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Abstract

We present a model of the electricity market which has a simple

connection to the rest of the economy, due to a quasi-linear utility

function. A key stochastic parameter shifts electricity demand be-

tween points of time. The correlation between these demand shifts

and the variation of supply from variable renewable electricity (VRE)

sources is crucial for the equilibrium price of electricity. Based on these

equilibria we compute the value factors of VREs, as well as producer

and consumer surpluses. An emerging outcome of the model analysis

is that value factors of VREs decrease as their penetration gets higher,

which is also commonly found empirically [up to a point].
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1 Introduction

The power supply from Variable Renewable Electricity (VRE) sources, like

wind turbines and solar panels, is to a large extent uncontrollable and unpre-

dictable due to variations in wind speed and solar radiation. By contrast,

generators like hydro and nuclear power are ‘dispatchable’, which means

that their generation can be turned on and off when called on by the system

operator.1

While the VREs have low environmental impacts, the intermittence is

likely detrimental to their economic value. This is essentially determined

by the electricity prices that prevail at times when the VREs are supplying

power in large quantities.2 If, for example, the supply of VREs is high when

demand is moderate, the price will be low and thus the value of VRE will

be limited. Similarly, the consumer and producer surpluses are affected by

an increased penetration of VRE, through its effect on the price.

We formulate a simple microeconomic model3, with the electricity mar-

ket at its centre. Assuming a quasi-linear utility function, the electricity

market is thus connected to the rest of the economy only through the in-

come that is left over for other goods. We define the residual demand as the

difference between total demand and the stochastically produced VRE. This

residual demand is directed towards the dispatchable electricity; the VRE

has lower marginal costs and thus are delivering first. The dispatchable

part of supply is constituted by a merit order of horizontal linear segments,

reflecting different marginal costs of different types of generators. The equi-

librium price is determined by the intersection between the residual demand

and the dispatchable supply curve.

1In practice there are two technical constraints: the minimum up and down time; and

the max ramp up and down time. See Kirschen and Strbac (2018).
2Joskow (2011) provides a lucid discussion about this. The uncertainty of VRE supply

makes it necessary to build additional capacity in base supply (or in storing). This is an

additional cost to the power system, caused by the increase of VRE; see e.g. Llobet and

Padilla (2018) and Holmberg and Ritz (2019).
3The benefit of this model can be expressed as follows: It takes a middle ground

between small ‘static’ models like Joskow and Tirole (2007) and Llobet and Padilla (2018)

on the one hand, and large numerical models like Gowrisankaran, Reynolds and Samano

(2016) and Hirth (2013) (see Hirth (2015) for a survey of such models). It provides a

higher transparency than larger and more realistic models, while at the same time laying

out more details about all sectors of the industry, unlike the simpler models which tend

to focus on marginal (cut-off) conditions.
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We use the model to numerically analyze the fictive equilibria of the

electricity market at different points of time, with a special focus on the

variability of supply from VREs. The equilibria are then used to examine

the welfare effects of different scenarios, including the value factor of VRE.

Since electricity can be considered as a time-heterogeneous good, the

focus of our paper is on the variability of supply and demand between dif-

ferent points of time. On the supply side, this variability stems from the

VREs, as discussed above. On the demand side, a central issue is how flex-

ible consumers are when it comes to reallocating their use of electricity to

times when supply is high, for instance by washing clothes and dishes during

night. In the widely cited paper by Joskow and Tirole (2007) intertemporal

transfers in demand is not allowed: demand at any time depends only on the

price faced by the consumer at that time. In this paper we attempt to get

around this limitation by use of time-varying subsistence levels of electricity

consumption to get some ‘time-flexibility’ in demand.

We find that the value of VRE indeed depends on the covariation be-

tween the variable elements of supply and demand [that were mentioned

above]. However, although the value factor of VRE declines if the pen-

etration of variable renewable electricity increases, it does so only within

limits. This result differs somewhat from the existing literature, suggesting

that the broader concepts of indirect utility and profit/producer surplus are

more appropriate when evaluating VREs. The consumer surplus increases

monotonously as VRE takes a larger share of electricity supply and prices

fall. On the other hand, with falling prices producer surplus monotonously

declines as the penetration of VRE increases.

Our paper follows Hirth (2013) quite closely, although the demand side

is more explicitly modelled.4 The electricity sector is here also connected

to the rest of the economy, albeit in a simple way. While the work of Hirth

is mainly empirical, our purpose here is to increase the understanding of

a theoretical model, by using numerical analysis. We plan to apply this

model in future empirical work. In the existing literature it seems to be

more common to work with a multiplicative demand-shift parameter; see

for instance Gowrisankaran, Reynolds and Samano (2016) and Joskow and

Tirole (2007). In this paper we put the main focus on the case with an

4We replace the quite common linear (and vertical) demand function by a constant-

elastic one. This allows for a richer welfare analysis.

3



additive shift parameter.

A recent paper by Bushnell and Novan (2018) addresses the issues raised

here econometrically. They find that the increased installations of VREs

have resulted in declining prices over time and worsened the conditions for

the traditional power industry. The same result arises in our model.

The paper proceeds as follows. In Section 2 we present the demand

side of the model, while the supply side is introduced in Section 3. Section

4 discusses the different equilibria of the model. It also defines the value

factor of VRE, as well as the producer and consumer surpluses. Section 5

is devoted to a numerical analysis and Section 6 looks into the incentives to

invest.

2 Electricity demand

2.1 Utility and constraint

Consider an electricity market with I individual consumers who use elec-

tricity over T points of time (hours). Instantaneous utility is a quasi-linear

function of electricity consumption, x, and money for other goods, y. For

individual i at time t we have

Fi (xit, yit) = θitui (xit − γit) + µiyit.

The function ui is strictly concave, with limxit→γit u
′
i = ∞. The marginal

utility of money is µi, while θit captures how important it is for individual

i to consume electricity at time t. Finally, γit is the subsistence consump-

tion level of electricity. To some extent θit and γit are two different ways

of capturing the same thing, namely time-variability in demand, but they

do so multiplicatively and additively, respectively. To our knowledge, the

multiplicative approach is more common in the literature. See for instance

Gowrisankaran, Reynolds and Samano (2016) and Joskow and Tirole (2007).

Summing utilities over all T points of time, typically the 8760 hours of

a year, the total utility function of consumer i is

Ui =

T∑
t=1

[θitui (xit − γit) + µiyit] . (1)
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The time horizon is rather short, e.g. a year, so discounting can be ignored.

Consumer i has the budget constraint

T∑
t=1

ptxit +
T∑
t=1

yit = mi,

where pt is the market price for electricity at time t and mi is the (fixed)

income of consumer i, to be used over the T points of time. The money for

other goods (yit) can be transferred between points of time.

2.2 Optimal demand

To solve the utility maximization problem of individual i we form the La-

grangean function

Li =

T∑
t=1

(θitui (xit − γit) + µiyit)− λi

(
T∑
t=1

ptxit +

T∑
t=1

yit −mi

)
,

where λi is the Lagrange multiplier. An optimal solution satisfies the con-

ditions5

θitu
′
i (xit − γit) = µipt, t = 1, 2, . . . , T.

This can be solved for the demand function

xit = di (µipt/θit) + γit, t = 1, 2, . . . , T. (2)

In this expression we have defined di = (u′)−1, with d′i < 0. Obviously, the

demanded quantity of electricity is low if its price is high or if the marginal

utility of money for other goods is high. On the other hand, a high θit

implies a higher electricity consumption.

The money for other goods is:

T∑
t=1

yit = mi −
T∑
t=1

ptdi (µipt/θit)−
T∑
t=1

ptγit. (3)

2.3 Market demand

Market demand at time t is the sum of the demands from all consumers.

We use Equation (2) and get

Dt =

I∑
i=1

xit =

I∑
i=1

di (µipt/θit) + γt,

5We have the conditions µi = λi and θitu
′
i (xit − γit) = λipt, t = 1, 2, . . . , T .
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where
∑I

i=1 γit ≡ γt is the total amount of subsistence consumption at time

t. It may be interesting to note that the sum of γit:s appear as a simple

additive term.

2.4 Example

For concreteness we now introduce a specific form for the utility function

u, which will also be used in the numerical simulations below.6 We assume

that the instantaneous utility of electricity is given by the constant-elastic

function

ui (xit − γit) =
(xit − γit)1−

1
α − 1

1− 1
α

, α 6= 1. (4)

Then the marginal utility is u′ (xit − γit) = (xit − γit)−
1
α and the demand

function (2) becomes

xit =

(
θit
µipt

)α
+ γit, t = 1, 2, . . . , T. (5)

As expected, consumption will be positive even if p → ∞, because the

subsistence consumption γit is always necessary. The parameter α is slightly

higher than the demand elasticity in absolute value. Borenstein (2008) and

Gowrisankaran, Reynolds and Samano (2016) assume that this elasticity is

close to −0.1.

For this special case the market demand is

Dt = p−αt

I∑
i=1

(
θit
µi

)α
+ γt. (6)

This can be solved for the inverse market demand:

pt =

(
ΣI
i=1 (θit/µi)

α

Dt − γt

) 1
α

. (7)

3 Supply

3.1 Dispatchable supply

The dispatchable part of electricity supply is usually described by ‘stair

cases’ that indicate the different marginal costs from various sources. For

a simple introductory example, we here follow Lamont (2008) and assume

6As an alternative formulation, a linear demand curve is derived in Appendix A.1.

6



that it consists of baseload (b), intermediate (i) and peak (p) generators.

Market power considerations are ignored. The marginal costs from these

sources are cb, ci and cp, respectively, where the unit is $/MWh. One can

think of these three lines of production as ‘hydro’, ‘nuclear’ and ‘thermic’

power, respectively.

There are two ways to define the marginal costs. The first is to interpret

them as the true marginal cost. This leaves out the fixed costs, which we then

have to compare with the producer surpluses. This is the natural approach

in the short-run setting of this section. In the long run, however, the fixed

costs must be explicitly included. In practice, the daily supply bids include

‘mark-ups’ that are expected to cover the fixed costs.7 A complication is

that the correct mark-ups depend on how much load a company delivers.

We come back to this in the long-run analysis of Section 6. In the present

section we take a sunk-cost view of the fixed costs, and thus consider the

marginal costs to be the true marginal cost.

The actually delivered quantities at time t are Sbt, Sit and Spt, respec-

tively (MWh). This is the supplied quantity during one hour and therefore

it is also correct to use the unit MWh
h . The maximum capacities are S̄b, S̄i

and S̄p, respectively, which are measured in MW or MWh
h . The dispatchable

supply function (also called the merit order) is illustrated in Figure 1, where

S̄ = S̄b + S̄i + S̄p. These generators are dispatched when the price for power

covers their marginal cost.

Due to maintenance and reparations, these power sources do not run at

full capacity all year around. Thus, let S̃ be the installed capacity and ψ ∈
[0, 1] the capacity factor. Then the maximum capacities are ψbS̃b = S̄b and

so on. For simplicity we assume that these expressions are constant, meaning

that the different suppliers in each category ‘take turns’ in reparations and

maintenance, so that the ‘industry’ supply is constant. This non-variation

in the S̄k:s allows us to put more focus on the time variation in the VRE

supply and the subsistence level of electricity consumption.89

7Borenstein (2016) discusses possible solutions to the difficulty of achieving economic

efficiency when there is a need to cover fixed costs. He argues that a fixed charge each

month, to connect to a utility, is a good way to make possible (social) marginal cost

pricing.
8Notice that we disregard the reserve capacity. The requirements reduce the total

generation capacity and the price is above the marginal cost. See Wangensteen (2012).
9Hirth (2013) mentions (p. 223) that short-term price fluctuations are reduced in the

Nordic countries, by use of the flexibility in hydro generation. There are no such variations
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Figure 1: Equilibrium

3.2 VRE

Turning to the Variable Renewable Electricity, there are three technological

properties that characterize it: (i) Due to fluctuations in wind and sunlight,

the supply is variable; (ii) While the trading in electricity takes place in

advance, the actual output is uncertain until the time of realization; (iii)

The location of the VRE source, combined with transmission constraints,

puts limits to the possibility to deliver power to load centers from distant

sites where the weather conditions for VREs are more favourable. Following

Hirth (2013), this paper focuses on the impact of variability (also called the

‘profile’), since this is the most important factor (in value terms) for VREs.

In the model the intermittent supply of variable renewable electricity is

denoted by Vt (MWh). It has a mean output of V̄ (MW) and the realized

value is just a function of ‘weather’. The short-run marginal cost is typically

very low and for simplicity we put it equal to zero.

in the base load here. Our analysis is thus more applicable to thermal power systems, like

in Germany, where prices vary more with penetration rates.
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4 Equilibrium

4.1 Quantities and Prices

To highlight the variations in Vt and γt in the illustration of the equilibrium

we define

D̃t (pt) = p−αt

I∑
i=1

(
θit
µi

)α
,

so that Dt = D̃t (pt) + γt. Then the residual demand is

Rt = D̃t + γt − Vt.

This is the part of electricity demand that is directed toward the dispatchable

supply.

In Figure 1 the D̃t (pt) curve stays put, (as long as θit is constant).10

This curve coincides with the residual demand curve if γt = Vt, leading to

the equilibrium E0. Deviations from the D̃t curve are then entirely deter-

mined by the magnitude and sign of γt − Vt, which varies every hour. For

period 1 the outcomes of the stochastic variables are γt = γ1 and Vt = V1,

respectively. Since γ1 > V1, R1 lies to the right of D̃t and the equilibrium is

found at E1. In the second case γ2 < V2 and R2 is found to the left of D̃t,

going through the equilibrium point E2. An even higher Vt could result in

an equilibrium like E3.

In the type of equilibria mentioned above, the R curve intersects the

dispatchable supply curve at one of its horizontal segments, meaning that

the price is equal to cb, ci or cp. Alternatively, the intersection can occur

with any vertical segment of the supply curve, like in E4, where the quantity

is given by S̄ = S̄b+S̄i+S̄p, leading to the price p4. Other possible quantities

in this latter type of equilibrium are 0, S̄b or S̄b + S̄i.

If the price is equal to cb, ci or cp, the demanded quantity according to

(6) is

Dt =
ΣI
i=1 (θit/µi)

α

cαk
+ γt, k = b, i, p.

and the residual demand is

Rt =
ΣI
i=1 (θit/µi)

α

cαk
+ γt − Vt, k = b, i, p. (8)

10If θit is a constant then D̃t (pt) can be written as D̃ (pt), which clearly implies a curve

that does stay put in the figure.
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From this expression it is clear that, at given ck and θit, any change in the

residual demand depends on the change in γt − Vt.
In an equilibrium like E4, the condition Dt − Vt = S̄ is fulfilled. By (6)

the equilibrium price then is

pt =

(
ΣI
i=1 (θit/µi)

α

S̄ + Vt − γt

) 1
α

. (9)

The equilibrium price has properties that are entirely expected. For in-

stance, it is inversely related to the supply (net of the subsistence quantity).

Recall that S̄ can be replaced by 0, S̄b or S̄b + S̄i.

We now turn to various ways of evaluating the equilibria, both from the

customers’ and from the producers’ points of view.

4.2 Value factors

Joskow (2011) and others argue that the valuation of electricity generators

must take the variation in prices into account. In particular, it is important

for the valuation of VRE what the market price is when the VRE produces

much electricity. In this spirit, Hirth (2013) uses a value factor, consisting

of the ratio between two price ‘indexes’. First, there is the time-weighted

average system price of electricity from all sources:

p̄ =

∑T
t=1 pt
T

,

i.e. the average market equilibrium price. Second, the average revenue of

VRE is

pV =

∑T
t=1 ptVt∑T
t=1 Vt

.

The numerator is the total revenue over the period, while the denominator

is the total generation. Therefore pV is the ‘average price’ of VRE. The

VRE value factor is then defined as the ratio of average VRE revenues to

the system price:

vV =
pV

p̄
.

This definition of the value factor means that VRE is more valuable if it

produces much at times when the price is high. In other words, it is beneficial

for Vt to be positively correlated with demand γt, but only up to a point. If

the capacity of VRE is high (compared to γ), it may to some extent work
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‘against itself’, by lowering residual demand during sunny and windy hours.

It then shifts the equilibrium down the merit-order curve and thereby lowers

the price and its own ‘value’. For example, the market equilibrium would

often go from E2 to E3 in Figure 1 if VRE generation goes from a low to a

high value.

It thus appears that the value factor falls with higher penetration and

it seems to be a common conjecture in the literature that this process con-

tinues monotonously as the penetration of VRE increases.11 However, our

simulations demonstrate that it is not correct. To see why this is so, suppose

first that the outcomes of Vt and γt are such that the equilibria are almost

always found on the middle stair of the supply curve, e.g. at points such as

E2 and E0 in Figure 1. The difference between p̄ and pV is then negligible

and this means that vV ≈ 1.

As V̄ increases, the equilibrium points on average move leftwards and so

the number low-price equilibria increases. Since this is more likely to happen

when Vt is high, pV tends to get lower than p̄ and the consequence is that

vV < 1. As V̄ increases even further, however, low-price equilibria like E0

come to dominate. Then pV and converge p̄ and vV increases towards 1.

This is because vV is an indicator of relative prices: at a general decline

of prices, due to a higher penetration of VRE, pV and p̄ follow each other

downwards, although not perfectly because of the stairs. The value factor

does therefore not show a secular downward trend but rather a cyclical

pattern. This is most obvious in our many-stairs simulations.

4.3 Producer surplus

With zero marginal cost, the producer surplus of the VRE producers at

time t is ptVt. For an equilibrium of the type E3 in Figure 1 there is no

producer surplus for the firms that produce dispatchable electricity. If the

equilibrium is of the E2 type, the base load producers make a surplus equal

to (ci−cb)S̄b. At times when the market equilibrium is like E1, the producer

surplus is (cp − cb)S̄b + (cp − ci)S̄i. In cases like E4, with a price p4, the

producer surplus is (p4−cb)S̄b+(p4−ci)S̄i+(p4−cp)S̄p. Similar expressions

apply to equilibria on the other vertical segments of the supply curve.

11See e.g. Hirth (2013).
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4.4 Indirect utility

To the extent that renewable electricity generation lowers the price, it will

increase the indirect utility, partly by leaving more money for other goods.

It is therefore interesting to compare the vV and the producer surplus to

the indirect utility function in various scenarios. This is a benefit of the

approach of this paper, to derive demand from first principles. It provides

the possibility to execute a fully-fledged cost-benefit analysis.

The indirect utility functions are derived in Appendix A. Summing over

all periods, the indirect utility for one individual is12

Ui = µimi +
α

1− α

T∑
t=1

θit −
1

1− α

T∑
t=1

µ1−αi θαitp
1−α
t −

T∑
t=1

µiptγit.

Summing this over all individuals, we have:13

U =
I∑
i=1

Ui =
I∑
i=1

µimi+
α

1− α

I∑
i=1

T∑
t=1

θit−
1

1− α

I∑
i=1

T∑
t=1

µ1−αi θαitp
1−α
t −

I∑
i=1

T∑
t=1

µiptγit.

This is the consumer benefit over the time frame running from t = 1 to

t = T . A higher price clearly makes the indirect utility lower.

For equilibria like E1, E2 or E3 in Figure 1, the price is equal to cp, ci

or cb. In the case where the demand curve intersects the supply curve along

its vertical segment, as in point E4 in Figure 1, the price is given by (9). A

higher (net) supply, S̄ + Vt − γt, e.g. due to a higher Vt, then clearly makes

the indirect utility higher, by reducing the equilibrium price. In the case

with equilibria on the horizontal segments, higher Vt:s can raise the indirect

utility by pushing the equilibrium to a lower stair.

5 Numerical simulations

The numerical simulations are based on the equilibrium conditions (8) and

(9), where the equilibrium values are dependent on random realizations of

12At time t:

Uit =
µimi

T
+

α

1 − α
θit −

1

1 − α
µ1−α
i θαitp

1−α
t − µiptγit.

13At time t:

Ut =

I∑
i=1

µimi

T
+

α

1 − α

I∑
i=1

θit −
1

1 − α

I∑
i=1

µ1−α
i θαitp

1−α
t −

I∑
i=1

µiptγit.
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Vt and γt at the different times. In times when the residual demand curve

intersects the supply at one of its horizontal segments, equation (8) deter-

mines the equilibrium quantity of dispatchable electricity. For convenience,

this equation is reproduced here:

Rt =
ΣI
i=1 (θit/µi)

α

cαk
+ γt − Vt, k = b, i, p. (8)

When residual demand intersects supply at a vertical segment, the equilib-

rium price is given by equation (9), which we also reproduce:

pt =

(
ΣI
i=1 (θit/µi)

α

S̄k + Vt − γt

) 1
α

, k = 0, b, i, p, (9)

where S̄k is either 0, S̄b, S̄b + S̄i or S̄.

For one round of numerical simulation we draw 8760 observations (one

for each hour of a year) of Vt and γt from a jointly normal probability

distribution. Each draw produces an equilibrium point in one of the seven

segments according to equations (8) or (9). From that, the value factor,

producer surplus, consumer surplus etc can be computed. This is repeated

in several rounds, with different correlations between Vt and γt and with

different degrees of penetration of VRE, V̄ . Then the value factors and the

other welfare indicators are compared between the rounds, to see the effects

of changing VRE penetration and correlation between Vt and γt.

More precisely, we address the following aspects in the numerical analy-

sis.

1. The correlation between V and γ decides the extent to which a higher

VRE penetration makes the equilibria climb down the ‘merit order’

at a higher frequency. One could hypothesize that the value factor is

high if the correlation is positive, because then γ often takes the price

up one stair even when much VRE is produced.

2. Higher steps in the dispatchable supply curve can lead to a steeper

decline in the value factor when the penetration increases, as discussed

by Hirth (2013). This is because high V :s tend to push the price down

much when VRE production is high. However, the results also depend

on how wide the steps are, which is connected to the next point.

3. If the outcomes of V and γ are such that the equilibria are mainly

spread over few steps, or concentrated on one step, there are limits

13



(a) Benchmark (b) Change: ci = 30 and cp = 50

(c) Change: σγ = 10 (d) Change: σγ = 10, ci = 30, cp = 50

Figure 2: Dispatchable Supply and Residual Demand

in the price variations, and therefore the value factor will be close

to unity. If, on the other hand, the spread covers many steps, to a

large extent, then the value factor can deviate more from 1 (in both

directions).14

4. Is Utility-plus-profits increasing with VRE penetration? Or is there

a maximum of this sum, that can be interpreted as a kind of welfare

maximum, implying a socially optimal level of V̄ ?

5.1 Basic example

In our basic example the dispatchable supply curve is characterized by the

following parameters: cb = 10, ci = 20, cp = 30, S̄b = 20, S̄i = 20 and

14A higher spread may also reduce the cyclical pattern in the value factor.
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S̄p = 40.15 It is further assumed that µi = θit = 1, I = 60 and α = 0.06086.

The default values of the standard deviations of V and γ, σV and σγ , are

both equal to 5.16 The mean value of V , which is taken as a proxy for

penetration, is varied and indicated in the figures below, which also indicate

the various degrees of correlation between Vt and γt, i.e. ρ.

Figure 2 describes the four scenarios that we will consider in this basic

example. Figure 2a illustrates the benchmark that was just described. In

Figure 2b the stairs are higher: ci = 20 and cp = 30 are replaced by ci = 30

and cp = 50. In Figure 2c the stairs are back to the benchmark levels, while

the standard deviation of γ is increased to σγ = 10. In Figure 2d both

changes appear at the same time.

The residual-demand (Rt) curves at the centers of the two lower steps

are placed there by appropriate choices of V and γ. On each side of these

there is a curve on a one-standard-deviation distance from the centre.

5.1.1 Value factor

We begin our investigation of the effects of the above variations by looking at

the value factor, which is displayed in Figure 3. A conjecture in much of the

literature is that the value factor of VRE is monotonously decreasing in the

penetration rate.17 The idea is that, when the penetration rate increases,

the residual demand shifts left and thus causes lower prices for both VREs

and dispatchable generators. In Figure 3a we see this phenomenon, but only

up to a point. The level of the curve seems to depend on whether the bulk of

the equilibria are on the same stair or not. For the downward sloping part,

the addition of more VRE capacity pushes more and more equilibria down to

the next stair and thus reduces the revenue of the VRE. As the penetration

goes even further, the bulk of equilibria are found at the lower level. There

is then less variation in the price and therefore a smaller difference between

the mean price of VRE electricity and the price in general. This explains

15This final step is longer than the others, in order to avoid a high frequency of very

high prices (on the final vertical part of the supply curve).
16The mean value of γ is a function of the hight of the steps, in order to center the

curves on the steps in Figure 2.
17See Göransson and Johnsson (2018), section 5.1. They find that the (wind) value

factor declines as the share of wind increases. This trend can be counteracted by load

shifting and storage facilities. See also Fripp and Wiser (2008) and Hirth (2013).
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(a) Benchmark (b) Change: ci = 30 and cp = 50

(c) Change: σγ = 10 (d) Change: σγ = 10, ci = 30, cp = 50

Figure 3: Value factor as a function of penetration
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the increase in the curve at even higher levels of penetration.18

The different levels of the three curves in all panels of Figure 3 mean that

the value factor decreases as the correlation between V and γ gets lower.

A high correlation means that VRE output often is large when demand

is high. This increases the possibility to sell renewable electricity at high

prices, perhaps even climbing one stair up, thus keeping the value of VRE

high.

If the stairs of the dispatchable supply curve become higher, as in Figure

3b, the general pattern is maintained but levels are somewhat lower. To the

extent that VRE is delivered in large amounts when the price falls down to

the next stair it now suffers from a larger price reduction which reduces the

value factor.

Going back to the benchmark supply curve, but instead increasing the

spread of γ, we get Figure 3c. Here the wave patterns of the curves have

disappeared, with the possible exception of the highest curve, for which the

correlation is positive. It matters less whether the mean R is close to the

next stair or not, when the equilibrium is spread over more stairs anyway.

We also note that the values of the curve for the positive correlation are

moving up (above 1), while the curve for the negative correlation is moving

down (compared to Figure 3a). An interpretation of this may be offered from

equilibrium price histogram in Figure 6c.19 The higher spread increases the

frequency of prices that are one level higher or lower. In the case of a

positive correlation between V and γ the VRE is more often sold at a high

price. This explains why vV finally climbs above 1. Similarly, at a negative

correlation the higher spread results in more instances of low prices when

VRE delivers much electricity, which explains the lower level of the curve in

this case.

In panel 3d the effect of the wider spread from panel 3c is reinforced by

the higher steps. If ρ > 0 it is more likely to get a very high price when

VRE produces much, thus pushing the value factor a bit higher. A negative

correlation, on the other hand increases the probability that VRE produces

much when demand is low, thereby pushing the bottom curve a bit lower,

compared to panel 3c.

18This result that the value factor shows a wave pattern is more visible in the case with

many steps on the curve.
19Note that ρ = 0 in this figure.
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(a) Benchmark (b) Change: ci = 30 and cp = 50

(c) Change: σγ = 10 (d) Change: σγ = 10, ci = 30, cp = 50

Figure 4: Utility as a function of penetration

5.1.2 Welfare

Consumers clearly benefit from the entrance of more VRE firms that produce

electricity at low (zero) marginal cost. This is illustrated in Figure 4, where

utility increases (in all panels) as the addition of more VRE generators lowers

the mean equilibrium price. At higher stairs (Figure 4b), utility starts lower,

because the price level is generally higher. In Figures 4a and 4b, with low

σγ , the curves are S-shaped in the positive-correlation cases. These shapes

are absent in Figures 4c and 4d, where σγ is higher. At a high correlation,

the first additional capacity of VRE is not sufficient to push the equilibrium

price down to the next level, because demand tends in the opposite direction.

This is compensated by a steep increase later.

A quite expected result emerges when we turn to the relation between

VRE penetration and profit, which is described in Figure 5. In all panels the

profits fall monotonously as more VRE generators enter the market. Since

the latter have lower marginal costs, they tend to reduce the prices (as well

18



(a) Benchmark (b) Change: ci = 30 and cp = 50

(c) Change: σγ = 10 (d) Change: σγ = 10, ci = 30, cp = 50

Figure 5: Profit as a function of penetration
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(a) Benchmark (b) Change: ci = 30 and cp = 50

(c) Change: σγ = 10 (d) Change: σγ = 10, ci = 30, cp = 50

Figure 6: Distribution of prices

as quantities) for all suppliers, thus reducing profitability in the dispatchable

sectors. The fall in profits is quite remarkable in percentage terms.20

The most notable lesson from Figure 6 is that the equilibrium price varies

more as the variance of γ increases (which of course is entirely expected).

The frequency of the higher price is just a little bit higher than for the lower

price. This is because the ‘basic’ residual demand curve is found at the

centre of the stair, combined with the zero correlation between γ and V .

20They could be compared to the annualized fixed costs and it is not unlikely that the

total net value is negative even at moderate degrees of penetration. This illustrates that a

social cost of higher VRE penetration lies in the lower profitability of dispatchables that

are needed as back-ups at times with little wind and sunshine.
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6 Fixed costs

We now introduce fixed costs ($/MW/year), which were briefly discussed in

Section 3.1. They are FV and Fk for VREs and dispatchables, respectively.

There are nk representative firms in branch k and these fixed costs apply

for a firm of the V or k branch. These costs must be recovered by an ‘add-

on’ on bid prices, fk, which for simplicity is assumed to be constant. This

makes for a reinterpretation of the marginal cost, such that it includes a

compensation for the fixed cost. Thus, for dispatchables we have

ck = c̃k + fk,

where c̃k is the true marginal cost. (Electricity is still supplied only if pt ≥
ck.) One way to write the profit function then is

Πk =

T∑
t=1

pt · skt −
T∑
t=1

(c̃k + fk) · skt,

where skt = Skt/nk is the supply a representative firm. It is thus spread

evenly over the firms. The condition for the recovery of fixed cost is

Fk = fk

T∑
t=1

skt.

The fixed cost is thus spread over all the kilowatt hours delivered during the

year. This means that peak utilities, that deliver rather small amounts of

electricity over a year, must choose a large fk (unless Fk is small, which is

unlikely).

Similarly, the profit for a representative VRE firm is

ΠV =
T∑
t=1

pt · vt −
T∑
t=1

(0 + fV ) · vt,

where vt = Vt/nV is the supply of this representative unit. Fixed costs are

recovered if

FV = fV

T∑
t=1

vt.

As a simple addition to the numerical analysis above, one could start

by assuming some given values for fk and fV . Then one would uses the

quantities delivered by different branches and compute the add-on revenues.

These correspond to the maximum tolerable fixed costs.
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An alternative possibility is to use the conditions for the recovery of

fixed costs as constraint in an optimization problem, for instance like in

Gowrisankaran, Reynolds and Samano (2016). The fk:s would then be a

part of the solution.

7 Conclusions

The purpose of this paper has been to present and analyze a simple partial-

equilibrium model of the electricity market. The focus of interest has been

put on the time variation of demand and the supply from variable renewable

electricity sources, and on the effects of these variations on the equilibrium

prices at different points of time.

The model is used to analyze the hourly equilibria of a fictive year numer-

ically, by computations of the welfare effects of different scenarios, including

the value factors of VRE at different degrees of penetration. The equilib-

rium analysis is conveniently focused on the relation between two quantities,

namely the electricity supply from intermittent sources and the subsistence

level of electricity use. We find that the value factor of VRE declines if

the penetration of variable renewable electricity increases, but only within

limits. This result differs somewhat from the existing literature, suggesting

that the broader concepts of indirect utility and profit/producer surplus are

more appropriate.

We consider this model as a useful starting point for several interesting

extensions. First, it can be applied to the question of integration between

separate power systems. What are the costs and benefits of building new

and costly transmission lines? Second, it is straightforward to integrate

pollution effects from non-renewable generators and analyze the optimal

level of penetration in the light of welfare effects of positive environmental

effects from VREs.
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A Deriving the indirect utility

As a first step in deriving the indirect utility function we substitute the

demand in (5) back into (4):

ui (xit − γit) =
α

1− α
− α

1− α
·
(
µipt
θit

)1−α
.

This part of the utility function increases if the price gets lower. Substituting

this into the ‘full’ utility function in (1):

Ui =
α

1− α

T∑
t=1

θit −
α

1− α

T∑
t=1

θit

(
µipt
θit

)1−α
+ µi

T∑
t=1

yit

To develop the final term, use (5) in (3):

T∑
t=1

yit = mi −
T∑
t=1

pt

(
θit
µipt

)α
−

T∑
t=1

ptγit

Using this in the utility function:

Ui = µimi +
α

1− α

T∑
t=1

θit −
1

1− α

T∑
t=1

µ1−αi θαitp
1−α
t −

T∑
t=1

µiptγit

Finally, we sum over all individuals:

U =

I∑
i=1

Ui =

I∑
i=1

µimi+
α

1− α

I∑
i=1

T∑
t=1

θit−
1

1− α

I∑
i=1

T∑
t=1

µ1−αi θαitp
1−α
t −

I∑
i=1

T∑
t=1

µiptγit

A.1 Linear demand

An alternative specification is a quadratic utility function of electricity

u (xit − γit) = −1

2
(a− b (xit − γit))2 .

In this case the marginal utility is u′ (xit − γit) = ab − b2 (xit − γit), which

means that individual demand is

xit =
ab+ b2γit

b2
− µipt
b2θit

(10)

and market demand is

Dt =
a

b
· I + γt −

pt
b2

I∑
i=1

µi
θit
. (11)
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