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Abstract

This paper estimates the seasonal and zonal CO2 marginal emissions factors (MEFs) from

electricity production in the Italian electricity system. The inclusion of the zonal configuration

of the Italian wholesale power market leads to a complete measurement of marginal emission

factors which takes into account the heterogeneous distribution of RES power plants, their

penetration rate and their variability within the zonal power generation mix. This article relies

on a flexible econometric approach that includes the fractional cointegration methodology to

incorporate the typical features of long-memory processes into the estimation of MEFs. We find

high variability in annual MEFs estimated at the zonal level. Sardinia reports the highest MEF
∗This is a pre-print version of an article accepted for publication on the journal Environmental and Resource

Economics (EARE) on April, 25th 2021.
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(0.7189 tCO2/MWh), followed by the Center South (0.7022 tCO2/MWh), the Center North

(0.4236 tCO2/MWh), the North (0.2018 tCO2/MWh) and Sicily (0.146 tCO2/MWh). The

seasonal analysis also shows a large variability of MEFs in each zone across time. The hetero-

geneity of results leads us to recommend that policymakers consider the zonal configuration of

the power market and the large seasonal variability related to carbon emissions and electricity

generation when designing incentives for Renewable Energy Sources (RES) expansion and for

achieving emission reduction targets.

Keywords: Decarbonization; Electricity Price; Fractional Cointegration; Marginal Emission

Factor (MEF); Renewable Energy Sources (RES).

Abbreviations: ACF (AutoCorrelation Function); AEF (Average Emission Factor); FCVAR
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1 Introduction

Climate change mitigation policies call for the evaluation of the relationship between renewable

energy generation and greenhouse gases reduction. For the electricity sector, this requires evaluating

the impact that electricity generation from Renewable Energy Sources (RES) has on CO2 emissions

(Bretschger and Pittel, 2020).

The simplest way to address this issue is to measure the ratio between the emissions of a given

power system and the corresponding power generation in a given period. This is the so-called

Average Emission Factor (AEF), which however ignores the structure of the generation mix in

the power system and neglects the dynamic changes in the merit-order of power supply. Indeed,

electricity is produced by different technologies, each of them with a different rate of activity (the
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so called capacity factor) and a different contribution to the load in a given period (the load factor).

For example, when load rises, the power plants that are producing at the margin (and beyond it)

are progressively called to serve the extra load. This causes an increase in the level of emissions

which is explained by the extra emissions of these marginal (and beyond marginal) plants, and

not by the average emissions that are related to the production of the base-load plants which are

unaffected by the load change. Thus, a proper measure of the sensitivity of carbon emissions to the

change of the load would be given by the average emissions of the marginal plants, i.e., the plants

that produce at the margin. This is the so-called Marginal Emission Factor (MEF).

From a policy point of view, the correct measurement of the MEF is a topical issue. An energy

saving policy, for instance, would induce a change in marginal emissions, whose impact would

be measured by the MEF. Similarly, any policy that would change the merit-order structure, for

example, by increasing the amount of zero-emission RES that shift the merit-order supply curve

right-ward, would have an impact on emissions captured by the MEF.

In a seminal paper, Hawkes (2010) calculated the MEF for the GB electricity system.1 Since

then, the emerging literature on MEF has taken into account several aspects of the analysis. A large

body of literature has estimated MEFs in several countries and focused on the relationship between

the MEF and AEF, including Siler-Evans et al. (2012) and Ryan et al. (2016), for several systems

across the US, Bettle et al. (2006) and Jansen et al. (2018) for the British system, Voorspools and

D’Haeseleer (2000) for Belgium, Oliveira et al. (2019) for UK, France and Spain, Koffi et al. (2017),

Climate Transparency (2017) and Beltrami et al. (2020) for Italy.

Other scholars have discussed the role and importance of RES for the correct calculation of

MEF. Indeed, Hawkes (2010, 2014) disregards RES contribution in its calculation on the basis of

the assumption that they would not act as the marginal technology in the GB system, given their

near-zero operational marginal cost and non-dispatchability. However, he admits that this is one

of the main limitations of his approach. This criticism is shared by Li et al. (2017), who highlight

the drawbacks of relying only on emitting sources (conventional non-renewable sources of energy)
1In a subsequent paper, Hawkes (2014) further addresses the issue by distinguishing between the short-run MEFs,

which rely on the assumption of a given structure of the power supply and the long-run MEFs, which include changes
in the power supply structure.

3



for the computation of MEFs. They also measure the difference in the evaluation of MEFs for

the Midcontinent Independent System Operator (MISO) when RES are included in the analysis.

Beltrami et al. (2021) found evidence that, in the Italian power exchange market, RES can be

marginal and that market operators often bid non-zero prices for electricity generated by RES,

which cast doubts on the correctness of excluding RES from the calculation of MEFs in a system

with a large penetration of renewables such as the Italian electricity market.

Another stream of literature has focused on the correct empirical strategies to evaluate MEF

with regard to the specific nature of power supply and the consequences in terms of data analysis.

Indeed, the day-ahead electricity market is composed of 24 hourly sub-auctions, in which power

plants are dispatched on the basis of the merit-order and the equilibrium quantities and prices are

determined for each hour of the day. Hawkes (2010) follows the so-called inter-day approach, for

which 48 independent time series are constructed2, each one indexed to a given half hour of the

day. The inter-day approach is often adopted in the empirical literature on electricity markets, in

particular in those analyses that explicitly focus on the different supply structure in each hour.3

However, the inter-day approach has the drawback of treating consecutive hours as independent.

It is well-known in power system analysis that several dynamic constraints in power system opera-

tions give rise to non-convexities in production costs (see Cretì and Fontini, 2019, Ch. 5). Several

types of power plants, such as thermal power plants with rump constraints or large hydropower

or pumped-storage plants, have operational constraints such that their operations depend on what

has happened in previous hours or is expected to happen in subsequent ones. Treating the hours as

independent causes a loss of critical information on the dynamic nature of power production. For

this reason, an intra-day approach has been developed (Beltrami et al., 2020) to consider the time

structure of power markets as part of a single time series. By doing so, the linkages between hours

are fully respected within the time series.

The intra-day approach has the further advantage of increasing the data availability for the
2The GB power market is based on half-hourly settlement periods.
3For instance, this approach might be useful when studying the impact of PV (Photo Voltaic) generation on

power markets as it is possible to consider data at midday (the hour of the day with the highest solar irradiation)
and compare it with data from night hours. Other hours are considered (such as hour 11 and 18) when the analysis
is focused on the consequences of ramping up and down of RES, which is observed in the so called duck-curve
phenomenon (see Lazar, 2016).
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considered time period. This allows to measure the MEF for short periods of time, while the inter-

day approach needs to consider longer time spell which can be problematic for the estimation of

MEF, since structural changes in power supply can occur overtime. Nevertheless, the intra-day

approach requires a complex data analysis such that simple econometric techniques (such as OLS,

as in Hawkes 2010, 2014) cannot be employed. Power data have a periodic daily and weekly patterns

that need to be depurated from the original time series. Moreover, the resulting data often show a

non-stationary pattern with past lags influencing observations over time. This requires the use of

sophisticated econometric techniques to obtain reliable estimates.

In this paper, we estimate the Italian MEFs, including RES; we follow the intra-day approach,

distinguishing across Italian market zones and further disaggregating the data into quarterly time

periods. Our contribution to the literature is multifold.

The first contribution is the calculation of zonal MEFs for the case of Italy and the comparison

with the computed zonal AEFs. Beltrami et al. (2020) calculated the Italian MEFs without RES

generation, at the national level. However, the Italian power market is divided into six zones, each

with its specific power supply structure. The national MEF corresponds to a weighted average of

the zonal MEFs. From the policy perspective, it becomes crucial to analyse the MEFs for each

zone, in order to assess the relative impact of the different power supply structures on the local

MEFs and to identify the areas where decarbonisation efforts would be most effective.

The second contribution of this paper is the inclusion of RES generation in the calculation of

zonal MEFs. The impact of RES on emission reduction due to displacement of generation from

polluting plants has been studied very recently (Di Cosmo and Valeri, 2018). As mentioned, the

Italian power supply is quite different across zones, with a large penetration of hydro power in the

North zone, a large contribution of PV and Wind in the South and Sicily, and no gas-fired plants in

Sardinia. RES are marginal in different periods and across zones; moreover, power producers who

rely on RES do not necessarily bid at zero prices. For these reasons we explicitly take into account

RES generation in the calculations and compare the result at the aggregated (national) level with

the one reported in Beltrami et al. (2020) to reveal the overestimation error that is made when

RES generation is omitted from the calculation.
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A third contribution refers to the evaluation of MEF for each quarter of the year, that is possible

only by adopting the intra-day approach. The matrix of quarterly MEFs for each zone represents

a tool that can be useful in planning policies that have seasonal and regional impacts on load. For

instance, energy saving policies aimed at the substitution of gas-fired heating systems with heat

pumps would have the highest impact on winter load in the colder North zone. The first quarter

MEF of the North zone provides a more accurate measure of its impact on emission than the yearly

one. Similarly, a policy in support of PV generation would have the highest impact on quarter 3

(Q3) in southern Italian zones.

Finally, we contribute to the empirical literature on MEF estimation under the intra-day ap-

proach. We show that the time series of the seasonally adjusted data exhibit long memory, and

this requires using a fractional cointegration approach (FCVAR), that extends the standard coin-

tegration case by allowing for the linear cointegration of the variables with a fractional order of

integration (i.e. less than one). This captures the long-memory nature of the series and the link

between emissions and generation and consequently provides reliable estimates of the MEFs. To

the best of our knowledge, this paper is the first that applies the FCVAR methodology to estimate

MEFs. The empirical Section of the paper (Section 4) relies on a flexible econometric approach

which is driven by data: the adoption of the best econometric approach depends on the decisions

based on the application of a set of statistical tests.

The paper is structured as follows. Section 2 describes the methodology used. Section 3 describes

the dataset. Results are illustrated in Section 4. Final remarks and policy implications are presented

in Section 5.

2 Methodology. A flexible econometric approach.

The identification strategy adopted in this paper builds on previous works by Hawkes (2010),

Callaway and Fowlie (2009), Carson and Novan (2013), Li et al. (2017) and Beltrami et al. (2020).

We suggest to adopt a flexible econometric approach driven by data. MEFs should be estimated

using the model which captures the main features of the observed time series and the link between
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the variables. The procedure, which starts from the simplest to the most complex model, can

be summarised as follows. In case the time series do not contain unit roots and are stationary, a

simple ARIMAmodel, capturing the autoregressive structure of the time series, is the best choice. In

contrast, if a long-memory generating process is identified, an ARFIMA model is estimated. When

the rank test for fractional cointegration rejects the hypothesis of null rank, the most complex

model (FCVAR) is estimated.

The simplest model to estimate the relation between electricity generation (G) and carbon

emissions (E) is a regression model with just one regressor with coefficients estimated by OLS. This

basic model is illustrated in Equation (1):

∆Eh = β∆Gh + εh (1)

where the subscript h is the hourly settlement period , ∆Eh = Eh−Eh−1 , ∆Gh = Gh−Gh−1 and ε

represents the error term of the regression, which includes all the possible sources of variation. The

β coefficient provides an estimate of the MEF. The first contribution of our analysis with respect to

the existing literature is the introduction of additional information by studying the spatial (zonal)

heterogeneity. Hence, we separate the data into zones.4 Therefore, Equation (1) is expanded to the

following formalisation:

∆Eh,z = β∆Gh,z + εh,z (2)

with z = 1, . . . , Z and Z is the total number of zones in the market.5

We add RES to the calculation of ∆Gh,z. Hence, we identify it as:

∆Gh,z = (Geh,z +Gneh,z)− (Geh−1,z +Gneh−1,z) (3)

where Ge stands for the generation from emitting sources (i.e. thermoelectric power plants fueled
4We follow the characterization provided by the Italian TSO, Terna, with the identification of six physical zones

(North, Center North, Center South, South, Sicily and Sardinia).
5In this analysis, the cross-zonal estimation of MEF is not included in order to keep the model as simple as

possible.
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by natural gas, coal or oil) whereas Gne is the generation from RES (non-emitting).

We interpret the estimated MEF as the carbon intensity of the fuel that is mostly used at the

margin in the day-ahead (DA) market, and this represents the technological structure of the power

plants typically operating at the margin in the Italian system in a given zone.6

The empirical approach to be used depends on the nature of the data. To identify possible order

of integration of the processes generating the time series involved in the estimation of MEF, we pre-

liminarily perform the following unit roots and stationarity tests: Augmented-Dickey-Fuller (ADF),

Dickey-Fuller Generalized Least Squares (DF-GLS), Phillips-Perron (PP) and Zivot-Andrews (ZA)

unit root tests, together with the Kwaitkowski-Phillips-Schmidt-Shin (KPSS) stationarity test.

The null hypothesis of the ADF test, as all unit root tests, is that the time series contains a unit root

and must be first-differenced to obtain a stationary series. As it is well known, ADF is an exten-

sion of the original Dickey-Fuller test to accommodate general ARMA (p,q) models with unknown

orders. The PP test (Phillips and Perron, 1988) is an evolution of the ADF test which corrects

possible autocorrelations and heteroskedasticity of errors of the auxiliary regression estimated in

the ADF test. The DF-GLS test (Elliott et al., 1996) is a modification of the ADF. This test is

an efficient unit root test and can have substantially higher power than the ADF or PP unit root

tests, especially when the value of the autoregressive parameter φ is close to unity. A common issue

related to the application of unit root tests to energy time series is the possible presence of struc-

tural breaks in the time series. When a structural break is present, the series could be stationary

within different levels, but standard unit roots presented so far are biased towards non-rejection

of the unit root. The ZA test (Zivot and Andrews, 1992) is a variation of the PP original test

allowing for a level shift in the time series and in which it is assumed that the exact time of the

break-point is unknown.7 KPSS is the most commonly used stationarity test (Kwiatkowski et al.,
6Note that we are considering the MEF of production, not the MEF of consumption. This means that the emissions

from a plant are attributed to the zone where the plant is located, regardless of whether the energy produced by
that plant is used within that zone or exported to another zone. Therefore, when the marginal technology is the
import, the emissions in that zone are set to zero (since are included in the exporting one). However, we are not able
to calculate the emissions of the plants located outside Italy and therefore the calculations do not include emissions
from international imports (through interconnectors). For a detailed description on data construction, please refer
to Beltrami et al. (2021).

7All unit root tests have been applied under the assumption of a constant deterministic component, with the
exception of the ZA test, where a constant and a trend have been included.
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1992). Differently from the unit root tests, the null hypothesis is that the time series is stationary.

The KPSS test could be biased when extreme observations are observed in the time series. For

this reason, an outlier-robust version of the KPSS test (rKPSS), based on ranks, has been applied

(Pelagatti and Sen, 2013).

We then estimate the AutoCorrelation Function (ACF) and the Partial AutoCorrelation Func-

tion (PACF) on the seasonally-adjusted time series for each zone. Hourly and weekly seasonality

has been removed in order to correctly identify the data generating process, making sure that the

deterministic cycles do not affect the dynamics of the time series.8

As pointed out by Jones et al. (2014) and Beltrami et al. (2020), the presence of fractional

integration in a process is usually verified when both the null hypothesis of unit root and the

null hypothesis of stationarity are rejected. When multiple time series are analysed, it becomes

necessary to explore the potential presence of a fractional co-integration relationships between the

single time series.

Cointegration is often defined as a stationary relationship between nonstationary variables. The

classical cointegration approach dates back to the work by Engle and Granger (1987), where a basic

OLS estimator is exploited for the detection of the cointegration parameter β, incorporating the

co-movement between non-stationary variables.

The concept of fractional cointegration was originally presented in the same paper by Engle

and Granger (1987) which generalised the traditional cointegration theory based on unit roots.

As a matter of fact, the concept of standard cointegration is a specific case in which the order of

cointegration is an integer value. However, the more general theoretical framework of fractional

cointegration allows the memory parameter to take fractional values. Specifically - following the

indications by Carlini and Santucci de Magistris (2019), in the framework of long-memory processes,
8Seasonality is one of the most important stylised facts studied on electricity demand and prices (Weron, 2006).

Regular fluctuations are observed at different time scales depending on the sample frequency of the time series.
When hourly time series are collected, a three-scale seasonality can be defined: daily, weekly and yearly seasonality.
Daily seasonality is due to different levels of electricity demand/price during different hours of the day (peak and
off-peak hours). Weekly seasonality is connected to the demand of electricity by business and industrial companies
which is lower during week-end. Yearly seasonality is mainly induced by weather conditions causing an increase of
demand/price when heating (winter) and cooling (summer) systems are intensively used. In this paper, low-scale
seasonality (daily and weekly) has been removed in order to emphasise the effect of yearly seasonality which has been
deeply studied in the quarterly analysis (see Appendix A).
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fractional cointegration allows linear combinations of I(d) processes to be I(d− b), with d, b ∈ R+

with 0 < b ≤ d. This framework allows for the existence of common stochastic trends integrated of

order d, with short-term perturbations from the long-run equilibrium integrated of order d− b.

We introduce the FCV ARd,b model for our variables set9 Xt:

∆dXt = αβ′∆d−bLbXt+

k∑
i=1

Γi∆
dLibXt + εt (4)

where, in detail:

• d is the fractional parameter, or the order of fractional integration of an observable time series

process which we allow to assume any real value;10

• b is the the degree of fractional cointegration obtained by the linear combination of I(d)

variables, or the cointegration gap. We assume here11 d = b;

• ∆d = (1− L)d is the fractional difference operator;

• the operator Lb = 1−∆b is the fractional cointegration lag operator;

• α and β are the long-run parameters which are p× r matrices with 0 ≤ r ≤ p. p defines the

dimension of the time series Xt, thus p = 2 in our case. The cofractional rank is defined by r;

• k is the number of lags in the system;

• Γ is a p× p matrix leading short-run dynamics;

• εt is a p-dimensional vector of i.i.d.(0,Ω) disturbances.

Note that under the special assumption d = b = 1 the standard cointegration definition by Engle and

Granger (1987) is obtained. Thus, the FCV ARd,b can be considered a general model comprising
9We deal with a two-dimensional vector of variables Xt = (X1,t;X2,t) = (Et;Gt), with t = 1, . . . , T . Although

we omit the subscript z, the model applies individually to each zone z of the Italian market.
10A generic stochastic process yt is both stationary and invertible if all roots of AR and MA polynomials lie outside

the unit circle and |d| < 0.5. The process is nonstationary for |d| ≥ 0.5, as it possesses infinite variance; see Granger
and Joyeux (1980).

11The model built under this constraint is called “baby model”. This restriction avoids the identification issues
which are well described by Carlini and Santucci de Magistris (2019). As a matter of fact, when the number of lags k
is unknown, the FCVAR model is not globally identified and this results in a multiplicity of not-identified sub-models
for any possible combination of the parameters d and b.
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both fractional cointegration and classic cointegration. A final remark regards the rank of the

long-run matrix Π = αβ
′
which is restricted to r ≤ p.

A simple way to attenuate the influence of pre-sample values on the estimated coefficients of

the model is to adopt the specification suggested by Johansen and Nielsen (2016), also applied in

Jones et al. (2014). The basic idea is to de-mean the observed variables by including a restricted

constant. This is a shift (or “truncation”) of the variables by a level parameter, which can be used

for empirical results. Therefore, Equation (4) becomes the following:

∆d(Xt − µ) = αβ′∆d−bLb(Xt − µ)+

k∑
i=1

Γi∆
dLib(Xt − µ) + εt (5)

The restricted constant µ can be retrieved from −ρ′ = β′µ, which is the expression denoting

the mean level of the stationary long-run cointegration relationships. In practice, to obtain the

intercept of the long-run cointegrating relationship, we compute the vectorial product β̂′µ̂, i.e. the

product between the estimated beta coefficients and the estimated level parameters.

This specification is convenient because it allows to reduce the bias arising from the pre-sample

observations of Xt, thus accommodating the fact that the first value of the process is different from

zero.

The coefficients of the model defined in Equation (5) are estimated by maximum likelihood,

conditional on N initial observations12 by maximising the following log-likelihood function:

logLT (λ) = −
Tp

2
[log(2π) + 1] −

T

2
log

{
det

[
T−1

T+N∑
t=N+1

εt(λ)εt(λ)
′

]}
(6)

where det stands for determinant. For further details, see Johansen and Nielsen (2016). The max-

imisation of Equation (6) produces the optimal estimates of parameters (α, β,Γ, ρ, ξ).

The Matlab code used to estimate the coefficients of the FCVAR model13 takes into account
12A conditional approach for the maximum likelihood estimation simplifies the computational procedure by reduc-

ing the numerical problem to least squares. Therefore, it is more convenient than the unconditional approach, which
is computationally complex (see Johansen and Nielsen, 2012).

13The main functions of the Matlab code, which has been adapted to our case, have been provided by Carlini and
Santucci De Magistris, who are kindly acknowledged by the authors.
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the issue discussed by Johansen and Nielsen (2012) regarding the distribution of the conditional

maximum likelihood parameter estimates. This issue is relevant to obtain correct outcomes from

the cointegration rank test, which has to be based on alternative critical values. Specifically, for the

estimation of the model, the asymptotic theory is standard when b < 0.5 and the limit distributions

of the estimated parameters follow either a Gaussian or a χ2 distribution. For the case of b > 0.5,

the asymptotic theory is non-standard and assumes that the limit distribution of the likelihood

ratio test for the cointegration rank is a functional of fractional Brownian motion of type II.14

Conditioning on the optimal selection of k derived from a lag selection test based on the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC), we proceed by running the

Likelihood Ratio (LR) trace test to identify the order of cointegration of our system. The Likelihood

Ratio test is sequentially repeated until it is not possible to reject the null hypothesis.

Once the matrix Π = αβ
′
is defined, we test the following hypothesis:

Hr : rank(Π) = r

Hp : rank(Π) = p
(7)

In particular, the LR test starts from the lowest possible rank, i.e. 0, and evolves until the

highest possible rank, i.e. p. The LR test stops once the null hypothesis cannot be rejected.15

This corresponds to the correct rank of the matrix, i.e. the number of potential cointegrating

relationships in the system.

To check for potential statistical endogeneity we can impose some restrictions motivated by

the economic theory, especially on the adjustment parameters α and cointegration vector β. Most

importantly, we are able to perform a strong robustness check of our model.

The idea is to test several restricted models (with restrictions on estimated parameters) and

derive some conclusions about the goodness of the overall approach. We formulate the following
14To obtain the simulated p-values of our cointegration rank test automatically, we made use of a separately installed

program to be uploaded in Matlab, called fdpval. This is the C++ implementation of a Fortran program used to
obtain simulated p-values from MacKinnon and Nielsen (2014), who simulated numerical cumulative distribution
functions (CDFs) as functions of b0.

15This has to be read sequentially. Starting from rank = 0, we firstly test the hypothesis that the rank of the
matrix is null against the alternative that the rank is equal to p. If this null hypothesis is rejected, then the second
step is carried out by testing if rank = 1 against the alternative that is equal to p, and so on.
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structure of hypothesis tests:

Rψψ = rψ

Rαvec(α) = 0

Rβvec(β
∗) = rβ

(8)

where ψ is the set of restrictions imposed on (d, b) and β∗ = (β′, ρ′)′, where ρ represents the

restricted constant term. Most importantly, the first hypothesis test is a valid check for the correct

identification of our econometric model.16

The restrictions formalised in Equation (8) enable to validate our model and are described here:

1. H 1
d : the key hypothesis to test is whether it is correct to adopt a FCV ARd,b model against

the alternative of using a standard CVAR (Cointegrated Vector Auto Regressive) model;

2. H 1
β : are emissions part of the cointegrating relationship? We test the hypothesis on the

long-run fractional cointegrating coefficient β to check that the estimated co-integrating re-

lationship has the expected direction of causality, i.e. that electricity generation causes the

changes in carbon emissions;17

3. H 1
α and H 2

α : test hypothesis on α. This is the long-run exogeneity test which is carried out

on each variable included in the model.18

The required restrictions obtained from the hypothesis tests are then incorporated in a second

step. The model needs to be restricted and re-estimated to improve the efficiency of the estimated

MEF coefficients and that of the estimated fractional parameters d and b. In this case, the same

procedure described in this Section is repeated for the formalisation of a new correct long-term

equilibrium relationship.
16We here use the same notation as from Nielsen and Popiel Ksawery (2018).
17This test was applied by Jones et al. (2014) to check the validity of including additional exogenous regressors in

the main equation.
18The long-run exogeneity tests verify the magnitude of short-term adjustments of each variable to shocks in the

long-run equilibrium relationship.
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3 Data

3.1 Data description

We construct six independent zonal datasets, for year 2018, that are described as follows.

1. Estimated CO2 emissions (tCO2). They have been obtained by applying the fuel con-

sumption model to Italian power plants, as described by Beltrami et al. (2021). Plant-level

data have been aggregated to obtain the hourly amount of carbon emissions from electricity

production in each zone. Data for the South zone are missing because, due to its market con-

figuration as specified by the Italian TSO, it was not possible to estimate the corresponding

emissions. In the period under examination, the biggest thermal production plants physically

located in the regions belonging to the South zone were not included in the market zone,

but were kept separate in two limited production poles (Brindisi and Foggia), due to physical

permanent transmission congestion that impeded their merge into the physical South zone.

This implies that the South zone lacks emission data for the largest thermal power plants.

2. Electricity generation (MWh). Generation data have been obtained as the aggregation of

hourly accepted bids of electricity supply in each physical zone in the Italian day-ahead market,

by considering both thermoelectric polluting generation and carbon-neutral RES generation.

The source of this information is GME (Gestore del Mercato Elettrico), the Italian Power

Market Operator.19

Based on key indicators on electricity load and generation in the past 5 years (total generation,

generation mix, total load, load shape, technology of the marginal plant)20, 2018 was selected

as a representative year as it reflects the key features and patterns of electricity generation and
19It should be noted that we consider only data accruing from the day-ahead market. Day-ahead schedules are

adjusted in the balancing market. It is therefore possible that the marginal plant in the day-ahead market differs
from the one which is actually dispatched in real time and consequently also the MEF would differ. However, note
that the real-time emissions cannot be calculated on the basis of available information. On the one hand, the real
time dispatching is selected by TSO, which operates on the basis of real-time intra-zonal congestions which are not
reported. On the other hand, in the case of Italy only data of overall aggregated quantity accepted in the balancing
market for both reserve margin and zonal congestion resolution is released, without further disaggregating the two
components. Therefore, a disaggregated analysis by type of plant dispatched in real-time cannot be performed.

20Year 2020 has been excluded due to the structural variations brought about by the pandemic.
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consumption which are relevant for a detailed short-run analysis of MEFs. Indeed, the aim of

our work is to investigate short-term variations in emissions, in line with the existing literature

on MEFs. Within this methodological framework we want to highlight the variations in MEFs

across the geographical and temporal dimension, with a focus on seasonal variations in particular.

In our view, these variations can be appropriately investigated with reference to an individual

“representative” year. Figure 1 displays the aggregate load, emissions and electricity generation for

the Italian day-ahead power market. Table A1 in the Appendix displays the data used for the map

shown in Figure 1 with additional disaggregation. The physical Italian market zones differ in load,

emissions and electricity generated from thermoelectric and RES power plants. The North zone

represents nearly 75% of total national load21 and generates 58% of total national electricity. The

largest share of RES production in this zone is from hydroelectric power plants (located in Trentino,

Piedmont, Lombardy and the Aosta Valley) and Non-Relevant RES (NRRES)22 (particularly small

PV plants). Center South is the second contributor in terms of load and electricity generation.

Power demand is mostly met by wind turbines, NRRES and hydro (several pump storage hydro

plants). The Center North zone strongly relies on geothermal power production plants (nearly 32%

of total zonal power production). The residual renewable generation mix comprises NRRES and

hydro. The South zone has a high production from large-scale wind turbines, which - together with

small-scale solar and wind units - provides nearly 73% of total zonal power generation. The amount

of load and power generation in Sicily and Sardinia is relatively small compared to the other zones.

Nevertheless, the power generation from large-scale wind farms and small-scale PV is significant

and contributes in each zone to, respectively, 44% and 23% of total zonal power production.

Figure 2 displays the time dynamics of emissions and generation for the North zone. The figure

shows the typical daily and weekly behaviour of power time series due to the seasonal patterns,
21Data for the virtual production zones, the limited production poles and the interconnectors are not shown in

Table A1.
22The definition of Non-Relevant RES (NRRES) depends on the specific Italian encoding of plants and RES subsidy

rules. Small-scale renewables, i.e. renewable energy plants smaller than 10 MW (mostly connected at distribution
level), receive subsidies by means of a purpose-built public company, called GSE (Gestore Servizi Energetici, in
Italian - Energy System Manager). The individual supply of NRRES is collected by the GSE, aggregated and placed
on the market at zero price. This category includes various small-scale RES plants. Depending on the zone, the
majority of these plants are either small PV or run-of-the-river hydro. However, there are also other types, such as
small-scale wind, or small old co-generation plants (even not renewables). Further disaggregation is not possible and
therefore they are classified as a single category within the RES group.
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Figure 1: Zonal configuration of the Italian wholesale power market. Note: data refer to year 2018.
Values of load and generation are in MWh; values of carbon emissions are in tCO2.

which are related to consumption levels that drop at night and in the weekends. Therefore, we

must perform a preliminary adjustment for each zone, by extracting and removing the deterministic

component of time series variables. The preliminary adjustment is carried out by constructing 6

dummy variables to account for the day of the week (omitting the 7th dummy related to Sundays

to avoid multi-collinearity) and 23 hourly dummies to account for the settlement periods. We then

regress each time series on the chosen dummy variables and store the residuals. The seasonally-

adjusted time series variable results from the sum of the residuals and the estimated constant.23

3.2 Preliminary data analysis

The autocorrelation and partial autocorrelation functions (ACF and PACF) plots of seasonally

adjusted time series by zone are shown in the Appendix A. They show evidence of long memory

data generation processes.
23From now on, we will focus only on the seasonally-adjusted time series, i.e. the stochastic component of the

observed time series.
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Figure 2: Hourly emissions (tCO2) in green and hourly generation (MWh) in blue for the market
zone North in 2018. Source: own elaboration.

Table 1 reports the unit root and stationarity tests for each physical zone, both for carbon

emissions and electricity generation. The comparison of the two types of tests leads to opposite

conclusions regarding the nature of the time series we analyse. On one hand, the unit root tests

mainly reject the null hypothesis of having a unit root in the variable. On the contrary, based the

KPSS and RKPSS stationarity tests that it is not possible to accept the null of stationarity. This

mixed outcome, similar to the results in Jones et al. (2014) and Beltrami et al. (2020), is the main

indicator of the presence of a fractional order of integration.24 We thus proceed to analyse the

potential for fractional cointegration relationships between our emissions and generation.

The results on MEF estimates are based on the methodology set out in Section 2. The im-

plementation of the model described in Equation (5) follows the procedure suggested by Johansen

(2008) and Carlini and Santucci de Magistris (2019).

In the first step, the unrestricted FCVAR model is estimated. Preliminarily to the estimation,

we conduct the lag-order selection based on the Akaike Information Criterion (AIC) and Bayesian
24In Beltrami et al. (2020) the British and Italian electricity markets are compared. Microdata are available for

both markets, but the time frequency is different in terms of the sample frequency of collected data: half-hourly in
Great Britain and hourly in Italy. In this paper, we focused on hourly Italian data. The main empirical features
of generation and emission data are not affected by the different time frequency. Thus, multi-scale seasonality and
fractional integration are observed both using hourly Italian and half-hourly British data.
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Table 1: Unit root and stationarity tests by each physical zone for the seasonally adjusted emissions
(Et) and generation (Gt) time series. Sample period: 2018. Critical values (C.V.) for each test are
shown in the second column.

North Center North CenterSouth Sicily Sardinia
Test C.V. Et Gt Et Gt Et Gt Et Gt Et Gt
ADF -1.95 -6.98 -4.70 -14.01 -4.23 -13.27 -8.38 -20.38 -4.45 -5.56 -2.58
DFGLS -1.94 -12.19 -9.59 -16.16 -19.06 -15.75 -21.23 -23.24 -11.25 -6.27 -6.29
PP -2.86 -14.27 -15.95 -22.74 -19.35 -21.39 -20.45 -23.59 -14.35 -7.65 -10.05
KPSS 0.15 4.29 4.35 2.08 2.51 1.91 1.09 0.26 0.22 2.94 2.73
rKPSS 0.15 4.49 4.74 1.93 2.56 1.89 1.12 0.37 0.29 2.88 2.80
ZA -5.08 -17.79 -18.86 -26.64 -27.72 -24.03 -21.95 -26.42 -14.93 -11.50 -10.18

Information Criterion (BIC). According to order selection results, we proceed with the Likelihood

Ratio (LR) test to detect the cointegrating rank of the model. If the hypothesis r = 0 cannot be

rejected, the procedure is stopped and the MEF is estimated by using the same procedure as in

Beltrami et al. (2020).25

Based on the above hypothesis testing procedure, we conduct several diagnostic checks on the

FCVAR estimations to prove the validity of the estimated model. Firstly, we test for serial corre-

lation in the residuals. Secondly, the adoption of the FCVAR framework is validated through the

LR test. Thirdly, the direction of the long-run cointegrating relationship is verified by a signifi-

cance test on β. Lastly, the long-run exogeneity tests are carried out on the α parameters and a

restricted FCVAR model is finally estimated by taking into account the restrictions resulting from

the previous hypothesis testing procedure.

For the full yearly sample, we do find evidence for the adoption of the FCVAR for all zones from

the unit root and stationarity tests except for Center-South and South zones. For the former, the

LR cointegrating test does not show any evidence of fractional cointegration relationship, and thus

we estimate the MEF according to the methodology described by Beltrami et al. (2020). For the

South zone, as already mentioned, we do not have valid data for the computation of emissions and

thus the corresponding MEF cannot be estimated. For zones North, Center North and Sardinia,

the statistics (reported in Appendix A) show that the preferred model for the MEF estimation is
25The final model is a regression with AR(F)IMA errors. See Equation (4) and (5) of Beltrami et al. (2020).

18



the Restricted FCVAR, while the unrestricted FCVAR is selected for Sicily.

We repeat the same analysis at quarterly frequency by zone.26 In all cases, except for Sardinia,

the unit root tests reject the null hypothesis, and so does the stationarity test.27 Therefore, the

adoption of the FCVAR approach is justified. Nevertheless, in the quarterly analysis, most cases

does not show evidence of fractional (or standard) cointegrating relationship which is rejected by

the cointegration rank test. Thus, the integrated econometric approach leads to the calculation of

the MEF according to the methodology used in Beltrami et al. (2020).

For Sardinia, the unit root and stationarity tests lead to more heterogeneous results. As regards

emissions, the unit root and stationarity tests suggest the presence of fractional integration for

all cases.28 On the other hand, for the time series of generation, the ADF test accepts the null

hypothesis of unit root, in all quarters. In spite of this, the other unit root tests reject the unit root

hypothesis and therefore generation variable is kept in levels in all quarters.

4 Results

Table 2 summarises the estimated zonal MEFs for Italy in 2018, according to the integrated empirical

methodology presented in Section 2. The full econometric calculations are shown in Appendix A.

Table 2: Marginal emission factor (tCO2/MWh) in 2018 by market zone.

Zone MEF

North 0.2018
Center North 0.4236
Center South 0.7022
Sicily 0.1460
Sardinia 0.7189
Italy 0.3921

Estimated values of MEFs are highly variable among zones. The highest MEF (0.7189 tCO2/MWh)
26The preliminary unit root and stationarity tests by quarter and by zone are presented in Appendix A.
27Although for Q1 in the Center North the ADF test does not reject the null of unit root, the other unit root tests

reject the null. Hence, in this case, there is not sufficient evidence to use the variable in first differences and the
variable is kept in levels.

28With the same argument of the case of Q1 for Center North, the rejection of the null hypothesis of the ADF test
for Q4 does not give sufficient evidence to use first differences. Hence, emissions in Q4 for Sardinia are kept in levels.
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is obtained in Sardinia, followed by Center South (0.7022 tCO2/MWh), Center North (0.4236

tCO2/MWh), North (0.2018 tCO2/MWh) and Sicily (0.146 tCO2/MWh).

Importantly, these results reflect the generation mix in each zone and the dynamic evolution

of the carbon intensity of marginal power generators in the market. Sardinia strongly relies on

thermoelectric coal-fired plants, which have the highest carbon intensity. Moreover, the result of

MEF for Sardinia is more than double the annual AEF (0.3001 tCO2/MWh), revealing a high

carbon intensity of marginal generation in this area which is not reflected in the AEF calculation.

A similar outcome is obtained in the Center South. This zone strongly relies on conventional

power plants (representing more than 50% of the generation mix) which affect the overall carbon

intensity of marginal generation. The estimated MEFs are nearly 75% higher than the annual AEF

(0.4078 tCO2/MWh).29

The MEF estimated in the Center North zone is roughly four times higher than the annual

AEF (0.1234 tCO2/MWh). In this case, the value of MEF mostly reflects the carbon intensity

of gas-fired power plants, which represent nearly 33% of the generation mix. This result is also

influenced by the significant contribution of geothermal production to marginal generation, which

helps attenuating the overall carbon intensity of the area.

Interestingly, the North zone represents the only case in which the estimated annual MEF

(0.2018 tCO2/MWh) is lower than the computed AEF (0.284 tCO2/MWh). A similar conclusion

was drown in the study by Voorspools and D’Haeseleer (2000) using Belgian data. This outcome

seems to indicate that the improved dispatchability of RES and their integration with pumped

hydroelectric storage (PHS) plants might reduce the actual carbon intensity of marginal generation

in the area. Under the merit-order perspective, this result proves the effectiveness of carbon-neutral

generation from RES - which has higher priority of dispatch due to its near-zero marginal costs -

in the displacement of more expensive carbon-intensive production from thermoelectric units.

We then investigate the MEF resulting from the aggregation of data on generation and emissions

from the six physical market zones to the national level. As shown in Table 2, the computed
29We also tried to estimate the AEF by removing the generation from RES, thus obtaining a “conventional”

measure of the AEF. “Conventional” AEF in the Center South is 0.7106 tCO2/MWh, thus revealing an almost
perfect correspondence with the result of the MEF in Table 2.
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aggregate Italian MEF amounts to 0.3921 tCO2/MWh. This result is crucially different from the

one of Beltrami et al. (2020), who estimated the “conventional” Italian MEF - that is excluding RES

generation data and focusing only on fossil-fuel emissions and generation data - ranging between

0.5 and 0.65 tCO2/MWh. Conversely, the present paper includes data on carbon-neutral RES

generation to fully account for the increasing dispatchability of renewables in the grid and, most

importantly, for their increasing contribution as marginal generators to clear power markets. We

conclude that the inclusion of RES lowers the estimate of the national MEF by nearly 32%.

The national MEF estimated in this paper is similar to the findings obtained by Koffi et al.

(2017), who report for 2013 an Italian emission factor from electricity consumption equal to 0.343

tCO2/MWh. Similarly, the report by Climate Transparency (2017) for year 2017 indicates that

the emission intensity of the Italian power sector (tCO2/MWh) is 0.331. Note, however, that our

figure does not include the South zone. However, the latter two findings are directly comparable and

consistent with our result of the Italian average MEF, given the inclusion of electricity generated by

RES. Our approach also has the advantage of taking into account the role of RES in their increasing

contribution to marginal generation, especially during peak hours.

Furthermore, we recognise that the measurement of the national MEF reported in Table 2

might be biased due to the omission of the impact of congestions across zones.30 We thus compute

a weighted measurement of the annual MEF at the national level starting from the zonal estimates

of MEF. The weights are given by the ratio between each zonal load and the national annual load

in 2018, with the omission of the data for South for which the MEF has not been calculated. The

weighted MEF for Italy results in 0.3268 tCO2/MWh.

The analysis is fully replicated for each zone of the market and quarter of 2018, by adopting the

most efficient methodology based on the procedure discussed above.

Table 3 summarises the results of the quarterly MEFs by zone in 2018.
30Intuitively, the simple aggregation of data of the 6 physical zones would create an hypothetical Italian macrozone,

which is clearly not the case for a zonal power market that is constrained by a given transmission capacity and results
in market splitting situations more than 50% of the times.
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Table 3: Quarterly MEFs in 2018 by zone in the Italian day-ahead electricity market.

North Center North Center South Sicily Sardinia

Q1 0.3937 0.6437 0.7358 0.1476 0.8596

Q2 0.3624 0.3313 0.7535 0.2960 0.8102

Q3 0.2738 0.3297 0.6616 0.3214 0.7953

Q4 0.3340 0.3649 0.6315 0.3015 0.7737

In general, the MEFs are lower during warmer months, due to the higher penetration of RES,

especially from the contribution of PV panels at peak daytime hours. In the North zone, the MEF

reaches its minimum value in Q3, at a level (0.2738 tCO2/MWh) lower than the annual AEF of

0.2840 tCO2/MWh but far from the annual computation of the MEF of 0.2018 tCO2/MWh. In

Center North zone, the MEF in Q3 is halved as compared to the MEF in Q1. It is worth pointing

out that the quarterly analysis for this zone confirms the fact that the annual MEF is strongly

affected by the high carbon intensity observed in Q1 of 2018. The same evidence is confirmed

for the Center South zone, whose MEFs are nearly 50% higher than the AEF. Interestingly, only

for Sicily the warmer months display higher MEFs compared to colder months. This result might

depend on the role of congestion which often affects the transmission capacity between Sicily and

the South zone. Lastly, Sardinia displays the highest MEFs, significantly larger than the estimated

annual MEFs.

5 Conclusions

This paper contributes to the existing literature on MEFs by providing the first estimation of zonal

CO2 marginal emission factors for the Italian electricity system.

The motivation behind this work stems from the growing debate on the detection of the best

strategies to meet the decarbonisation targets set by the European Union’s Climate Law (2020) and

the Clean Energy Package (2019) aimed at mitigating climate change, improving energy security

and increasing RES.

Previous studies in this area enabled us to fully characterise MEFs, to identify the correct
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techniques to account for spatial and temporal heterogeneity, and eventually to produce reliable

MEF estimations in the Italian context, which may guide zone-specific policy interventions by

discriminating among different technological solutions.

The main contribution of this paper is the econometric characterisation of MEFs for each physical

zone in the Italian power exchange market, by accounting for the heterogeneous distribution of power

plants and their variable penetration across zones. The approach presented here can be extended to

other electricity systems organised in market zones. Moreover, the inclusion of generation from both

polluting and non-polluting (RES) generators allows us to fully account for the dynamic change in

the marginal generation mix across time and space.

Using the yearly sample, we find support for the adoption of the FCVAR in all zones except

the Center South, for which we do not identify any long-run fractional cointegrating relationship.

We find high variability of MEFs calculations at the zonal level. Sardinia records the highest MEF

(0.7189 tCO2/MWh), followed by the Center South (0.7022 tCO2/MWh), the Center North (0.4236

tCO2/MWh), the North (0.2018 tCO2/MWh) and Sicily (0.146 tCO2/MWh). We also argue that

the result for the North zone indicates the improved dispatchability of RES, their increasing con-

tribution as marginal generators (especially hydroelectric generation) and their effectiveness in

crowding out more expensive carbon-intensive thermoelectric generation. However, our quarterly

analysis suggests that any well targeted policy intervention should not only consider the hetero-

geneity of power plants distribution across zones but also the seasonal patterns of consumption

(and production) of electricity. The estimated quarterly MEFs enrich the findings for the annual

MEFs and show that carbon intensity tends to be higher during the coldest months than during

warmer periods. The only exception is represented by the Sicilian zone.

We are aware of some limitations in our analysis. Firstly, we did not include data about import

and the carbon intensity of electricity imported through interconnectors. Indeed, the inclusion of

this information would shed some light on the carbon footprint of neighbouring countries and its

impact on zonal Italian MEFs.

Secondly, we do not provide an estimation of the MEF for the South zone, due to its unusual

market design: in 2019, the South zone was redesigned by encompassing also the previously sepa-
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rated limited production poles of Brindisi and Foggia. Once sufficient data points are available in

future, it should be possible to extend the analysis to this zone as well.

A potential further step would be to forecast future market scenarios and to calculate long-run

MEFs. The largest Italian market operator, ENEL, has committed to mothballing coal power plants

from 2022 onwards as the result of the capacity market auctions that took place at the end of 2019.

This will clearly have an impact on the MEF of the zones where these plants are located, which is

not accounted for in the present analysis.

Despite these limitations, our work sheds light on the spatial and temporal impact that changes

in load and power supply have on CO2 emission levels in Italy. Our approach allows researchers to

produce more accurate measurements, compared to AEFs and aggregate MEFs, of the impact that

energy and environmental policies have across time and geographical areas. The availability of these

more precise measurement tools can support policymakers in the design of interventions which can

more effectively achieve the challenging emission targets enshrined in the recent EU legislation, such

as the 60% reduction in emissions compared to 1990 level by 2030 (Meles et al., 2020) and net-zero

by 2050. Furthermore, the opportunity to assess the impact of policy measures across different

geographical areas will become more important in the near future as energy systems are moving

towards a more decentralised structure with increasing localised generation and the establishment

of local markets for energy communities and individual consumers who will be equipped with

generation and storage assets.
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A Appendix

A.1 Descriptive statistics

Table A1: Zonal configuration of the Italian power market: yearly load, yearly calculated emissions,
accepted generation by RES type and Average Emission Factors (AEF).
Note: Values of load and generation are in MWh (year 2018). Values of emissions are expressed
in tCO2. Values of AEFs are in tCO2/MWh. Source: our processing of GME data.

North Center North Center South South Sicily Sardinia Total

Yearly load 164,518,420 31,081,787 45,943,518 23,633,923 17,680,705 8,974,450 291,832,803

Yearly emissions 36,625,956 2,291,111 11,723,255 - 799,100 3,340,594 54,780,226

Yearly accepted generation 128,956,528 18,560,878 28,740,029 18,808,488 10,817,844 11,130,253 217,014,020

Of which: (1) Solar 417,426 23,105 420,040 246,598 28,647 84,537 1,220,353

(2) Wind 34,502 167,446 2,508,066 8,209,909 2,899,634 1,634,064 15,453,621

(3) Biomass 1,210,190 71,489 93,618 1,667,322 129,618 315,496 3,487,733

(4) Waste 2,832,667 103,038 1,421,965 971,108 - - 5,328,778

(5) Geothermal - 5,718,643 - - - - 5,718,643

(6) Non-Relevant RES 26,987,673 4,044,144 4,594,367 5,712,600 2,079,473 952,958 44,371,215

(7) Hydro 27,081,187 2,318,525 3,147,286 1,423,159 68,198 300,481 34,338,836

AEF 0.2840 0.1234 0.4078 - 0.0738 0.3001 0.2524
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A.2 Seasonal adjustment

Figure A1: Unadjusted and adjusted versions of carbon emissions data in January 2018 - Zone
Center North.

Figure A2: Unadjusted and adjusted versions of generation data in January 2018 - Zone Center
North.
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A.3 Zone North

(a) ACF (b) PACF

Figure A3: Zone North, ACF (panel a) and PACF (panel b) for seasonally adjusted emissions.

(a) ACF (b) PACF

Figure A4: Zone North, ACF (panel a) and PACF (panel b) for seasonally adjusted generation.
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Table A2: Unit root and stationarity tests for North for the seasonally adjusted emissions (Et) and
generation (Gt) time series. Sample period: quarters (I, II, III, IV) of 2018. Critical values (C.V.)
are shown in the second column.

Et Gt
Test C.V. I II III IV I II III IV
ADF -1.95 -3.46 -5.76 -2.94 -3.12 -2.88 -1.99 -2.19 -2.49
DFGLS -1.94 -6.03 -8.98 -9.67 -7.95 -7.54 -8.3 -6.16 -6.16
PP -2.86 -10.63 -11.32 -8.42 -8.62 -11.06 -9.45 -10.43 -8.16
KPSS 0.15 1.34 1.42 1.39 1.74 0.98 1.05 0.67 3.18
rKPSS 0.15 1.25 1.45 1.3 1.68 0.86 1.08 0.56 3.31
ZA -5.08 -11.94 -12.55 -10.61 -10.08 -12.21 -12.4 -10.99 -10.36
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Table A3: Summary findings for the zone North - FCVAR results. Note: k = 4 from the lag
selection test.

Rank tests:

Rank d̂ Log-likelihood LR statistic p-value

0 0.569 -128603.562 37.341 0.000

1 0.542 -128586.063 2.344 0.333

2 0.537 -128584.891 — —

Unrestricted model:

∆d̂(

[
Et
Gt

]
−
[
1605.680
5516.842

]
) = Ld̂

[
−0.44
−0.167

]
vt+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.206
(0.011)

, Qε̂(24) = 2456.580
(pv=0.000)

, log(L ) = −128553.739

Long-term equilibrium relationship:

Et = 502.31 + 0.2Gt + vt (9)

Hypothesis tests:

H 1
d H 1

β H 1
α H 2

α

df 1 1 1 1

LR 866.252 51.327 18.842 1.042

p-value 0.000 0.000 0.000 0.307

Restricted model:

∆d̂(

[
Et
Gt

]
−
[
1583.383
5485.098

]
) = Ld̂

[
−0.3973

0.000

]
vt+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.203
(0.004)

, Qε̂(24) = 2456.559
(pv=0.000)

, log(L ) = −128554.260

Long-term equilibrium relationship:

Et = 476.49 + 0.2018Gt + vt (10)

33



A.4 Zone Center North

(a) ACF (b) PACF

Figure A5: Zone Center North, ACF (panel a) and PACF (panel b) for seasonally adjusted emis-
sions.

(a) ACF (b) PACF

Figure A6: Zone Center North, ACF (panel a) and PACF (panel b) for seasonally adjusted gener-
ation.
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Table A4: Unit root and stationarity tests for Center North for the seasonally adjusted emissions
(Et) and generation (Gt) time series. Sample period: quarters (I, II, III, IV) of 2018. Critical
values (C.V.) are shown in the second column.

Et Gt
Test C.V. I II III IV I II III IV
ADF -1.95 -5.9 -8.15 -7.32 -7.21 -1.66 -1.95 -2.32 -2.77
DFGLS -1.94 -7.03 -9.9 -8.26 -5.79 -7.8 -11.9 -6.35 -8.47
PP -2.86 -14.63 -12.96 -10.73 -9.16 -13.14 -13.59 -11.3 -10.71
KPSS 0.15 0.33 0.34 1.05 1.51 0.79 0.96 0.49 1.05
rKPSS 0.15 0.32 0.31 1.04 1.43 0.84 0.97 0.5 1.03
ZA -5.08 -16.42 -15.08 -17.35 -14.61 -15.61 -15.86 -16.9 -15.95
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Table A5: Summary findings for the zone Center North - FCVAR results. Note: k = 4 from the
lag selection test.

Rank tests:

Rank d̂ Log-likelihood LR statistic p-value

0 0.512 -98563.369 30.31 0.000

1 0.482 -98548.358 0.288 0.591

2 0.481 -98548.214 — —

Unrestricted model:

∆d̂(

[
Et
Gt

]
−
[

103.942
1478.090

]
) = Ld̂

[
−0.092
0.673

]
vt+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.231
(0.01)

, Qε̂(24) = 1369.419
(pv=0.000)

, log(L ) = −98532.904

Long-term equilibrium relationship:

Et = −488.77 + 0.401Gt + vt (11)

Hypothesis tests:

H 1
d H 1

β H 1
α H 2

α

df 1 1 1 1

LR 1068.479 36.906 1.353 15.016

p-value 0.000 0.000 0.245 0.000

Restricted model:

∆d̂(

[
Et
Gt

]
−
[

119.326
1531.562

]
) = Ld̂

[
0.000
0.7022

]
vt+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.236
(0.013)

, Qε̂(24) = 1367.562
(pv=0.000)

, log(L ) = −98540.412

Long-term equilibrium relationship:

Et = −529.44 + 0.4236Gt + vt (12)
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A.5 Zone Center South

(a) ACF (b) PACF

Figure A7: Zone Center South, ACF (panel a) and PACF (panel b) for seasonally adjusted emis-
sions.

(a) ACF (b) PACF

Figure A8: Zone Center South, ACF (panel a) and PACF (panel b) for seasonally adjusted gener-
ation.
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Table A6: Unit root and stationarity tests for Center South for the seasonally adjusted emissions
(Et) and generation (Gt) time series. Sample period: quarters (I, II, III, IV) of 2018. Critical
values (C.V.) are shown in the second column.

Et Gt
Test C.V. I II III IV I II III IV
ADF -1.95 -6.14 -9.84 -5.73 -6.52 -3.85 -5.29 -4.05 -4.09
DFGLS -1.94 -7.16 -11.33 -7.68 -11.31 -11.28 -5.86 -7.71 -8.77
PP -2.86 -12.84 -12.9 -11.83 -11 -12.76 -11.95 -10.68 -10.52
KPSS 0.15 1.12 0.86 0.42 0.63 0.66 0.96 0.86 0.57
rKPSS 0.15 0.9 0.86 0.45 0.69 0.59 0.92 0.89 0.54
ZA -5.08 -14.28 -15.42 -12.03 -12.33 -13.7 -14.03 -10.94 -12.01

Table A7: Summary findings for the zone Center South. Note: k = 4 from the lag selection test.

Rank tests:

Rank d̂ Log-likelihood LR statistic p-value

0 0.483 -118789.866 6.408 0.171

1 0.479 -118787.066 0.809 0.368

2 0.484 -118786.662 — —

The rank test shows the absence of cointegrating relationships. Therefore, we estimate the MEF
by following the methodology by Beltrami et al. (2020). Note that the s is the selected order of the
autoregressive (AR) component of the process, while q is the selected order of the moving average
(MA) component.

Hawkes Hawkes FE US-FE ARIMA-FE ARFIMA-FE

β̂ 0.6967821 0.6967676 0.6639039 0.7030515 0.7022071
S.E. β̂ 0.0042 0.0042 0.0038 0.0043
t value 165.4015 165.1048 172.4515
p-value 0.00 0.00 0.00
AIC 111349.2 111349.2 124338.7 110723.2 85861.78
BIC 111370.5 111631.4 124565.2 110970.9 86123.66
s 1 1
q 3 3
d̂ 0.2823146

S.E. d̂ 0.04467662
Confidence interval of d̂ [0.1947485; 0.3698808]
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A.6 Zone Sicily

(a) ACF (b) PACF

Figure A9: Zone Sicily, ACF (panel a) and PACF (panel b) for seasonally adjusted emissions.

(a) ACF (b) PACF

Figure A10: Zone Sicily, ACF (panel a) and PACF (panel b) for seasonally adjusted generation.
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Table A8: Unit root and stationarity tests for Sicily for the seasonally adjusted emissions (Et) and
generation (Gt) time series. Sample period: quarters (I, II, III, IV) of 2018. Critical values (C.V.)
are shown in the second column.

Et Gt
Test C.V. I II III IV I II III IV
ADF -1.95 -10.45 -8.6 -10.86 -11.54 -2.11 -2.40 -2.43 -2.06
DFGLS -1.94 -15.93 -10.68 -9.05 -11.38 -4.99 -2.23 -8.45 -5.70
PP -2.86 -14.01 -9.26 -13.1 -12.59 -8.00 -7.86 -9.26 -7.33
KPSS 0.15 0.27 0.68 0.52 0.69 0.45 0.39 0.82 0.63
rKPSS 0.15 0.36 0.53 0.78 0.76 0.42 0.50 1.13 0.83
ZA -5.08 -14.89 -12.63 -16.81 -14.19 -7.70 -8.29 -10.56 -7.28

Table A9: Summary findings for the zone Sicily - FCVAR results. Note: k = 4 from the lag selection
test.

Rank tests:

Rank d̂ Log-likelihood LR statistic p-value

0 0.569 -95156.442 16.007 0.022

1 0.591 -95148.837 0.796 0.71

2 0.598 -95148.439 — —

Unrestricted model:

∆d̂(

[
Et
Gt

]
−
[
25.905
774.52

]
) = Ld̂

[
−0.282
−0.256

]
vt+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.289
(0.011)

, Qε̂(24) = 1232.508
(pv=0.000)

, log(L ) = −95151.957

Long-term equilibrium relationship:

Et = −87.17 + 0.146Gt + vt (13)

Hypothesis tests:

H 1
d H 1

β H 1
α H 2

α

df 1 1 1 1

LR 513.896 19.63 19.194 8.157

p-value 0.000 0.000 0.000 0.004

The unrestricted model is the correct specification.
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A.7 Zone Sardinia

(a) ACF (b) PACF

Figure A11: Zone Sardinia, ACF (panel a) and PACF (panel b) for seasonally adjusted emissions.

(a) ACF (b) PACF

Figure A12: Zone Sardinia, ACF (panel a) and PACF (panel b) for seasonally adjusted generation.
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Table A10: Unit root and stationarity tests for Sardinia for the seasonally adjusted emissions (Et)
and generation (Gt) time series. Sample period: quarters (I, II, III, IV) of 2018. Critical values
(C.V.) are shown in the second column.

Et Gt
Test C.V. I II III IV I II III IV
ADF -1.95 -2.7 -5.56 -2.66 -1.72 -1.32 -1.81 -1.08 -1.05
DFGLS -1.94 -5.62 -5.23 -2.34 -2.21 -4.54 -2.35 -3.82 -3.12
PP -2.86 -5.84 -5.73 -5.21 -2.73 -6.53 -6.41 -5.7 -5.35
KPSS 0.15 0.85 0.58 1.95 2.27 0.59 0.57 1.44 0.98
rKPSS 0.15 0.47 0.62 2.25 2.25 0.7 0.60 1.69 0.83
ZA -5.08 -8.26 -8.59 -8.61 -8.02 -6.15 -7.8 -6.18 -6.42
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Table A11: Summary findings for the zone Sardinia - FCVAR results. Note: k = 3 from the lag
selection test.

Rank tests:

Rank d̂ Log-likelihood LR statistic p-value

0 0.586 -88001.107 20.038 0.006

1 0.64 -87991.149 0.122 0.955

2 0.639 -87991.088 — —

Unrestricted model:

∆d̂(

[
Et
Gt

]
−
[

513.503
1438.099

]
) = Ld̂

[
0.003
0.017

]
vt+

3∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.64
(0.024)

, Qε̂(24) = 784.022
(pv=0.000)

, log(L ) = −87991.149

Long-term equilibrium relationship:

Et = 1540.30 + 0.714Gt + vt (14)

Hypothesis tests:

H 1
d H 1

β H 1
α H 2

α

df 1 1 1 1

LR 194.160 19.884 0.73 14.185

p-value 0.000 0.000 0.393 0.000

Restricted model:

∆d̂(

[
Et
Gt

]
−
[

466.937
1433.553

]
) = Ld̂

[
0.000
0.0143

]
vt+

3∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t

d̂ = 0.609
(0.024)

, Qε̂(24) = 795.844
(pv=0.000)

, log(L ) = −87998.242

Long-term equilibrium relationship:

Et = −563.644 + 0.7189Gt + vt (15)
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