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Abstract 

The use of renewable fuels has emerged as one of the prominent methods to reduce fossil fuel 

consumption. Different pathway technologies can lead to different fuel products. While the 

feasibility of many such pathways have been analyzed with mixed results, new technologies have 

continuously been developed. This study uses a stochastic analysis to determine the feasibility of 

producing biofuels from carinata using the catalytic hydrothermolysis (CH) technology, with and 

without governmental incentive programs under uncertainties in input costs and governmental 

incentives. The study analyses a pioneer greenfield plant. The results show that the mean net 

present value (NPV) without governmental incentives is -$924.4 million. 90% of the simulated 

NPV was between -$1,040 million and -$810 million, which indicates 100% probability of loss. 

The mean breakeven price of jet fuel is $4.72/gal. With governmental incentives including 

Renewable Identification Number (RIN) and Low Carbon Fuel Standard (LCFS), the mean NPV 

is $62.3, and the probability of loss is reduced to 21%, which makes the process much more 

financially feasible. 
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1. Background  

The extensive use of fossil fuels for transportation in the US is a leading contributor of air 

pollution, oil dependency, and the rapid depletion rate of natural resources. Decreasing the use of 

fossil fuels can significantly mitigate these issues. The use of renewable fuels has emerged as 

one of the prominent methods to achieve such a goal. In order to encourage production of 

biofuels and reduce fossil fuel uses, governmental programs such as Renewable Identification 

Number (RIN) and Low Carbon Fuel Standard (LCFS) have been implemented. Different 

pathway technologies can lead to different fuel products. While the feasibility of many such 

pathways have been analyzed with mixed results, new technologies have continuously been 

developed. One such technology is the catalytic hydrothermolysis (CH) process of turning 

carinata oil into renewable jet fuel.  

Carinata oil is known as a clean source of feedstock for producing biofuels. According to 

Agrisoma, one of its characteristics is that it does not induce land use changes. While some crop 

feedstock requires new infrastructure designed exclusively to handle their conversion process, 

the conversion process of carinata allows producers to use existing energy infrastructure without 

blending1. Notably, carinata is among the small number of crops and the first oilseed crop to 

receive a sustainable certification from the Rountable on Sustainable Biofuels. As such, an 

analysis to determine the feasibility of producing biofuels from carinata with and without 

governmental incentive programs can bring some insights into the future of this crop as a 

feedstock for biofuels. 

The catalytic hydrothermolysis process is developed by the Applied Research Associates, 

in partnership with Chevron Lummus Global. The process comprises three phases: catalytic 

hydrothermolysis phase, hydrotreating phase, and finally the fractionation phase produces the 

final products, which include bio-jet fuel, bio-diesel, and naphtha. It should be noted that carinata 

does not require hydrothermal cleanup, which is a pre-treatment step required for some other 

feedstock. This reduces the capital costs and operating costs of the conversion process. 

There are a number of studies that examine the feasibility of producing biofuels with 

multiple technologies. Several studies examine the conversion of corn stover into bio-fuels using 

 
1 https://agrisoma.com/carinata/ 

https://agrisoma.com/carinata/
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pyrolysis (Anex et. al., 2010; Bittner et. al., 2015), and a few other technologies (Anex et. al, 

2010). Petter and Tyner (2014) also study the conversion of biofuels from corn stover. A 

stochastic study of the feasibility of producing cellulosic biofuels using fast pyrolysis technology 

is examined by Zhao et. al. (2016). Apostolakou et. al. (2010) investigate the production of 

biodiesel from vegetable oils. Bann et. al. (2017) study the production of bio-jet fuel using six 

pathways and Monte Carlo simulations, as well as de Jong et. al. (2015), while Seber et. al. 

(2014) look into the production of biodiesel and bio-jet fuel from waste oils and tallows. 

Production of these two biofuels from fermentation technology is studied by Staples et. al. 

(2014). Pearlson et. al. (2013) examine the HEFA pathway using vegetable oils and animal fats. 

Most studies were deterministic, and none of the study has examined the feasibility of producing 

biofuels, including bio-jet fuel and biodiesel from the catalytic hydrothermolysis technology 

stochastically except for McGarvey and Tyner (2018). 

McGarvey and Tyner (2018) analyze the feasibility of producing biofuel from carianata, 

using soybean oil as the surrogate, using the CH pathway with stochastic simulation. They found 

that the probability of loss is 100% without governmental incentives and as low as 74.6% with 

incentives. These results are based off cost data in 2015 and RIN and LCFS credits information 

of April 2017. However, as the conversion technology is upgraded continuously, these results 

may not reflect current costs accurately. Governmental incentives such as Renewable 

Identification Number (RIN) and Low Carbon Fuel Standard program (LCFS) also have changed 

sufficiently from 2017 to 2019, which may have an impact on the revenues. Their work assumes 

that natural gas prices correlate over time and tend to decrease, which may produce some caveats 

in the analysis, given (i) a sudden disruption in the price trend beginning from 2009, and (ii) the 

prices from 2009 and onward does not appear to show a correlation. They also assume that 

feedstock costs (soybean oil cost as surrogate for carinata oil) are correlated over time, and are 

not correlated with fuel prices, which may not precisely represent historical trends. Finally, their 

work utilizes a deterministic value for the RIN price, which may leave out some aspects of 

uncertainties, as RIN prices change continuously. 

This paper aims to analyze the feasibility of the CH pathway using stochastic simulation, 

using the most up-to-date technical, financial data and governmental incentives information. 

Additionally, we construct a forecast for natural gas price based on data from 2009 onwards to 
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better capture recent price dynamics. We also provide an alternative forecast of feedstock cost 

and fuel prices, in which future soybean oil prices are not correlated over time, and are correlated 

with future jet fuel prices, as suggested by historical trends. Finally, we model RIN price 

stochastically to incorporate future uncertainties. Forecast of bio-diesel and naphtha prices are 

based on jet fuel prices, as they are correlated with jet fuel prices.  

2. Data  

Financial and technical data were provided by Applied Research Association (ARA). All 

data were acquired in 2019. Hence, the base year for the analysis is 2018. The construction time 

for the plant is assumed to be three years, with production beginning in year 3 with a capacity of 

50%, and 100% beginning from year 4. Similar to McGarvey and Tyner (2018), we employ a 

double declining depreciation method. When the annual depreciation is less than straight line 

depreciation, a straight line method is used for the subsequent years. Financial data details can be 

found in Table 1. Working capital is the capital that is used in day-to-day operations, and is 

assumed to be 40% of the change in operating costs from year to year. At the end of the project, 

working capital is assumed to be recovered by the company.   

Project life total 23 years 

Years of construction 3 

Output 5000 bbl/day 

Depreciation life 10 

Debt/equity ratio 75:25% 

Loan payment life 10 

Working capital rate 40% 

Real discount rate 10% 

Nominal discount rate 12% 

Inflation rate 2% 

Income tax rate 16.9% 

Table 1. Financial assumptions 
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3. Methodology 

A stochastic cost-benefit analysis of the project is conducted using @Risk software. 

Using Monte Carlo simulation with 5000 iterations, we retrieve the distribution of net present 

value (NPV) of the project, and the distribution of the breakeven price (BEP) of jet fuel. The 

distribution of the NPV gives us the information on the specific probability of any values of the 

NPV. The BEP distribution allows us to understand specific BEPs that corresponds to different 

probabilities of loss. BEP is the selling price of jet fuel (per gallon) where NPV equals 0. At this 

price, the probability of loss is 50%. NPV and BEP are used in the study to determine the 

financial feasibility of the project. For a project to be financially viable, the NPV needs to be 

positive. Ideally, we lower the BEP, the more likely the project will be profitable, as it indicates 

that costs are low relative to revenues, and that biofuel products from the process are more likely 

to competitive with fossil fuel products.  

The project inherently incurs risks and uncertainties. Similar to McGarvey and Tyner 

(2018), variables that are modeled with uncertainties include: total purchase equipment cost 

(TPEC), fuel conversion yield, feedstock cost, natural gas cost, fuel products prices, including 

bio-jet fuel, bio-diesel, and naphtha. Due to these uncertainties, values for those variables are in 

ranges rather than deterministic. For each iteration, a different set of input variables values is 

used to give a value for the NPV. Over 5000 iterations, a distribution of the NPV is gained by 

using different values of input variables. 

4. Modeling uncertainties 

4.1.Financial and technical uncertainties 

4.1.1. Financial uncertainties 

Total purchase equipment cost (TPEC) is the basis to calculate the total capital investment cost. 

Similar to McGarvey and Tyner (2018), in order to account for uncertainties in this cost item, a 

Pert distribution was fit. However, we use a ±25% range on the mode as the maximum and 

minimum values rather than ±30%, as we wish to allow for a narrower range of NPV for a more 

precise forecast.  

4.1.2. Conversion yield 
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Outputs from the production process include bio-jet fuel, naphtha, and bio-diesel. We use the 

same conversion yield distributions as McGarvey and Tyner (2018). Jet fuel yield follows a Pert 

distribution (30%, 33%, 36%). Naphtha yield is fixed at 23%, and diesel yield is linearly 

dependent on jet yield, with a value of 69% - jet yield. These yield values remain the same over 

the course of project life. 

4.2.Cost and product prices uncertainties 

4.2.1. Natural gas cost 

Natural gas is an input of the process, whose price is not constant overtime. Energy 

Information Administration (EIA) data shows that before 2009, natural gas price was increasing 

over the years, which reached its maximum value of $9.26/mcf. However, from 2009, its price 

has dropped significantly (see Figure 1). This is partially due to the boom in the production of 

shale gas in the US, beginning from 2007 (US Bureau of Labor Statistics, 2013)2. Hence, in 

order to follow closely the current market trend, we opt to construct a forecast for natural gas 

price based on the historical prices from 2009 to 2018 only.  

 Using the producer price index, we convert all historical prices into 2018 price. We then 

fit a distribution over natural gas price from 2009-2018 and choose the triangular distribution 

(3.257, 3.257, 6.52) for it, as it best fits the historical data, and is capped with a lower and upper 

bound, so that the price does not take unrealistically high or low values. The lower and upper 

price bounds are chosen based on the historical prices. In this timeframe, natural gas price went 

below $3.5/mcf only in one year (2016), and went above $5.5/mcf in only two years (2009 and 

2010) . Therefore, we adjust the minimum price to $3.5/mcf and maximum price to $5.5/mcf. 

Even though there has been a drop since 2009, natural gas price from 2009 to 2018 does not 

appear to follow a trend but rather volatile and moves randomly from year to year. Hence, 

natural gas prices over time are not likely to correlate to each other, and the price of each year in 

the projection from the beginning to the end of the project is drawn randomly from the same 

triangular distribution to best present its volatile nature. 

 
2 https://www.bls.gov/opub/btn/volume-2/pdf/the-effects-of-shale-gas-production-on-natural-gas-prices.pdf 

https://www.bls.gov/opub/btn/volume-2/pdf/the-effects-of-shale-gas-production-on-natural-gas-prices.pdf
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Figure 1. US historical natural gas price 

Source: https://www.eia.gov/dnav/ng/hist/n3045us3m.htm 

 

4.2.2. Forecast of carinata oil price and fuel products prices 

While carinata oil is the feedstock of the production process, it is a new commodity. As 

such, a market for carinata oil does not exist due to a lack of historical data. Thus, similar to 

McGarvey and Tyner (2018), we use soybean oil price as a surrogate for carinata oil price. The 

biofuels produced from soybean oil bears similar characteristics and quality as those produced 

using carinata oil, and they both can be used in similar or same facilities. Hence, if carinata is 

available on the market in large scale in the future, the willingness to pay for carinata of biofuel 

producers will not be higher than the willingness to pay for soybean oil. As such, soybean oil is 

chosen because its price is essentially treated as the “ceiling” price for carinata, which can give 

more robust results of the NPV and BEP. In order to perform the analysis, we need to construct a 

method to forecast the future prices of soybean oil, jet fuel, naphtha and diesel for a period of 23 

years from 2018, since we assume 21 years of production, following 3 years of construction.  

Forecasting future prices of soybean oil and jet fuel requires their historical prices. 

Monthly price data of jet fuel was collected from the EIA and was available from 1976 to 2018. 

Monthly price data of soybean oil was collected from the consumer report of the Illinois market 

available on USDA and extends from 2000 to 2018. The report includes high and low bid 

monthly price for soybean oil. For this analysis, we take the average price of the high and low 

bid. Monthly price of both soybean oil and jet fuel are converted into 2018 dollar using the 

https://www.eia.gov/dnav/ng/hist/n3045us3m.htm
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consumer price index. We then compute the average annual price for soybean oil and jet fuel 

from the monthly price data. 

 In order to construct a price prediction framework, we seek to understand the nature of 

historical price movements and correlation of soybean oil and jet fuel. Using @Risk, We found 

that neither series is stationary nor having a clear trend. A stationary series is one with constant 

statistical properties over time3, and a series with trend will either increase or decrease over time. 

Both the price data series of soybean oil and jet fuel appear to follow a random walk. The 

movement of jet fuel price and soybean oil over time can be found in Figure 2. 

For a series with random walk, the best prediction of its future is one that follows its past 

patterns4. From Figure 2, it is apparent that although they did not appear to have a trend, 

historical monthly prices of soybean oil and jet fuel appear to follow each other, even though the 

co-movements between them is not perfectly linear5. In fact, the Pearson correlation between 

their annual prices from 2000 to 2018 is around 0.71. It means that when one price increases, the 

other also has a tendency to increase. A regression of soybean oil price on jet fuel price also 

gives a significant coefficient at 1% level, with an adjusted R-squared of 0.5. 

 

 
3 https://people.duke.edu/~rnau/411diff.htm 
4 https://people.duke.edu/~rnau/411rand.htm 
5 Annual price data shows the same trend, but monthly data was used for graphing for better visualization 
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Figure 2. Monthly historical price of jet fuel and soybean oil

Jet fuel price Soybean oil price

https://people.duke.edu/~rnau/411diff.htm
https://people.duke.edu/~rnau/411rand.htm
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 From Figure 2, it can also be observed that historically, soybean oil price was higher than 

jet fuel for the majority of periods. In fact, there were 186 out of 228 months (which is 

equivalent to 15.5 out of 19 years) from 2000 to 2018 that soybean oil price was higher than the 

price of jet fuel, which is around 82% of the time. Notably, recent trend shows that soybean oil 

price is rarely lower than that of jet fuel. The average annual difference between soybean oil and 

jet fuel price from 2000-2018 is around $0.593. Hence, it indicates that predicted future prices of 

soybean oil should be higher than jet fuel prices for the majority of the time, with an average 

difference between them having a value close to $0.593. Moreover, those two forecasted prices 

series should be correlated to each other with a Pearson coefficient close to 0.71. Finally, the 

predicted prices for both series should not show clear upward or downward trends, as the 

historical price data shows no trend. 

Even though both price series move with a random walk, there is a bound for the values 

that they take, since the historical correlation needs to be maintained. This is done by applying a 

distribution to each predicted series. A Pert distribution was chosen, as it is one of the best fits 

for both series, and it has a lower and upper bounds. Jet fuel price follows Pert(0.78, 2.436, 

2.73), and soybean oil price follows Pert(1.48, 2.475, 5.24). As both series follow random walk, 

we do not use a lagged price system, as the price of next year should not be correlated to that of 

the current year. Thus, jet fuel and soybean price of each year is a random draw from each of 

their distributions. As the two series need to be correlated, we correlate annual prices of jet fuel 

to soybean oil prices using the correlation matrix feature in @RISK. The correlation coefficient 

in the matrix is set to be 0.71. The years being predicted range from 2019 to 2044. 

Simulation results show that the average difference between predicted soybean oil and jet 

fuel price is around $0.563 for all years from 2019 to 2044, with a probability that predicted 

soybean oil price is higher than that of jet fuel price ranging from 85%-87% of the time. The 

distribution of the difference in price of a randomly picked year (in this case year 2044) can be 

found in Figure 3. These are desirable and realistic results, as they show very similar patterns to 

the historical price series, with an average difference in price close to $0.593, and a relatively 

low probability of price difference being negative.  

Additionally, the Pearson correlation coefficient between the two predicted series has a 

mean of around 0.68. The distribution of the correlation coefficient of a randomly picked year 



11 
 

can be found in Figure 4. This value is reasonably close to 0.71, which is the correlation 

coefficient of historical prices of soybean oil and jet fuel. Overall, the two predicted price series 

follow a Pert distribution with lower and upper bounds. All of these features resemble those of 

the historical price data. As such, we expect that this forecast is realistic, and will be used for the 

forecast of naphtha and diesel prices. 

 

Figure 3. Distribution of difference in predicted soybean oil and jet fuel price in 2044 

 

Figure 4. Distribution of correlation between predicted soybean oil and jet fuel in 2044 

4.2.3. Forecast of naphtha and diesel prices 
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We collect historical annual wholesale diesel price data from 1995-2017 from the EIA. 

Gasoline price is used as a surrogate for naphtha price, as detailed and accurate historical 

naphtha price was not available, and was also extracted from the EIA from 1995-2017. We 

decide to choose to collect the prices from 1995 since fuel prices trend tend to change over time. 

Thus, prices of a timeframe too far away from the present may not represent well current price 

trends. Historical annual price movements of jet fuel, gasoline and diesel can be found in Figure 

5.  

From Figure 5, we can observe that different from jet fuel and soybean oil price, prices of 

the three fuels follow each other very closely; and this trend has been always stable. This is 

partially because they all are products of crude oil, and hence follow the movements of crude oil 

price closely. 53% of diesel price is made up from crude oil price (EIA, 2019)6, which may 

explain the close co-movements of diesel and crude oil prices. Since jet fuel and naphtha prices 

have the same trend as diesel, their prices follow diesel prices closely too. Thus, it is appropriate 

to test for a near-linear relationship between them. Gasoline is taken as a replacement for 

naphtha, as they are close substitutes. The relationship is reported to be: 

 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒_𝑝𝑟𝑖𝑐𝑒𝑡 = 0.209 + 0.876𝐽𝑒𝑡𝑓𝑢𝑒𝑙_𝑝𝑟𝑖𝑐𝑒𝑡 (1) 

 𝐷𝑖𝑒𝑠𝑒𝑙_𝑝𝑟𝑖𝑐𝑒𝑡 = 0.0087 + 1.01𝑗𝑒𝑡𝑓𝑢𝑒𝑙_𝑝𝑟𝑖𝑐𝑒𝑡 (2) 

Both regressions (1) and (2) have an adjusted R square of 0.99, thereby suggesting a near-linear 

relationship between them. Since we already built a projection for jet fuel price, the relationships 

between diesel and gasoline with jet fuel was used to forecast the prices of gasoline and naphtha. 

Assuming that this relationship is stable over time, prices of diesel and gasoline in a given year 

will depend on the forecasted price of jet fuel in that year. Mean forecasted jet fuel price is 

$2.21/gal. Biodiesel mean forecasted price is $2.24/gal.. The mean predicted price of gasoline is 

$2.14/gal. 

 
6 See https://www.eia.gov/energyexplained/diesel-fuel/factors-affecting-diesel-prices.php for the movement of 
crude oil price and diesel price, and https://www.eia.gov/energyexplained/diesel-fuel/prices-and-outlook.php for 
the components of diesel price 

https://www.eia.gov/energyexplained/diesel-fuel/factors-affecting-diesel-prices.php
https://www.eia.gov/energyexplained/diesel-fuel/prices-and-outlook.php
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4.2.4. Forecast of RIN prices  

McGarvey and Tyner (2018) use RIN price and LCFS credit of April 2017 for the 

analysis. In this study, we incorporate uncertainties in RIN prices and model them stochastically. 

Historically, RIN prices correlate strongly to the blend gap (see Figure 6). Notably, the 

availability of blender tax credit (BTC) in a given year may have an impact on RIN prices (Irwin 

et al., 2018). A BTC is believed to encourage biofuel production, thereby reducing RIN price 

(Markel, 2017). Therefore, historical D4 RIN prices were regressed on historical blend gap and 

the availability of a BTC in a given year from 2010 to 2018, yielding the relationship  

 𝐷4_𝑅𝐼𝑁 = 0.347 + 0.648 ∗ 𝐵𝑙𝑒𝑛𝑑_𝑔𝑎𝑝 + 0.13 ∗ 𝐵𝑇𝐶 (3) 

 

The adjusted R-squared is 0.82, indicating a good fit. The coefficient of BTC is positive. 

This means that with the BTC, the gap between D4 RIN price and the blend gap is larger. This 

supports the belief that the availability of a BTC in a year reduces the RIN prices of that year. 
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Figure 5. Historical prices of jet fuel, gasoline and diesel

U.S. Kerosene-Type Jet Fuel Wholesale/Resale Price by Refiners (Dollars per
Gallon)

U.S. Total Gasoline Wholesale/Resale Price by Refiners Dollars per Gallon

U.S. No 2 Diesel Wholesale/Resale Price by Refiners Dollars per Gallon
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We then construct a forecast of the blend gap 23 years from 2018. We first obtain a 

forecast of fossil diesel price, based on the relationship in (2). We then forecast biodiesel prices, 

using forecasted soybean oil prices. Soybean oil price is the main cost component of biodiesel 

prices. Using the cost data of producing biodiesel from soybean oil of a representative plant from 

Iowa State University, we calculate the percentage of soybean oil cost in total cost of producing 

biodiesel to be 80%. Thus, the relationship between biodiesel prices and soybean oil prices was 

found to be: 

 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙_𝑝𝑟𝑖𝑐𝑒 = 0.835 + 0.96 ∗ 𝑠𝑜𝑦𝑏𝑒𝑎𝑛_𝑜𝑖𝑙_𝑝𝑟𝑖𝑐𝑒 (4) 

The adjusted R-squared is 0.95. This relationship is then used to forecast biodiesel prices. 

The predicted blend gap is then obtained using forecasted fossil bio diesel prices. In order to 

forecast the availability of a BTC, we fit a binomial distribution on the historical data of BTC. 

BTC follows Bionimal(1, 0.4). With the forecasted blend gap and BTC in hand, a forecast for D4 

RIN prices are obtained. Jet fuel and diesel are given D4 RIN. However, naphtha is given D5 

RIN. Historically, D4, D5 and D6 RINs follow each other closely. The movements of D4 and D5 

RINs can be found in Figure 7. Except for the period 2011-2013, where D4 and D5 RIN prices 

deviate from each other, they correlate strongly in general. Thus, in order to capture the precise 

trends, D5 RIN prices were regressed on D4 RIN prices for the period 2013-2018, which gives: 

 𝐷5𝑅𝐼𝑁 = 0.747 − 0.122 ∗ 𝐷4𝑅𝐼𝑁 (5) 

 $-

 $0.50

 $1.00

 $1.50

 $2.00

 $2.50

Figure 6. Blend gap and RIN prices movements

Blend gap RIN price

2010 2011     2012     2013    2014     2015    2016     2017      
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The adjusted R-squared is 0.98. Using this relationship and the forecasted D4 RIN prices, 

a forecast for D5 RIN prices was obtained. 

 

Figure 7. Weekly D4 and D5 RIN prices 

Source: EPA, 2020 at https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rin-
trades-and-price-information 

4.2.5. LCFS credits estimation 

The LCFS program awards credits to fuels that have a carbon intensity (CI) score less 

than the pre-determined benchmark CI score, and penalize fuels that surpass the benchmark CI 

score. The CI score is given to each certified pathway. Since the CH pathway is yet to be 

certified, we use the average CI scores for all certified pathways that produce the same fuel 

products using soybean oil. This is because the CH pathway has similarities to the HEFA 

pathway, which uses soybean oil as one of the feedstock. Soybean oil is also the surrogate for 

carinata oil in our study. 

Any pathway that uses soybean oil as feedstock incorporates induced land use change 

(ILUC) in their CI score. However, as discussed earlier, producing biofuels from carinata does 

not induce land use change, and hence the CI score of the CH pathway in this study is the 

average CI score of soybean oil pathways minus their ILUC score, giving the 26.44 as the CI 

score. Pre-determined benchmark CI score is set until 2030. After that, the benchmark CI score 

will stay at the 2030 level for a number of years. We assume the 2030 level for all the years after 

2030 until the end of the project. The LCFS credits for bio-jet fuel, bio-diesel and bio-naphtha in 

each year are obtained using the pathway CI score and the benchmark CI score. 

https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rin-trades-and-price-information
https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rin-trades-and-price-information
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5. Results  

5.1.Net present value  

The distribution of the NPV of the project without RIN and LCFS for a pioneer 

greenfield plant can be found in Figure 8. The distribution shows that the mean NPV is negative 

$924.4 million. It means that using average values of all inputs and outputs that are modelled 

stochastically will result in this value of NPV. The spread values of NPV in the 90% middle 

range is from  $-1,040 million to -$810 million. The minimum value is around -$1,175 million, 

while the maximum NPV is -$704.9 million. These values are similar to those of McGarvey and 

Tyner (2018), which indicates that the process has not seen optimistic changes in profitability 

without RIN and LCFS after a course of 4 years7,8. From the distribution, we can conclude that 

the probability of loss is 100%. This means that without RIN and LCFS credits, the project will 

not make a profit in any scenario. Note that these are the results for a greenfield plant without 

learning curve, at a real discount rate of 10%. 

 

Figure 8. Distribution of NPV of the project without RIN and LCFS  

 

 The distribution of the NPV with RIN and LCFS can be found in Figure 9. The reported 

mean value of NPV is $62.3 million. 90% of the simulated NPV was between -$64 million to 

$186 million. The probability of loss is 21%, which is significantly lower than the production 

scenario without RIN and LCFS. It suggests that governmental policies such as RIN and LCFS 

 
7 This study does not assume a scenario of rise in fuel prices and no learning curve 
8 McGarvey and Tyner (2018) use data obtained in 2015, while this study uses data obtained in 2019. 
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may have significant impacts on the profitability of producing biofuels using carinata oil. These 

results are very much different from McGarvey and Tyner (2018), where they find that even with 

RIN and LCFS, the production process using carinata oil in a pioneer greenfield will not be 

profitable, or the probability of loss is 100%. This may be due to the differences in the modeling 

methods for soybean oil price and fuel prices, and RIN prices and LCFS credits, and the drastic 

changes of LCFS credits from 2017 to 20199.  

The only differences in greenfield and brownfield plants is the capital investment cost. 

Similarly, a plant with learning curve will have lower total and operating costs than a plant 

without. In an nth field scenario, capital investments and operating cost decrease by a reduction 

factor. This study does not consider these cases, but it can be inferred that with a brownfield or 

greenfield with learning curve (nth brownfield or greenfield), the NPV may well be larger, and 

the probability of loss may decrease. 

 

Figure 9. Distribution of NPV of the project with RIN and LCFS  

 

5.2.Break-even price 

Break-even price (BEP) is a price that makes NPV equals 0. The distribution of the BEP 

of bio-jet fuel can be found in Figure 10. The mean BEP is around $4.72/gal. This is the price 

that results in a probability of loss of 50%, or the probability of earning the stipulated rate of 

returns of 50%. If the producer wishes to earn the stipulated rate of return with a probability of at 

 
9 In 2017, carbon price was 78$/ton. From the beginning of 2019 till now, carbon price has increased to around 
$200/ton and even more. See https://www.neste.com/corporate-info/investors/market-data/lcfs-credit-price 

https://www.neste.com/corporate-info/investors/market-data/lcfs-credit-price
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least 75%, the breakeven price of jet fuel would need to be at least $4.86/gal. A price of at least 

$5/gal will ensure earning the stipulated rate of return with a probability of 90%. The mean BEP 

is slightly lower than that of McGarvey and Tyner (2018), which is $5.18/gal for a pioneer 

greenfield plant. This may be due to changes in technology or cost data, or modeling methods for 

certain inputs and outputs over time. 

From section 4.2.3, mean forecasted bio-jet fuel price, biodiesel price, and gasoline 

(naphtha) price are $2.21/gal, $2.24/gal, $2.14/gal, respectively. the RIN price is modeled 

stochastically with mean value $1.2/gal for D4 RIN. Hence, mean bio-jet fuel price with RIN is 

$3.41/gal. LCFS credit per gallon tend to decrease over time, depending on the pre-determined 

carbon intensity (CI) benchmark, which is lowered over time, and the carbon price, which is 

expected to stay at around $200/MT for a number of years. LCFS credit for jet fuel is expected to 

range from $1.36 to $1.6 per gallon during the 21 years of operation, with $1.6 being the value of 

the first year, before decreasing over time. Therefore, mean bio-jet fuel price with RIN and 

LCFS ranges from $4.77 to $5 per gallon with RIN and LCFS credit, with $5 being the price in 

the first years, before decreasing gradually. From these results, we can see that mean bio-jet fuel 

prices always guarantee at least 50% probability of earning the stipulated rate of returns, even 

when LCFS credit decreases to the lowest value.  

 

 

Figure 9. distribution of break-even price of bio-jet fuel 

6. Conclusions 
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Relative to prior research, this techno-economic analysis uses the most up-to-date 

technical and financial data and governmental incentives, as well as an alternative methods of 

estimating LCFS credit and forecasting costs, fuel prices, and RIN values. The results show that 

without governmental policies, the CH pathway is not economically viable. With policies such as 

RIN and LCFS, the pathway becomes much more feasible. The results are based on a pioneer 

greenfield plant.  

For a brownfield scenario, capital investment is smaller. In an nth field scenario, capital 

investments and operating cost decrease by a reduction factor. It should be noted that 

uncertainties regarding soybean oil price as well as fuel prices remain, given their volatility 

nature and the unpredicted political environment. If sudden and/or drastic changes in those prices 

occur, the results of the analysis may alter. Also, there is a possibility that the RIN and LCFS 

programs will be abolished in the future, which may result in undesirable profitability of the 

production process. However, if carinata becomes a commodity with a large scale in the future, 

its price should not exceed soybean oil price, or it will be substituted by soybean oil. If this 

happens, the profitability of the process may be improved significantly, as feedstock cost is a 

major cost in this study and others (Pearlson et.al., 2013; McGarvey and Tyner, 2018) 
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