth EntryYear OilPrice 

Success 1     

DrillingSpeed -0.1533 1    

DrillingDepth 0.1376 0.0283 1   

EntryYear 0.0967 0.1833 -0.069 1  
OilPrice 0.0808 -0.0208 -0.0785 0.7486 1 

 

Drilling speed, measured in metre per day, is defined as the ratio between the drilling depth of a 

wildcat well and the number of days needed to complete the wellbore. Figure 5 illustrates different 

aspects of drilling speed of exploration wildcat wells on the NCS between 1966 and 2019. Subfigure (a) 

shows a bar plot of the annual average drilling speed with its standard deviation plotted against a time 

series of the oil price Brent (usd/bbl.). Subfigure (b) shows the statistical distribution of the drilling 

speed approximated through a histogram with an Epanechnikov kernel density estimate. The average 

drilling speed is 76.32 metres per day with a standard deviation of 76.64. As observed, drilling speed 

is clearly not normally distributed as there is positive skewness and leptokurtosis. A formal Jarque-

Bera test confirms the non-normality. Subfigure (c) compares the statistical distribution of drilling 

speed conditional on being a dry well, and the drilling speed conditional on encountering 

hydrocarbons, i.e. technical success. As observed, there is some difference in the distributions. The 

average drilling speed for successful wells (62.86 metre/day) is lower than for unsuccessful wells (86.23 

metre/day). Results from a Kolmogorov-Smirnov test suggests that these distributions are not 

coinciding as the null hypothesis of no difference in the maximum vertical distance of the cumulative 

distribution functions is rejected. One possible explanation for the observed difference could be that 

signs of hydrocarbons in the wellbore instigates well testing. This typically takes several days, thus 

reducing average drilling speed. 



 

Figure 5: Drilling speed of wildcat wells on the NCS (1966-2019) 
(a) Annual average drilling speed (b) Distribution of drilling speed 

  
(c) Comparison between dry wells and successful wells 

 
Subfigure (a) shows a bar plot displaying the annual average drilling speed and standard deviation of wildcat 
wells on the NCS between 1966 and 2019. The oil price is also added. Subfigure (b) shows the statistical 
distribution of drilling speed, which is approximated through a histogram (where number of bins are equal to 

min{√𝑁, 10 ln(𝑁) / ln(10)}) and an Epanechnikov kernel density plot where the bandwidth is chosen such 

that the mean integrated squared error is minimized if the data were Gaussian and a Gaussian kernel was 
used. 

 

Figure 6 shows descriptive statistics for drilling depth, which is measured as the total measured length 

(metres) of wellbore from kelly bushing to total depth. Subfigure (a) shows the statistical distribution 

of drilling depth. The average drilling depth is 3342.87 metres with a standard deviation of 1139.78. 

There is some positive skewness (0.17) and leptokurtosis (3.49). A Jarque-Bera test suggest that drilling 

depth is not normally distributed. Subfigure (b) compares the statistical distribution of drilling depth 

conditional on the wellbore being successful with the statistical distribution of drilling depth for wells 

conditional on being unsuccessful. As observed there appears to be some difference. For instance, the 

average drilling depth of successful wells is 3529.31 metres and the drilling depth of unsuccessful wells 

is 3205.91. When applying a Kolmogorov-Smirnov test we find that these distributions indeed do not 

coincide. Subfigure (c) shows a scatter plot between drilling depth and year. Based on a simple OLS 

regression analysis, we can see that there is a significant downward trend in the data. The drilling depth 



for both successful and unsuccessful wells are decreasing, but based on an interaction effect we 

observe that the slope for successful wells is less steep7. 

Figure 6: Drilling depth 
(a) Distribution of drilling depth (b) Comparison of distributions 

  
(c) Temporal development in drilling depth  

 

 

Subfigure (a) shows the statistical distribution of drilling depth, which is approximated through a histogram 

(where number of bins are equal to min{√𝑁, 10 ln(𝑁) / ln(10)}) and an Epanechnikov kernel density plot 

where the bandwidth is chosen such that the mean integrated squared error is minimized if the data were 
Gaussian and a Gaussian kernel was used. Subfigure (b) compares the statistical distributions of the drilling 
depth of successful and unsuccessful wells using an Epanechnikov kernel density plot. Subfigure (c) shows a 
scatter plot between drilling depth and an initiation year of the drilling. The scatter plot distinguishes between 
successful and unsuccessful wells and adds an OLS regression lines based on both sub-samples. 

 

Figure 7 shows the development in the crude oil price (Brent) and its relationship to the number of 

wildcat wells, the number of technical successes and the technical success rate. As shown in Subfigure 

(b), there is a positive and significant relationship between number of wells and the oil price. Hence, 

exploration effort on the NCS appears to follow the business cycle. Since the number of wildcat wells 

follows the oil price, it stands to reasons that the number of technical successes would be higher when 

to oil price is high compared to when it is low. On the other hand, Subfigure (d) shows that success 

rate also tends to increase with the oil price.  

  

 
7 𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝐷𝑒𝑝𝑡ℎ𝑖 = 𝛽0 + 𝛽1𝐸𝑛𝑡𝑟𝑦𝑌𝑒𝑎𝑟 + 𝛽2(𝑆𝑢𝑐𝑐𝑒𝑠𝑠 × 𝐸𝑛𝑡𝑟𝑦𝑌𝑒𝑎𝑟) + 𝜀𝑖   
 



Figure 7: Brent crude oil price 
(a) Oil price (b) Wells and oil price relationship 

  
(c) Successes and oil price relationship (d) Success rate and oil price relationship 

  
Subfigure (a) shows a timeseries plot of Brent crude oil price (USD/bbl.) with a fitted OLS regression line. 
Subfigure (b) shows a scatter plot between well and oil price with a regression line. Analogously, Subfigures 
(c) and (d) substitute number of wells with number of technical successes and success rate respectively.  

 

 

Results 
We run a multivariate logit regression with technical success as the dependent variable and drilling 

speed of the wellbore, the year when the drilling was initiated, total drilling depth and the lagged oil 

price as the dependent variables. The regression equation is shown in Equation 5.  

 
ln (

Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖 = 1|𝑋)

1 − Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖 = 1|𝑋)
) = 𝛽0 + 𝛽1𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝑖 +

𝛽2𝐸𝑛𝑡𝑟𝑦𝑌𝑒𝑎𝑟𝑖 + 𝛽3𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ𝑖 +

𝛽4𝑂𝑖𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1 + 𝜀𝑖

 (5) 

 

Regression results for the multivariate logit model are shown in Table 2. As reported in the table, the 

pseudo-R2 is 0.056. Contrary to the R2 from a typical crossectional OLS regression, the pseudo-R2 does 

not have an intuitive interpretation. That being said, in absolute value, the goodness of fit is not 

particularly high. Nevertheless, given the difficulty of the issue at hand, the obtained results can be 

considered decent. Hence, the variables included in the multivariate model are important, but they do 

not explain the full story. The latter is as expected considering that that our specification does not 

include geological variables. The independent variables are sorted in order of importance in terms of 



addition to the pseudo-R2. Drilling speed of the wildcat wells (metre per day) is the variable that 

provides the highest addition to pseudo-R2. It has an odds ratio (𝑒𝛽) of approximately 0.9909. In other 

words, for each unit increase in drilling speed, the odds of technical success decrease by 0.91 percent 

(= (1 − 0.9909) ⋅ 100). Care should be taken to not confuse probability and odds. Odds is the 

probability of an event occurring divided by the probability of the event not occurring, 𝑝/(1 − 𝑝). 

Hence, a unit increase in in drilling speed has a linear effect on the odds of success but a nonlinear 

effect on the probability of success. This finding coincides with our ex ante expectations. As observed 

in Figure 5 (c), there is an observable difference in average drilling time for successful and unsuccessful 

wildcat wells. As suggested by industry experts, sign of hydrocarbons necessitates additional testing 

which leads to idle time negatively impacting the average drilling speed of wellbore. In other words, 

the estimated odds ratio is only associational rather than causational due to the presence of 

endogeneity issues causing a violation of the population orthogonality condition. More specifically, 

following the suggested explanation there is a case of reverse causality. Lower drilling speed does not 

cause the probability of success to become higher, success is causing the drilling speed to become 

lower. However, there is also an explanation for this finding in terms of industrial economics. Higher 

drilling speed leads to lower drilling cost which may incentivise oil companies to take on more 

exploration risk, i.e. go for drilling targets with a lower probability of technical success but with larger 

reserves. 

Table 2: Multivariate regression results 

  OR p-value 

_cons 0.0000 0.00 

DrillingSpeed 0.9909 0.00 

EntryYear 1.0361 0.00 

TotaldepthMDmRKB 1.0003 0.00 

OilPricet-1 0.9950 0.09 

N  1178 

pseudo-R2 0.0560 

Multivariate logit regression results with technical success as the dependent variable. Odds ratio is 
reported instead of beta coefficients. Model is specified through forward selection. 

 

The second most important variable is the year when drilling was initiated. This variable has an odds 

ratio of approximately 1.0361, which implies that one unit increase in this variable increases the odds 

of success by 3.61 percent (= (1 − 1.0361) ⋅ 100). Hence, coinciding with our prior expectations, for 

every year that passes, the chances of success increases. There are three forces likely at play here. 

First, when time evolves, the shelf become more mature, which may affect success rates. This is 

probably a rather involved relationship. At one point, there is so little oil left that it definitely has a  

negative exploitation effect. According to the NPD, half the Norwegian reserves remain, so the extent 

of this exploitation effect is uncertain. Another factor that is linked to maturity is that you get another 

mix of projects. While in the initial phase there is predominantly wildcats in new geological structures, 

with a larger fraction of satellite fields attached to existing infrastructure. Wells close to existing 

infrastructure often is in areas with more geological knowledge, so a higher technical success rate can 

be expected due to learning effects. Second, technology tends to improve over time, which is likely to 

increase the odds. Better seismics and geological models to a larger extent enable the companies to 

pick promising prospects. Third, we learn more about the geology of the area as time passes. With 

more knowledge, the decision-makers are expected to be better at locating petroleum deposits. While 

it seems reasonable to assume that technology and knowledge, which is proxied through drilling year, 

is monotonically increasing. The assumption of linear increase is more contentious. It could be argued 



that innovations are clustered and exhibits a more cyclical pattern. New technology is in all likelihood 

not implemented simultaneously across all companies either. However, based on descriptive statistics, 

see Figure 2 (b), there does indeed seem to be a linear trend in annual success rate. Caution should be 

exercised when applying this model result to decision-making. The results pertaining to the drilling 

year variable has good in-sample performance but they should not be extrapolated carelessly.  

Total drilling depth is the third most important variable in our model. With an odds ratio of 1.0003 the 

odds of success increase by 0.3 percent (= (1 − 1.0003) ⋅ 100) for each additional metre of drilling. 

The interpretation of this variable can be perplexing. Ex ante expectations regarding the relationship 

between technical success and drilling depth are mixed. Either there is petroleum in an area or there 

is not. Drilling an additional metre has no effect on the chances of success if there is no petroleum 

present. On the other hand, if there is a deposit of hydrocarbons, then it is possible that the wellbore 

is not sufficiently deep to reach the reservoir. Hence, drilling an additional metre would increase the 

probability of making a discovery. Consider for instance, wellbore 2/8-1 drilled by Amoco Norway Oil 

Company from 28.11.1967 to 02.07.1968, which drilled 2595 metres without making any discovery. 

Had they drilled an additional 43 metre they would have discovered what is known today as the Valhall 

field with its 200.36 million sm3 of oil equivalents. Valhall was discovered almost a decade later with 

wellbore 2/8-6 on 07.04.1975 with a drilling depth of 2669 metres. If we were to compare these to 

wellbores, then drilling depth has a positive effect on chances of success. A long well also has the 

potential to detect several layers or zones of petroleum, at different depths.    

However, there could be a case of Reverse Tinkerbell effect pertaining to this finding. If every company 

began to believe and act upon this result, then it would subsequently vanish. Consider a related 

activity: onshore drilling for groundwater. Cabins are often built far away from existing infrastructure. 

Connection to the main water source is, consequently, frequently an issue. The solution is to drill for 

groundwater. While this appears to be a related problem, the relationship between finding 

groundwater and drilling depth tend to be negative. The reason is that decision-makers select a more 

or less random location and usually continue to drill until they reach maximum depth regardless of the 

circumstances. That is, they stop drilling when they either reach maximum depth or if they reach 

groundwater prior to reaching the maximum depth. In short, empirical results suggest that the 

probability of finding hydrocarbons on the NCS increases with drilling depth, but if this information is 

acted upon this relationship could be diminished or even vanish.  

The last variable in our multivariate regression is lagged Brent crude oil price (usd/bbl.). It has an odds 

ratio of 0.9950, which means that one monetary unit increase in oil price is associated with a decrease 

in  odds of success by 0.5 % (= (1 − 0.9950) ⋅ 100). We use the lagged oil price to account for the fact 

that project sanction and project execution tend to not be contemporaneous events. Instead there is 

likely to be some extent of inertia. Oil price can be considered a proxy for the business cycle and 

subsequently also a proxy for a company’s available cash flows. Our ex ante hypothesis is that oil and 

gas companies engage in cyclical behaviours pertaining to their decision-making which affect 

probability of success. Specifically, it could be that when oil price is high and companies are less 

financially constrained, they are more willing to undertake more novel and risky project in less mature 

areas, that typically has a lower technical success probability but a potential for larger reserves. On the 

other hand, when the oil price is low and companies are constrained, they prefer safer projects with 

higher chances of success. It is interesting to note that the descriptive statistics suggest a positive 

relationship between success rate and oil price, see Figure 7 (d). Running a univariate logit regression 

with the probability of technical success and the L.H.S. variable and lagged oil price the R.H.S. variable, 

we do indeed find a positive relationship. However, once we add EntryYear to our specification, the 

relationship becomes negative. Hence, the observed univariate relationship appears to be an artefact 



of endogeneity issues, specifically omitted variable bias which causes a violation of the population 

orthogonality condition - 𝔼(𝑢|𝑥). That is, since the correlation between oil price and EntryYear 

(0.7486) is positive and the latter has a positive effect in the independent variable, the bias in the 

coefficient of oil price is also positive. When looking at oil price throughout the last 50 years, it can be 

described a linear increasing trend. As including EntryYear is tantamount to adding a linear trend, it 

would seem that oil price is erroneously picking up the effect of technology and knowledge which 

EntryYear is a proxy for.  

 

 

Conclusions 
Our analysis indicates that learning and effects and technological advances have dominated maturity 

on the NCS, so that the technical success rate is still increasing. This is contrary to the findings of 

Ildedare and Pulsipher (1999) in mature onshore Louisiana. In addition, we find that the following 

factors are causing the technical success rates to increase: reduced drilling speed, increased drilling 

depth, and reduced oil price. 

There are several probability measures for exploration. One is technical success rates, i.e., whether 

petroleum is discovered. This is of a geological nature. Another standard probability that combines 

commercial and geological features is the probability that an exploration wells leads to a discovery 

that is actually developed, i.e., the commercial success rate. There is also a third probability that puts 

more weight on the commercial side; the probability that the reservoir are developed, provided a 

technical discovery is made. In an extension of this paper we will analyse the drivers behind variation 

in these success rates over time, and the relation between them.  
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