THE CONTRIBUTION OF NEW MOBILITY TECHNOLOGIES AND SERVICES TO CLIMATE CHANGE MITIGATION AND ECONOMIC WELFARE

Tatiana Bruce da Silva, IN+ Center for Innovation, Technology and Policy Research, LARSys, Instituto Superior Técnico, Universidade de Lisboa, +351912617694, tatiana.silva@tecnico.ulisboa.pt Patrícia Baptista, IN+ Center for Innovation, Technology and Policy Research, LARSys, Associação para o desenvolvimento do Instituto Superior Técnico, Universidade de Lisboa, +351218417379, patricia.baptista@tecnico.ulisboa.pt Carlos Santos Silva, IN+ Center for Innovation, Technology and Policy Research, LARSys, Instituto Superior Técnico, Universidade de Lisboa, +351962451813, carlos.santos.silva@tecnico.ulisboa.pt Luan Santos, Production Engineering Program (PEP/COPPE/UFRJ) and Engineering UFRJ-Macaé, +5521983757577, luan.santos@pep.ufrj.br

Overview

Human-induced climate change is one of the biggest challenges facing humankind today. The causes of global warming lie in rising greenhouse gas (GHG) emissions from anthropogenic sources and its mitigation, through decarbonization of our societies and change in our habits, has become increasingly urgent. Decarbonization of transportation is considered more complex than other energy end-use sectors because existing mobility technology is highly locked in the use of fossil fuels (Pietzcker et al., 2014). In addition, agents' behavioral decisions about transportation and their impacts on energy consumption must be considered when implementing decarbonization policies. Therefore, in order to effectively decarbonize transportation, it is necessary to not only deploy cleaner technologies and fuels, but also promote the behavioral change of agents towards more sustainable mobility products.

At the same time, mobility is also going through its own transformation. When applied to passenger road transportation, the mobility-as-a-service (MaaS) concept, which changes the focus of transportation to service from ownership, has resulted in alternative mobility services such as carsharing, ride-hailing, and automation, which will have a significant impact on the way people move. When properly directed and regulated, these alternative mobility services and technologies can contribute to a more efficient and sustainable use of transportation through reduction of vehicle ownership and promotion of modal shift, with consequent impacts in terms of energy consumption and greenhouse gas emissions. Moreover, through their influence on the choice of transport modes, these alternative technologies and services will also affect users' welfare.

This study, hence, analyzes current literature on new mobility technologies and services in passenger road transportation to assess how these innovations may contribute to changes in vehicle use and ownership as well as adoption of alternative services, with consequent impacts in terms of energy use, its associated emissions, transportation decisions, and overall economic welfare of the population. Such an analysis is important because transportation's energy consumption derives from the behavioral decision of agents, which impacts their welfare. This way, in order to fully understand how alternative mobility technologies and services will develop in an effective way in terms of climate change mitigation, all these factors must be evaluated in conjunction.

This paper is structured as follows: the next section provides an overview of alternative mobility technologies and services, while the following section presents the results of the analysis of how new mobility technologies and services affect energy use, emissions, and economic welfare, and also discusses gaps in the literature. Finally, the last section closes this paper and details future work.

Mobility market trends for alternative technologies and services

Mobility has experienced several changes in the past few years. While carsharing and ride-hailing are common throughout the world, full autonomous vehicles (AVs) have yet to become available for purchase by consumers (although level 2 automation is available in some vehicles today – see Table 2).

Ride-hailing services match drivers and passengers through an online platform or mobile application. The possibility of sharing rides is also available in some locations. Nowadays, some form of ride-hailing service, such as transportation network companies (TNC: Uber, Lyft, among others), regular taxi services (booked online/on app), or

ride pooling services (such as Waze Carpool, Via, etc.) has been operating in more than 150 countries, having served more than one billion users (Marciano, 2016; Statista, 2020). Number of users is expected to reach 1.5 billion in 2023 (Statista, 2020).

Carsharing has also became ubiquitous, being present in 59 countries¹ with more than 15 million members sharing over 157,000 vehicles². There are two type of services available: two-way (or station-based), in which users return the vehicle to the same location where the trip started; and one-way (or free-floating), in which the return point can be anywhere within a service area. Table 1 lists different carsharing business models available today.

Table 1: Carsharing's business models. Source: adapted from (Shaheen et al., 2019)

Business-to-consumer (B2C): a carsharing provider offers individual consumer access to a business-owned fleet of vehicles through memberships, subscriptions, user fees, or a combination of pricing models. Example: Zipcar.

Business-to-Government (B2G): carsharing providers (typically, a B2C company) offer transportation services to a public agency. Pricing may include a fee-for service contract, per-transaction cost, or some other pricing model.

Business-to-Business (B2B): carsharing providers (also B2C companies) sell business customers access to transportation services either through a fee-for-service or usage fees. The service is typically offered to employees to complete work-related trips.

Peer-to-Peer (P2P): also known as personal vehicle sharing. A service operator facilitates the match between vehicle owners and guests by providing the organizational resources needed to make the exchange possible. Pricing and access to vehicles vary, being determined by vehicle owners. The service operator generally charges a fee (a percentage of the transaction amount) in return for facilitating the match and providing third-party insurance.

Table 2 describes different levels of automation for vehicles. Full automation is expected to become available for consumers sometime within the next decade (Shaheen et al., 2018b). Nowadays, however, some pilot projects have been testing full AV functionalities in several countries. While pilot projects and technology development have positive impacts on adoption levels, consumer acceptance and legislation/regulation also are important factors for AVs development (KPMG, 2019).

Table 2: Levels of driving automation in vehicles. Source: adapted from (SAE International, 2018).

Level 0 - no driving automation: the driver performs the entire driving task, even when aided by active safety systems.

Level 1 – driver assistance: a driving automation system executes either steering or acceleration/deceleration (but not both simultaneously) with the expectation that the driver performs the remainder of the driving task.

Level 2 – partial driving automation: a driving automation system executes both steering and acceleration/deceleration with the expectation that the driver detects objects and events, answers appropriately and supervises the system.

Level 3 – conditional driving automation: the system performs the entire driving task, but the driver has to be ready to intervene when the system asks to (user becomes driver during fallback: performance-relevant system failure or operational design domain exit).

Level 4 – high driving automation: the system performs the entire driving task (also during fallback) without any expectation that a user will respond to a request to intervene. The driving task, however, is limited by an operational design domain (the system is designed to operate under certain conditions: environmental, geographical, and time-of-day restrictions, and/or presence/absence of certain traffic or roadway characteristics).

Level 5 – full driving automation: the sustained and unconditional (not limited by operational design domain) performance by a driving system of the entire driving task and fallback without any expectation that a user will respond to a request to intervene.

¹ As of May 2019 (movmi Shared Transportation Services Inc., 2019).

² As of 2016. Numbers reflect business-to-consumer (B2C) roundtrip and one-way carsharing only. (Shaheen et al., 2018a).

Results of the analysis

Alternative mobility technologies and services offer different and additional transportation options for consumers to choose, thus affecting economic welfare, energy use and emissions in numerous ways. Understanding such impacts is important so that policy can be designed to foster energy efficiency, sustainable mobility and contribute to mitigate the effects of climate change. For such, we perform a vast literature review to identify the types of impacts covered in each reference, as presented in Table 3. We divide the analysis by type of technology/service (carsharing, ride-hailing, and autonomous vehicles). Most studies focus on the impacts on vehicle ownership, kilometers/miles traveled, emissions, other transit modes and economic welfare.

				Impac	ts on			
Study	Vehicle	VKT/VMT	Fuel	CO ₂	Safety	Other transit	Economic	Other
	Ownership		efficiency	emissions		modes	welfare	impacts
(Kumar Mitra 2021)	1	1	Carsna	aring		2	2	2
(Kumar Milira, 2021)	-	-	-	-	-	V	V	V
(Sun and Eriz, 2021) (Packer et al. 2020)	-	-	-	V	-	-	-	-
(Migliore et al. 2020)	-	-	-	-	-	v	v	v v
(Schmöller and Bogenberger	-	-	-	v	-	-	-	-
(Semiloner and Bogenberger, 2020)	\checkmark	-	-	-	-	\checkmark	\checkmark	-
(Te and Lianghua, 2020)	-	-	-		-	-	-	
(Tsuji et al., 2020)	-	-	-		-	-	-	
(Zhou et al., 2020)		-	-	-	-	-	-	
(Ding et al., 2019)	-	-	-		-	-	-	-
(Ko et al., 2019)		-	-	-	-	-	-	
(Le Vine and Polak, 2019)		-	-	-	-	-	-	
(Shaheen et al., 2019)			-		-			
(Sprei et al., 2019)	-	-	-	-	-			
(Tyndall, 2019)	-	-	-	-	-	\checkmark	-	-
(Becker et al., 2018)	V	-	-	-	-	V	-	-
(Jung and Koo, 2018)	V	-	-	\checkmark	-	-	-	\checkmark
(Namazu and Dowlatabadi,	al					al		al
2018)	v	-	-	-	-	v	-	v
(Nijland and van Meerkerk, 2017)	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-	-
(Chen and Kockelman, 2016)	-	-			-	-	-	-
(Clewlow, 2016)	V		-	-	-	V	-	V
(Giesel and Nobis, 2016)		-	-	-	-	-	-	-
(Rabbitt and Ghosh, 2016)	-	-	-		-	\checkmark		
(Baptista et al., 2014)		-			-	V		
(Costain et al., 2012)	-		-	-	-	V	-	
	•		Ride-h	ailing				
(Schaller, 2021)	-		-	-	-	\checkmark	-	
(Tarduno, 2021)	-	-	-	-	-	-		-
(Ward et al., 2021)		-		-	-	\checkmark	-	-
(Wu and MacKenzie, 2021a)			-	-	-		-	-
(Wu and MacKenzie, 2021b)	-		-	-	-	-	-	-
(Baker, 2020)	-	-	-	-	-	\checkmark	-	-
(Bekka et al., 2020)			-	-	-	-	-	-
(Jenn, 2020)	-	-	-		-	-	-	
(Jiao et al., 2020)	-		-	-	-	-	-	
(Roy et al., 2020)	-		-	-	-		\checkmark	-
(Sabouri et al., 2020)		-	-	-	-	-	-	-
(Tirachini, 2020)		-	-		-	\checkmark	\checkmark	
(Tirachini et al., 2020)	-		-	-	-	\checkmark	-	-
(Yi and Yan, 2020)	-	-	-		-	-	-	-
(Young et al., 2020)	-	-	-	-	-	\checkmark	\checkmark	-
(Cai et al., 2019)	-		-		-	-	-	-
(Habib, 2019)	-	-	-	-	-	\checkmark	-	-
(Haddad et al., 2019)	-	-	-	-	-	\checkmark		
(Henao and Marshall, 2019)	V		-	-	-	\checkmark	-	
(Malalgoda and Lim, 2019)	-	-	-	-	-	\checkmark	-	-
(Sui et al., 2019)	-	-	-		-	-	-	
(Tirachini and del Río, 2019)	-	-	-	-	-	V	√	√
(Ward et al., 2019)			-		-	-		-
(Wenzel et al., 2019)	-	\checkmark	\checkmark	-	-	-	-	-
(Young and Farber, 2019)	-	-	-	-	-	V	-	-
(de Souza Silva et al., 2018)	-	-	-	-	-	V	V	
(Hall et al., 2018)	-	-	-	-	-	1	√	-
(Rodier, 2018)	\checkmark	\checkmark	-	-	-	1	-	-
(Schwieterman and Smith, 2018)	-	-	-	-	-	-	\checkmark	V
(Vanderschuren and Baufeldt, 2018)	-	-	-	-	-	-	\checkmark	\checkmark
(Wu et al. 2018)	-	_	_	1	-	V	_	- I
(Yin et al. 2018)	-	-	-	v V	-	V	1	-

			Autonomous v	ehicles (AVs)				
(Oh et al., 2021)	-	\checkmark	-	\checkmark	-	-		-
(Alarfaj et al., 2020)	-	-	-		-	-	-	
(Brown and Dodder, 2019)	-	-	-	\checkmark	-	-		-
(Gawron et al., 2019)	-	-	-	\checkmark	-	-	-	-
(Gelauff et al., 2019)	-	-	-	-	-	\checkmark	\checkmark	-
(Jones and Leibowicz, 2019)	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark
(Kröger et al., 2019)	-	\checkmark	-	-	-	\checkmark	-	\checkmark
(Liu et al., 2019)	-	\checkmark	\checkmark	\checkmark	-	-	-	-
(Patella et al., 2019)	-	\checkmark	-	\checkmark	-	-	\checkmark	-
(Sethuraman et al., 2019)	-	-	\checkmark	-	-	-	-	\checkmark
(Soteropoulos et al., 2019)	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	\checkmark
(Stogios et al., 2019)	-	-	-	\checkmark	-	-	-	-
(Taiebat et al., 2019)	-	\checkmark	-	-	-	-	\checkmark	-
(Venturini et al., 2019)	-	-	-	\checkmark	-	\checkmark	\checkmark	-
(Zhang et al., 2019)	-	-	-	\checkmark	-	-	-	\checkmark
(Fox-Penner et al., 2018)	-	\checkmark	\checkmark	\checkmark	-	-	-	-
(Gawron et al., 2018)	-	-	-	\checkmark	-	-	-	-
(Hidaka and Shiga, 2018)	-	-	-	-	-	\checkmark	\checkmark	-
(Taiebat et al., 2018)	-	\checkmark	\checkmark	-		\checkmark	\checkmark	\checkmark
(Vahidi and Sciarretta, 2018)	-	-	\checkmark	-	-	-	-	-
(Kockelman et al., 2017)		\checkmark	-	-		-	\checkmark	-
(Milakis et al., 2017)		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
(Ross and Guhathakurta, 2017)	-	\checkmark	-	-	-	-	-	-
(Stephens et al., 2016)	-	\checkmark	V	-	-	-	V	-

More detailed information on each study can be found in Table A 1 in the Annex, while Table 4 summarizes the results. Given that the studies analyzed use different methods to assess these impacts, the numerical ranges reported in Table 4 are merely for illustrative purposes. Nonetheless, a trend is observed for each technology/service analyzed. Overall, direction of effects is fairly the same across studies, but their magnitude is influenced by assumptions made.

Vehicle Ownership	VKT/VMT	CO ₂ emissions	Other transit	Economic welfare
			modes	
Carsharing				
Lower vehicle ownership across studies (range: 3 – 80% reduction)	Lower VKT/VMT across studies (range: 2 – 83% reduction)	Lower emissions across studies (range: 4 – 67% reduction)	 Increases public transit and active modes' use Complements transit (fills gaps) Substitutes private/rented cars 	Increases welfare: more access to households, fills mobility gaps, cheaper than vehicle ownership
Ride-hailing			private/relited ears	
Inconclusive, but there is a negative trend among users (either reduced car ownership or intention to shed a vehicle)	Higher VKT/VMT across studies (range: 8 – 157% increase), mostly due to deadheading	Lower emissions, which are mostly due to the modelling of shared/pooled services and EVs across studies	 Mostly substitutes modes. Results across studies: Public transit: 17 – 31% Public transit and active modes: 34 – 58% Private cars and taxis: 19 – 83% 	Increases utility for users and grants positive externalities, but also increases congestion and reduces traffic speed, which may negatively impact welfare
Autonomous vehicles	S			
Not much studied. Some papers show that shared autonomous vehicles (SAVs) decrease ownership	Higher VKT/VMT across studies (range: 2 – 47% increase). SAVs mitigate impacts	Lower emissions across studies (range: 3 – 87% reduction) when performance is optimized, increased fuel efficiency, etc.	Substitute public transit and active modes	Increase welfare for users and reduce system's operating costs. May increase congestion, but impact is mitigated with SAVs

Table 4: Overall impact of new mobility technologies and services

The extent of carsharing's impacts varies across studies due to several factors: region; density; built environment; public transit accessibility; and carsharing service and business model (Shaheen et al., 2019). Overall, carsharing leads to reduced vehicle ownership. Users report that they have already sold, will sell their private cars or have given up the idea of buying a vehicle. Less vehicles impact kilometer/miles travelled and emissions, which shows that carsharing provides a good alternative to improve the efficiency of transportation. Moreover, fuel efficiency is improved if the carsharing fleet is comprised of more energy efficient vehicles, such as hybrids and battery electric vehicles (BEVs) (Baptista et al., 2014). Greater emission reduction is also achieved with EVs in the carsharing fleet (Jung and Koo, 2018).

Regarding interaction with other transit modes, some studies report that, depending on the trip's characteristics, carsharing increases the use of transit and active transportation modes, substitutes private/rented cars, and complements public transportation. By filling gaps in transit supply, carsharing increases the welfare of the population (Costain et al., 2012; Schmöller and Bogenberger, 2020). Greater access, especially to lower income households, which cannot afford car ownership, is another positive welfare impact of carsharing (Kumar Mitra, 2021; Shaheen et al., 2019). The carsharing type of service also affects results. (Namazu and Dowlatabadi, 2018) compare users of free-floating and two-way carsharing services, which are used differently: the former group is more likely to use the service as a complement to all modes of transportation, while the latter is more likely to use carsharing as a substitute for private car ownership. (Schmöller and Bogenberger, 2020) report that free-floating carsharing is used for commuting or leisure trips (going to restaurants, dancing, etc.), while two-way carsharing is used for weekend trips and longer-term needs. (Sprei et al., 2019) reports that given the higher cost per trip compared to other modes, and no major time gain, carsharing provide some extra utility to users. This way, the use of carsharing in an efficient transportation system must consider users' preferences: customers will choose transportation based on economic and time costs, but also based on the errand that must be ran.

Preferences are a big determinant for the expansion of ride-hailing. Review from the literature found that ridehailing mostly substitutes other transit modes and increase VKT/VMT, especially due to deadheading (empty vehicle miles/kms driven between trips). As a result, cities have been experiencing more congestion and reduced traffic speed. The negative impact of deadheading, however, is lower when ride-hailing services (e.g.: Uber) substitute taxis, which have higher deadheading rates (Sui et al., 2019; Tirachini, 2020). Although energy consumption impacts are not ideal, ride-hailing has expanded due to the utility it provides to users. For instance, in Brazil, ride-hailing is used as an alternative to unsafe transportation modes such as walking and public transit (de Souza Silva et al., 2018). (Vanderschuren and Baufeldt, 2018) discuss the social benefit of ridesharing when it counters for insufficient mobility services in Cape Town. (Habib, 2019) also reports that ride-hailing fills gaps in public transit in the Greater Toronto area. For ride-hailing users, time savings are a welfare gain (Schwieterman and Smith, 2018; Tirachini, 2020). These welfare gains potentially affect the economy. In São Paulo, Brazil, ride-hailing positively impact accessibility of workers in the job market, thus enhancing economic activity (less time wasted commuting increases workers' productivity) (Haddad et al., 2019). (Tarduno, 2021) reports that congestion costs are similar in magnitude to the consumer surplus provided by ride-hailing. Therefore, the design of an effective sustainable transportation system must account not only for its energy impacts, but also for the benefits it brings to society.

Autonomous vehicles are also expected to benefit society in numerous ways. AVs will provide mobility to underserved populations, like the disabled, elderly, and children; will reduce the opportunity cost of travelling because it will allow to multitask while on board; will improve security and efficiency of travel; among others. The aforementioned factors, however, may substantially increase VKT/VMT, energy use and emissions (impacts that are mitigated when shared AVs are considered and performance is optimized). AVs may also contribute to urban sprawl, job displacement and unemployment³. (Taiebat et al., 2018) review several publications about AVs from four perspectives: vehicle, transportation system, urban system, and society levels. While they foresee positive environmental impacts at the vehicle, transportation, and urban system levels, greater vehicle utilization and shifts in travel patterns at the society level may offset some of the benefits. In addition, they argue that "Focusing on the vehicle-level improvements associated with connected AV technology is likely to yield excessively optimistic estimates of environmental benefits." (Taiebat et al., 2018). (Milakis et al., 2017) also claim that AVs' effects on

³ A publication from the (U.S. Department of Energy, 2017) states that, in the medium to longer term, if manufacturers adjust their production according to the new demand (either lighter, less complex cars, or more durable and resistant cars), an equilibrium in the vehicle manufacturing market is reached.

safety, economy, public health and social equity are still unclear. Hence the importance of discussing the transition to a sustainable transportation system in a holistic way, considering welfare and energy impacts in conjunction.

Some studies, however, have tried to shed light on the effects autonomous vehicles may have in the economy through impacts on agents' welfare. (Gelauff et al., 2019) simulate spatial effects of autonomous vehicles for the Netherlands. Using a general equilibrium model, they analyze how more productive time use during car trips and fast and comfortable door-to-door automated public transit affect welfare. Their results report that the car component results in population flight from cities, while the public transit component leads to population clustering in urban areas. Moreover, a combination of both components may result in population concentration in the largest, most attractive cities, at the expense of smaller cities and non-urban regions: "The simulations suggest that welfare benefits of automation are considerable, with up 10% coming from population relocation and changes in land use." (Gelauff et al., 2019). In sum, relocation causes increased utility (people are moving because they are better off this way) and welfare.

(Soteropoulos et al., 2019) review several modelling studies investigating the impacts of AVs on travel behavior and land use and conclude that shared autonomous vehicle fleets could have positive impacts such as, for instance, reducing the overall number of vehicles and parking spaces. Moreover, if assumptions consider that automation leads to a more efficient public transport system, AVs could lead to a favoring of urbanization processes. These results, however, are too sensitive to assumptions, hence the need to develop more studies to evaluate all these variables concurrently: how the employment of all new mobility technologies simultaneously may impact energy systems and the economy through energy consumption, emissions, and the welfare of agents.

(Jones and Leibowicz, 2019) use an energy systems model (OSeMOSYS) to integrate the electricity and transport sectors, while also computing endogenous technology adoption, to explore the contributions of SAVs to climate change mitigation, but their analysis does not further assess what impact SAVs will have on the economy as a whole. Such an analysis is important because energy and transportation consumption derives from the decision of agents, which impact their welfare. This way, in order to fully understand how alternative mobility technologies and services will develop in an effective way, so that they can truly contribute to climate change mitigation, an economic analysis must be performed along with an energy optimization study.

Conclusion

The impacts of alternative mobility technologies and services on energy consumption and emissions have been largely studied. While the promotion of these services may be policy driven, there is no approach, however, that considers the two perspectives of energy use and economic welfare. By impacting the welfare of agents, new mobility technologies that are employed as policy solutions to improve energy consumption may further affect productivity and the economy. Such outcomes have yet to be measured and are under development by the authors. This upcoming analysis will develop a hybrid energy system/macroeconomic model where a representative agent will make transportation and energy consumption decisions, which will affect energy demand and, consequently, energy supply, emissions, prices, and welfare. Alternative mobility technologies and services will be available for agents to choose as part of the transportation sector within the energy systems model. The upcoming study aims to assist policy makers in the design of a transportation system in line with climate change mitigation efforts.

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia for IN+ Strategic Project UID/EEA/50009/2019 and for contract CEECIND/02589/2017.

References

Alarfaj, A.F., Griffin, W.M., Samaras, C., 2020. Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a travel budget. Environ. Res. Lett. 15, 0940c2. https://doi.org/10.1088/17489326/ab7c89

- Baker, D.M., 2020. Transportation Network Companies (TNCs) and public transit: Examining relationships between TNCs, transit ridership, and neighborhood qualities in San Francisco. Case Stud. Transp. Policy 8, 1233–1246. https://doi.org/10.1016/j.cstp.2020.08.004
- Baptista, P., Melo, S., Rolim, C., 2014. Energy, Environmental and Mobility Impacts of Car-sharing Systems. Empirical Results from Lisbon, Portugal. Procedia - Soc. Behav. Sci. 111, 28–37. https://doi.org/10.1016/j.sbspro.2014.01.035
- Becker, H., Balac, M., Ciari, F., Axhausen, K.W., 2020. Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS). Transp. Res. Part A Policy Pract. 131, 228–243. https://doi.org/10.1016/j.tra.2019.09.027
- Becker, H., Ciari, F., Axhausen, K.W., 2018. Measuring the car ownership impact of free-floating car-sharing A case study in Basel, Switzerland. Transp. Res. Part D Transp. Environ. 65, 51–62. https://doi.org/10.1016/j.trd.2018.08.003
- Bekka, A., Louvet, N., Adoue, F., 2020. Impact of a ridesourcing service on car ownership and resulting effects on vehicle kilometers travelled in the Paris Region. Case Stud. Transp. Policy 8, 1010–1018. https://doi.org/10.1016/j.cstp.2020.04.005
- Brown, K.E., Dodder, R., 2019. Energy and emissions implications of automated vehicles in the U.S. energy system. Transp. Res. Part D Transp. Environ. 77, 132–147. https://doi.org/10.1016/j.trd.2019.09.003
- Cai, H., Wang, X., Adriaens, P., Xu, M., 2019. Environmental benefits of taxi ride sharing in Beijing. Energy 174, 503–508. https://doi.org/10.1016/j.energy.2019.02.166
- Chen, T.D., Kockelman, K.M., 2016. Carsharing's life-cycle impacts on energy use and greenhouse gas emissions. Transp. Res. Part D Transp. Environ. 47, 276–284. https://doi.org/10.1016/j.trd.2016.05.012
- Clewlow, R.R., 2016. Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area. Transp. Policy 51, 158–164. https://doi.org/10.1016/j.tranpol.2016.01.013
- Costain, C., Ardron, C., Habib, K.N., 2012. Synopsis of users' behaviour of a carsharing program: A case study in Toronto. Transp. Res. Part A Policy Pract. 46, 421–434. https://doi.org/10.1016/j.tra.2011.11.005
- de Souza Silva, L.A., de Andrade, M.O., Alves Maia, M.L., 2018. How does the ride-hailing systems demand affect individual transport regulation? Res. Transp. Econ. 69, 600–606. https://doi.org/10.1016/j.retrec.2018.06.010
- Ding, N., Pan, J., Zhang, Z., Yang, J., 2019. Life cycle assessment of car sharing models and the effect on GWP of urban transportation: A case study of Beijing. Sci. Total Environ. 688, 1137–1144. https://doi.org/10.1016/j.scitotenv.2019.06.111
- Fox-Penner, P., Gorman, W., Hatch, J., 2018. Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & policy observations. Energy Policy 122, 203–213. https://doi.org/10.1016/j.enpol.2018.07.033
- Gawron, J.H., Keoleian, G.A., De Kleine, R.D., Wallington, T.J., Kim, H.C., 2019. Deep decarbonization from electrified autonomous taxi fleets: Life cycle assessment and case study in Austin, TX. Transp. Res. Part D Transp. Environ. 73, 130–141. https://doi.org/10.1016/j.trd.2019.06.007
- Gawron, J.H., Keoleian, G.A., De Kleine, R.D., Wallington, T.J., Kim, H.C., 2018. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects. Environ. Sci. Technol. 52, 3249–3256. https://doi.org/10.1021/acs.est.7b04576
- Gelauff, G., Ossokina, I., Teulings, C., 2019. Spatial and welfare effects of automated driving: Will cities grow, decline or both? Transp. Res. Part A Policy Pract. 121, 277–294. https://doi.org/10.1016/j.tra.2019.01.013
- Giesel, F., Nobis, C., 2016. The Impact of Carsharing on Car Ownership in German Cities. Transp. Res. Procedia 19, 215–224. https://doi.org/10.1016/j.trpro.2016.12.082
- Habib, K.N., 2019. Mode choice modelling for hailable rides: An investigation of the competition of Uber with other modes by using an integrated non-compensatory choice model with probabilistic choice set formation. Transp. Res. Part A Policy Pract. 129, 205–216. https://doi.org/10.1016/j.tra.2019.08.014
- Haddad, E.A., Vieira, R.S., Jacob, M.S., Guerrini, A.W., Germani, E., Barreto, F., Bucalem, M.L., Sayon, P.L., 2019. A socioeconomic analysis of ride-hailing emergence and expansion in São Paulo, Brazil. Transp. Res. Interdiscip. Perspect. 1, 100016. https://doi.org/10.1016/j.trip.2019.100016
- Hall, J.D., Palsson, C., Price, J., 2018. Is Uber a substitute or complement for public transit? J. Urban Econ. 108,

36-50. https://doi.org/10.1016/j.jue.2018.09.003

- Henao, A., Marshall, W.E., 2019. The impact of ride-hailing on vehicle miles traveled. Transportation (Amst). 46, 2173–2194. https://doi.org/10.1007/s11116-018-9923-2
- Hidaka, K., Shiga, T., 2018. Forecasting Travel Demand for New Mobility Services Employing Autonomous Vehicles, in: Transportation Research Procedia. pp. 139–146. https://doi.org/10.1016/j.trpro.2018.11.025
- Jenn, A., 2020. Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services. Nat. Energy 5, 520–525. https://doi.org/10.1038/s41560-020-0632-7
- Jiao, J., Bischak, C., Hyden, S., 2020. The impact of shared mobility on trip generation behavior in the US: Findings from the 2017 National Household Travel Survey. Travel Behav. Soc. 19, 1–7. https://doi.org/10.1016/j.tbs.2019.11.001
- Jones, E.C., Leibowicz, B.D., 2019. Contributions of shared autonomous vehicles to climate change mitigation. Transp. Res. Part D Transp. Environ. 72, 279–298. https://doi.org/10.1016/j.trd.2019.05.005
- Jung, J., Koo, Y., 2018. Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions. Sustainability 10, 539. https://doi.org/10.3390/su10020539
- Ko, J., Ki, H., Lee, S., 2019. Factors affecting carsharing program participants' car ownership changes. Transp. Lett. 11, 208–218. https://doi.org/10.1080/19427867.2017.1329891
- Kockelman, K., Boyles, S., Stone, P., Fagnant, D., Patel, R., Levin, M.W., Sharon, G., Simoni, M., Albert, M., Fritz, H., Hutchinson, R., Bansal, P., Domnenko, G., Bujanovic, P., Kim, B., Pourrahmani, E., Agrawal, S., Li, T., Hanna, J., Nichols, A., Li, J., 2017. An assessment of autonomous vehicles: Traffic impacts and infrastructure needs - Final Report, Center for Transportation Research, The University of Texas at Austin. https://doi.org/10.1016/j.profnurs.2009.01.003
- KPMG, 2019. 2019 Autonomous Vehicles Readiness Index.
- Kröger, L., Kuhnimhof, T., Trommer, S., 2019. Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA. Transp. Res. Part A Policy Pract. 122, 146– 161. https://doi.org/10.1016/j.tra.2018.03.033
- Kumar Mitra, S., 2021. Impact of carsharing on the mobility of lower-income populations in California. Travel Behav. Soc. 24, 81–94. https://doi.org/10.1016/j.tbs.2021.02.005
- Le Vine, S., Polak, J., 2019. The impact of free-floating carsharing on car ownership: Early-stage findings from London. Transp. Policy 75, 119–127. https://doi.org/10.1016/j.tranpol.2017.02.004
- Liu, F., Zhao, F., Liu, Z., Hao, H., 2019. Can autonomous vehicle reduce greenhouse gas emissions? A countrylevel evaluation. Energy Policy 132, 462–473. https://doi.org/10.1016/j.enpol.2019.06.013
- Malalgoda, N., Lim, S.H., 2019. Do transportation network companies reduce public transit use in the U.S.? Transp. Res. Part A Policy Pract. 130, 351–372. https://doi.org/10.1016/j.tra.2019.09.051
- Marciano, J., 2016. Who Runs the World? Uber! Mark. Intell. Blog.
- Migliore, M., D'Orso, G., Caminiti, D., 2020. The environmental benefits of carsharing: the case study of Palermo. Transp. Res. Procedia 48, 2127–2139. https://doi.org/10.1016/j.trpro.2020.08.271
- Milakis, D., Van Arem, B., Van Wee, B., 2017. Policy and society related implications of automated driving: A review of literature and directions for future research. J. Intell. Transp. Syst. Technol. Planning, Oper. 21, 324–348. https://doi.org/10.1080/15472450.2017.1291351
- movmi Shared Transportation Services Inc., 2019. Carsharing Market and Growth Analysis 2019 [WWW Document]. Shar. Mobil. Thoughts Shar. Mobil. Blog. URL http://movmi.net/carsharing-market-growth-2019/ (accessed 2.10.20).
- Namazu, M., Dowlatabadi, H., 2018. Vehicle ownership reduction: A comparison of one-way and two-way carsharing systems. Transp. Policy 64, 38–50. https://doi.org/10.1016/j.tranpol.2017.11.001
- Nijland, H., van Meerkerk, J., 2017. Mobility and environmental impacts of car sharing in the Netherlands. Environ. Innov. Soc. Transitions 23, 84–91. https://doi.org/10.1016/j.eist.2017.02.001
- Oh, S., Lentzakis, A.F., Seshadri, R., Ben-Akiva, M., 2021. Impacts of Automated Mobility-on-Demand on traffic dynamics, energy and emissions: A case study of Singapore. Simul. Model. Pract. Theory 110, 102327. https://doi.org/10.1016/j.simpat.2021.102327
- Patella, S.M., Scrucca, F., Asdrubali, F., Carrese, S., 2019. Carbon Footprint of autonomous vehicles at the urban

mobility system level: A traffic simulation-based approach. Transp. Res. Part D Transp. Environ. 74, 189–200. https://doi.org/10.1016/j.trd.2019.08.007

- Pietzcker, R.C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., Luderer, G., 2014. Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108. https://doi.org/10.1016/j.energy.2013.08.059
- Rabbitt, N., Ghosh, B., 2016. Economic and environmental impacts of organised Car Sharing Services: A case study of Ireland. Res. Transp. Econ. 57, 3–12. https://doi.org/10.1016/j.retrec.2016.10.001
- Rodier, C., 2018. The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas Emissions. Davis, CA.
- Ross, C., Guhathakurta, S., 2017. Autonomous Vehicles and Energy Impacts: A Scenario Analysis, in: Energy Procedia. pp. 47–52. https://doi.org/10.1016/j.egypro.2017.12.646
- Roy, S., Cooper, D., Mucci, A., Sana, B., Chen, M., Castiglione, J., Erhardt, G.D., 2020. Why is traffic congestion getting worse? A decomposition of the contributors to growing congestion in San Francisco-Determining the Role of TNCs. Case Stud. Transp. Policy 8, 1371–1382. https://doi.org/10.1016/j.cstp.2020.09.008
- Sabouri, S., Brewer, S., Ewing, R., 2020. Exploring the relationship between ride-sourcing services and vehicle ownership, using both inferential and machine learning approaches. Landsc. Urban Plan. 198, 103797. https://doi.org/10.1016/j.landurbplan.2020.103797
- SAE International, 2018. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (J3016_201806).
- Schaller, B., 2021. Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities. Transp. Policy 102, 1–10. https://doi.org/10.1016/j.tranpol.2020.12.015
- Schmöller, S., Bogenberger, K., 2020. Carsharing: An overview on what we know, in: Demand for Emerging Transportation Systems. Elsevier, pp. 211–226. https://doi.org/10.1016/B978-0-12-815018-4.00011-5
- Schwieterman, J., Smith, C.S., 2018. Sharing the ride: A paired-trip analysis of UberPool and Chicago Transit Authority services in Chicago, Illinois. Res. Transp. Econ. 71, 9–16. https://doi.org/10.1016/j.retrec.2018.10.003
- Sethuraman, G., Reddy Ragavareddy, S.S., Ongel, A., Lienkamp, M., Raksincharoensak, P., 2019. Impact Assessment of Autonomous Electric Vehicles in Public Transportation System, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, pp. 213–219. https://doi.org/10.1109/ITSC.2019.8917256
- Shaheen, S., Cohen, A., Farrar, E., 2019. Carsharing's impact and future, in: Advances in Transport Policy and Planning. https://doi.org/10.1016/bs.atpp.2019.09.002
- Shaheen, S., Cohen, A., Jaffee, M., 2018a. Innovative Mobility: Carsharing Outlook. Berkeley, CA. https://doi.org/10.7922/G2CC0XVW
- Shaheen, S., Totte, H., Stocker, A., 2018b. Future of Mobility White Paper. Berkeley, CA.
- Soteropoulos, A., Berger, M., Ciari, F., 2019. Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp. Rev. https://doi.org/10.1080/01441647.2018.1523253
- Sprei, F., Habibi, S., Englund, C., Pettersson, S., Voronov, A., Wedlin, J., 2019. Free-floating car-sharing electrification and mode displacement: Travel time and usage patterns from 12 cities in Europe and the United States. Transp. Res. Part D Transp. Environ. 71, 127–140. https://doi.org/10.1016/j.trd.2018.12.018
- Statista, 2020. Ride Hailing Worldwide [WWW Document]. URL https://www.statista.com/outlook/368/100/ride-hailing/worldwide?currency=eur#market-age (accessed 2.10.20).
- Stephens, T.S., Gonder, J., Chen, Y., Lin, Z., Liu, C., Gohlke, D., 2016. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles, Technical Report NREL/TP-5400-67216.
- Stogios, C., Kasraian, D., Roorda, M.J., Hatzopoulou, M., 2019. Simulating impacts of automated driving behavior and traffic conditions on vehicle emissions. Transp. Res. Part D Transp. Environ. 76, 176–192. https://doi.org/10.1016/j.trd.2019.09.020
- Sui, Y., Zhang, H., Song, X., Shao, F., Yu, X., Shibasaki, R., Sun, R., Yuan, M., Wang, C., Li, S., Li, Y., 2019. GPS data in urban online ride-hailing: A comparative analysis on fuel consumption and emissions. J. Clean. Prod. 227, 495–505. https://doi.org/10.1016/j.jclepro.2019.04.159

- Sun, S., Ertz, M., 2021. Environmental impact of mutualized mobility: Evidence from a life cycle perspective. Sci. Total Environ. 772, 145014. https://doi.org/10.1016/j.scitotenv.2021.145014
- Taiebat, M., Brown, A.L., Safford, H.R., Qu, S., Xu, M., 2018. A review on energy, environmental, and sustainability implications of connected and automated vehicles. Environ. Sci. Technol. 52, 11449–11465. https://doi.org/10.1021/acs.est.8b00127
- Taiebat, M., Stolper, S., Xu, M., 2019. Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound. Appl. Energy 247, 297–308. https://doi.org/10.1016/j.apenergy.2019.03.174
- Tarduno, M., 2021. The congestion costs of Uber and Lyft. J. Urban Econ. 122, 103318. https://doi.org/10.1016/j.jue.2020.103318
- Te, Q., Lianghua, C., 2020. Carsharing: mitigation strategy for transport-related carbon footprint. Mitig. Adapt. Strateg. Glob. Chang. 25, 791–818. https://doi.org/10.1007/s11027-019-09893-2
- Tirachini, A., 2020. Ride-hailing, travel behaviour and sustainable mobility: an international review. Transportation (Amst). 47, 2011–2047. https://doi.org/10.1007/s11116-019-10070-2
- Tirachini, A., Chaniotakis, E., Abouelela, M., Antoniou, C., 2020. The sustainability of shared mobility: Can a platform for shared rides reduce motorized traffic in cities? Transp. Res. Part C Emerg. Technol. 117, 102707. https://doi.org/10.1016/j.trc.2020.102707
- Tirachini, A., del Río, M., 2019. Ride-hailing in Santiago de Chile: Users' characterisation and effects on travel behaviour. Transp. Policy 82, 46–57. https://doi.org/10.1016/j.tranpol.2019.07.008
- Tsuji, K., Kurisu, K., Nakatani, J., Moriguchi, Y., 2020. Evaluation of Environmental Impact of Car Sharing in Consideration of Uncertainty of Influential Variables. Int. J. Autom. Technol. 14, 975–983. https://doi.org/10.20965/ijat.2020.p0975
- Tyndall, J., 2019. Free-floating carsharing and extemporaneous public transit substitution. Res. Transp. Econ. 74, 21–27. https://doi.org/10.1016/j.retrec.2019.01.005
- U.S. Department of Energy, 2017. The Transforming Mobility Ecosystem: Enabling an Energy-Efficient Future. Washington, D.C.
- Vahidi, A., Sciarretta, A., 2018. Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 95, 822–843. https://doi.org/10.1016/j.trc.2018.09.001
- Vanderschuren, M., Baufeldt, J., 2018. Ride-sharing: A potential means to increase the quality and availability of motorised trips while discouraging private motor ownership in developing cities? Res. Transp. Econ. 69, 607– 614. https://doi.org/10.1016/j.retrec.2018.03.007
- Venturini, G., Karlsson, K., Münster, M., 2019. Impact and effectiveness of transport policy measures for a renewable-based energy system. Energy Policy 133, 110900. https://doi.org/10.1016/j.enpol.2019.110900
- Ward, J.W., Michalek, J.J., Azevedo, I.L., Samaras, C., Ferreira, P., 2019. Effects of on-demand ridesourcing on vehicle ownership, fuel consumption, vehicle miles traveled, and emissions per capita in U.S. States. Transp. Res. Part C Emerg. Technol. 108, 289–301. https://doi.org/10.1016/j.trc.2019.07.026
- Ward, J.W., Michalek, J.J., Samaras, C., Azevedo, I.L., Henao, A., Rames, C., Wenzel, T., 2021. The impact of Uber and Lyft on vehicle ownership, fuel economy, and transit across U.S. cities. iScience 24, 101933. https://doi.org/10.1016/j.isci.2020.101933
- Wenzel, T., Rames, C., Kontou, E., Henao, A., 2019. Travel and energy implications of ridesourcing service in Austin, Texas. Transp. Res. Part D Transp. Environ. 70, 18–34. https://doi.org/10.1016/j.trd.2019.03.005
- Wu, T., Shen, Q., Xu, M., Peng, T., Ou, X., 2018. Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services. Energy 154, 298–307. https://doi.org/10.1016/j.energy.2018.04.130
- Wu, X., MacKenzie, D., 2021a. The evolution, usage and trip patterns of taxis & amp; ridesourcing services: evidence from 2001, 2009 & amp; 2017 US National Household Travel Survey. Transportation (Amst). https://doi.org/10.1007/s11116-021-10177-5
- Wu, X., MacKenzie, D., 2021b. Assessing the VMT effect of ridesourcing services in the US. Transp. Res. Part D Transp. Environ. 94, 102816. https://doi.org/10.1016/j.trd.2021.102816
- Yi, W., Yan, J., 2020. Energy consumption and emission influences from shared mobility in China: A national level annual data analysis. Appl. Energy 277, 115549. https://doi.org/10.1016/j.apenergy.2020.115549

- Yin, B., Liu, L., Coulombel, N., Viguié, V., 2018. Appraising the environmental benefits of ride-sharing: The Paris region case study. J. Clean. Prod. 177, 888–898. https://doi.org/10.1016/j.jclepro.2017.12.186
- Young, M., Allen, J., Farber, S., 2020. Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto. J. Transp. Geogr. 82, 102629. https://doi.org/10.1016/j.jtrangeo.2019.102629
- Young, M., Farber, S., 2019. The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey. Transp. Res. Part A Policy Pract. 119, 383–392. https://doi.org/10.1016/j.tra.2018.11.018
- Zhang, C., Yang, F., Ke, X., Liu, Z., Yuan, C., 2019. Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations. Appl. Energy 254, 113597. https://doi.org/10.1016/j.apenergy.2019.113597
- Zhou, F., Zheng, Z., Whitehead, J., Perrons, R.K., Washington, S., Page, L., 2020. Examining the impact of carsharing on private vehicle ownership. Transp. Res. Part A Policy Pract. 138, 322–341. https://doi.org/10.1016/j.tra.2020.06.003

Study	Obiective	Type of	Impacts on							
	6	study/Methods	Vehicle Ownership	VKT/VMT	Fuel efficiency	CO2 emissions	Safety	Other transit modes	Economic welfare	Other impacts
Carsharir	19									
(Kumar Mitra, 2021)	Examine the impact of carsharing on the mobility of lower- income populations in	Structural Equation Modeling						Carsharing's benefits for lower-income households are optimized when	Carsharing has a stronger effect on the mobility of lower- income than higher-	Carsharing adoption is influenced by the frequency (micro- accessibility) of
	California							combined with local public transportation	income households. Financial barriers (user cost, lack of bank accounts) predict more access to service than physical availability	public transportation
(Sun and Ertz, 2021)	Explore how mutualized mobility (carsharing, carpooling and ride-hailing) contribute to reduce GHG emissions of urban transportation in more than sportation in	Simulation (Life cycle assessment (LCA) model)		·		Toronto: annual per capita GHG emissions fell by 2.8 kg of CO2-eq -carpooling and car-sharing's contribution was		·		
	Beijing* and Toronto in 2016 (from 2011 levels) *Just ride-hailing is analyzed					higher than ride- hailing's. Beijing: ride-hailing increased emissions. Ride- hailing's results are due to deadheading, which accounted for about 30% of total vehicle life cycle emissions.				
(Becker et al., 2020)	Assess the welfare impacts of Shared Mobility and Mobility as a Service (MaaS) in Zurich	Simulation (agent- based microsimulation model)						Efficiency gains may be higher if shared modes substitute public transport in lower- density areas	Carsharing and bike- sharing may increase transport system efficiency (travel time and costs) by up to 7%	Transport-related energy consumption can be reduced by 25%
(Miglior e et al., 2020)	Estimate the environmental benefits of carsharing in Palermo	Simulation (accounting model)				Reduction of 25% for PM ₁₀ and of 38% for CO ₂				
(Schmöl ler and Bogenb erger, 2020)	Better understand how carsharing systems work and which problems still exist	Literature review	Carsharing users own less cars than the rest of the population, but it is difficult to assess whether carsharing causes this behavior					Among carsharing users, there is a modal shift from private cars to nonmotorized modes or public transport, but impacts are small to	Carsharing fills a mobility gap; free- floating carsharing is used mostly for short- term needs, while station-based is used for long-term needs	

Table A 1: Literature review of new mobility technologies and services' impacts on several variables

Annex

Average income and education level of	1	1	1	-		83% of users decided not to buy a car, 11%	Survey analysis	Establish the impact of free-floating	(Le Vine
Carsharing use and decision to shed a private car is affected by: availability, access to carsharing stations, household income		· ·		,		About 30% of members have changed or plan to change vehicle ownership. In particular, 2.3% had already shed their cars, resulting in a replacement rate of 3.3 private cars/ shared car	Statistical analysis	Identify factors that affect carsharing program participants' car ownership status in Seoul	(Ko et al., 2019)
			Emissions of GWP gases, in CO2-eq, are reduced by ~4% and ~20% when carsharing replaces ~10% and ~50% of private cars, respectively				Simulation (Life cycle assessment (LCA) model)	Understand how carsharing may contribute to reduce the emission of global warming potential (GWP) gases of urban transportation in Beijing	(Ding et al., 2019)
Because the majority of respondents did not self-identify as carsharing users, education campaigns could be important policy tools						Carsharing's availability have minimal impact on survey respondents' decision to own a vehicle or not	Statistical (logit regression) analysis	Examine the impact of car-sharing on private vehicle ownership in Australia	(Zhou et al., 2020)
Rebound effects of carsharing may counteract environmental benefits			The main determinants of CO ₂ emissions are the ratio of people who shed their private cars, degree of rebound effect, and size of the carsharing fleet. That is, carsharing must replace private vehicles to impact emissions		-		Simulation model	Identify how carsharing affects CO ₂ emissions in Japan	(Tsuji et al., 2020)
In 2016, parking demand reduction leads to area savings of approximately 327,900 standard football fields, which is expected to grow to up to 1.171×10^{11} m ² in 2020			Energy savings of $\sim 8.45 \times 10^{8}$ MJ and up to 4.226×10^{10} MJ in 2016 and 2020, respectively; CO ₂ e emission reduction of 68 ktons and up to 3.4×10^{6} in 2016 and 2020, respectively				Statistical (regression) analysis, accounting methods	Analyze the expansion of the carsharing market and its impacts on GHG emissions and land use in China	(Te and Lianghu a, 2020)
	extrapolate to the whole population								

(Nijland Quantify the effects of and van car sharing on car Meerker ownership, car use and	(Namaz Investigate how u and membership in Dowlata different carsharing badi, business models 2018) impact vehicle owrership among users in Vancouver	(Jung Investigate the and environmental impacts Koo, of carsharing services 2018) in South Korea	(Becker Measure the car et al., ownership impact of 2018) free-floating car- sharing in Basel	(Tyndall Provide empirical , 2019) evidence of significant interaction between public transit and carsharing	(Sprei et Analyze whether free- al., floating carsharing 2019) contributes to low- carbon mobility and mode displacement	(Shahee Literature review of n et al., carsharing's impacts 2019) and trends for the future	and carsharing on private Polak, car ownership in 2019) London, UK
Counterfactual analysis based on a survey amongst car sharing users	Statistical (logit regression) analysis	Statistical (regression) analysis	Statistical (difference- in-differences) analysis	Statistical (regression) analysis using data from a natural experiment (failure of the public transit rail system in Vancouver)	Survey analysis of travel time and usage patterns from 12 cities in Europe and the U.S.	Literature review	
30% less car ownership among users; service mostly replaced a 2 nd or 3 rd car	Reduction of 12% (free-floating), 36% (two-way) and 35% (both services)	Probability of forgoing an owned vehicle may reach 16%	6% of the free-floating car-sharing customers reduce their private vehicle ownership			Sold vehicles or delayed/foregone vehicle purchases (2%- 71%, depending on business model)	reported disposing of a car, and 6% will sell a private car
15%-20% fewer VKT				1		Reduced (3%-80%, depending on business model)	
	1						
Between 240 and 390 fewer kgs of CO2/person/yr. From this, about 1/3 to half is due to less car use; the rest to reduced car		Replacing public transit and private vehicles by carsharing offsets GHG emissions reduction. But if carsharing vehicles are EVs, emissions can get to zero		,		Reduced (e.g.: 34%-41% per household in the U.S.; 39%s-54% in Europe)	
				ı		,	
Service is mostly substituting train, borrowed/rented cars	Free-floating users are more likely to complement all transport modes, while two-way users substitute private cars		Free-floating car- sharing both complements and competes with station- based car-sharing and also triggers a modal shift towards public transportation	Carsharing substitute public transit trips when there are delays in the latter		Increased use of some alternative transportation modes (e.g., walking, biking)	
					Given the higher cost per trip compared to other modes, and no major time gan, carsharing provide some extra utility to users	Increased access and mobility for formerly carless households; savings compared to car ownership	
	Two-way users were roughly five times more likely to reduce car ownership compared to free- floating users	Increased carsharing flexibility (one-way and delivery services) leads to more carsharing use			Service is mainly used for one-way trips; median rental time is close to 30°; actual driving time is closer to 15°; BEVs are used for shorter trips	Greater environmental awareness	users are both higher than for the general population. And, among heavier users, car ownership impacts are larger

⁴ "Controlling for carshare-accessible locations, in the Bay Area carshare members made only 41.5% of their trips by car, as compared with 61.8% of non-members. Carshare members made 14.5% of their trips by transit and 34.9% of their trips by walking, as compared with 10.3% and 23.0% of the control population trips, respectively."(Clewlow, 2016). ⁵ Carsharing replaced taxi (17%) for both shopping and medical appointment trips, substituted private car for private trips (13%) and subway (8%) for shopping and personal activities trips. In addition, 21% of users started using other transport

speeds by 2.3%;

modes.

(Tardun o, 2021)	(Schalle r, 2021)	Ride-haili	(Costain et al., 2012)	(Baptist a et al., 2014)	(Rabbitt and Ghosh, 2016)	(Giesel and Nobis, 2016)	(Clewlo w, 2016)	(Chen and Kockel man, 2016)
Study the impact of transportation network companies (TNC) on	Examine the effectiveness of shared services in reducing vehicle miles traveled (VMT) in four U.S. cities and California suburbs	ng	Understand carsharing behavior in Toronto	Estimate car sharing impacts and the effects of a possible technology change in Lisbon, Portugal	Estimate scenarios to examine the financial and environmental factors influencing carsharing adoption and use	Analyze whether free- floating carsharing leads to a reduction of car ownership compared to station- based carsharing in Berlin and Munich	Analyze the effects of carsharing on travel behavior and vehicle ownership among carshare members in the San Francisco Bay Area	Examine carsharing's impacts on energy use and GHG emissions among candidate users in the U.S.
Statistical (difference- in-differences regression) analysis	Literature review and publicily available data review		Statistical (regression) analysis	Simulation and survey analysis	Simulation scenarios based on literature review and survey of individual travel characteristics in Ireland	Statistical (regression) analysis	Survey analysis (utilizing data from the 2010–2012 California Household Travel Survey (CHTS))	Simulation. Scenarios are estimated based on findings from existing literature
				Among users, 8% forfeited ownership of a vehicle after joining the service		Station-based and free- floating carsharing lead to a reduction of private cars: 7% and 15%, respectively	Lower household vehicle ownership in dense urban neighborhoods (0.58 vehicles/household vehicles/household vensus 0.96 in the control group)	
	Increases by 97% in Chicago, 114% in New York City, 118% in San Francisco, 157% in Boston and 118% in California suburbs		More VKT is generated when a carbon-offsetting option is offered		1		Lower VMT in the suburbs (average of 15.8 miles per day versus the 23.6 miles per day of a non- member)	
			,	Improved, if fleet is comprised of hybrid (35%) or battery electric (47%) vehicles	1	,	,	Improved: energy reduction between 33%- 70%, depending on scenario
	ſ		ı	Reduced, if fleet is comprised of hybrid (35%) or battery electric (65%) vehicles. Local pollutant emissions are also reduced	Reduction between 14% and 65% among car owners; slight increase for non- car owners	·	·	Reduced (33%- 67%, depending on scenario)
				· ·	1			
1	Shared (pooled) ride- hailing is substituting public transportation, walking and biking	-	Carsharing is mostly used for off-peak travel/on weekends, when transit service is poor and traffic congestion is low	Replaces taxis, private cars and subway for some trips, complements public transport for others 5	Increased share of sustainable modes of travel		Higher modal shares of transit, walking and biking ⁴	
TNCs decreased daytime traffic speeds by 2.3%;				Increased, due to reduction in the number of vehicles and their associated costs	Cost savings for car owners between 60- 74%; extra costs for non-car owners			
	Deadheading also contributes to increase shared ride- hailing's VMT		Carsharing is preferred by environmentally conscious people; majority of trips are short distance	Break-even point of a carsharing fleet is influenced by intensity of use, revenues and costs	"Outside Dublin, there is a lack of high- density areas with suitable users" for carsharing development		Higher rates of electric drive vehicle ownership (18.3% as compared with 10.2% among non- members)	

Concerns about the ability of EVs to provide the same level of service as gasoline vehicles has been overstated: there is no statistical difference between the two technologies			Emission reduction for EVs being used in ride- hailing is approximately three times higher compared to gasoline vehicles			-	Statistical and data analysis	Understand the emissions benefits of electric vehicles in ride-hailing services in California	(Jenn, 2020)
	1		1		Overall impact between -0.6% and +0.9%	Removal of 3.6 to 4.9 cars per 100 households who have at least one of its members using Uber	Survey analysis (Likert scale), statistical analysis (multiple linear regression)	Investigate Uber's role in car ownership and its effects on traffic volume in the Paris Region	(Bekka et al., 2020)
		Overall positive relationships between ride-hailing use and public transportation ridership, which varies across the city (not significant in downtown areas, but relevant in choice rider neighborhoods)					Statistical (regression) analysis	Understand how neighborhood characteristics affect ride-haling use, as well as the relationship between ride-hailing and public transit ridership in San Francisco	(Baker, 2020)
					Overall, ride-hailing generated a net increase of 7.8 million daily VMT in 2017, which increases with greater deadheading		Statistical (Average treatment effect) and Survey analysis	Estimate the VMT effects of ride-hailing across population groups in the USA	(Wu and MacKen zie, 2021b)
		One-third of all tours containing ride-hailing also included transit, while 40% of ride- hailing containing tours also involved auto trip(s)			Ride-hailing tours ("a sequence of trips to a single or multiple anchor destinations, beginning and ending at home") grew from 0.4% of all tours in 2009 to 1% of all tours in 2017, mostly within densely populated and transit- oriented regions	Frequent users had lower vehicle ownership and lower automobile mode share, with a significantly higher share for public and active transportation	Survey analysis	Explore how taxis and ridesourcing services have evolved from 2001 to 2017 in the USA	(Wu and MacKen zie, 2021a)
		Transit ridership decreases on average by 0.09%, being larger in cities with higher income (-5.1%) and with fewer children (- 2.6%)	-	Increases on average by 0.03%	-	Vehicle ownership per capita increase by 0.7% on average, being larger in car-dependent and slow-growth cities	Statistical analysis (difference-in- difference propensity score-weighted regression model)	Estimate effects of Uber/Lyft market entry on U.S. urban areas	(Ward et al., 2021)
	congestion costs range from \$33 to \$25 million annually, but are similar in magnitude to the consumer surplus provided by TINCs							congestion in Austin, Texas	

(Young et al., 2020)	(Yi and Yan, 2020)	(Tirachi ni et al., 2020)	(Tirachi ni, 2020)	(Sabouri et al., 2020)	(Roy et al., 2020)	(Jiao et al., 2020)
Investigate whether ride-hailing trips substitute or complement transit alternatives in Toronto	Evaluate shared mobility's influence on energy consumption, emissions and transportation structure in China	Study the effects of a shared-mobility service that allows users to share rides in a car, van or bus in Mexico City	Discuss the sustainability and travel behavior impacts of ride-hailing	Examine the relationship between ride-hailing and vehicle ownership in the USA	Analyze whether ride- hailing is responsible for increased congestion in San Francisco	Assess whether usage of shared mobility services induces trip generation
Statistical (regression) analysis	Simulation (Relevance Vector Machine (RVM) model)	Survey and scenario analysis	Literature review	Statistical analysis and Machine learning method (random forest)	Travel demand model	Statistical (regression) analysis
			The relationship between car ownership and the intensity of ride-hailing use is still disputed	There is a negative correlation between using ride-hailing and vehicle ownership, which is also negatively associated with the number of years. Uber has operated in a county		
		Increase of 7 to 10 km/passenger for shared cars; decrease of -0.2 to -1.1 km/passenger for shared vans; increase of 0.4 to 1.1 km/passenger for buses			Increase of 47%. 70% of in-service ride- hailing vehicles are new vehicle trips that add traffic to the roads	Ride-hailing generates trips (mostly on weekdays); bike and carsharing do not
					,	·
1	Reduction of 518 ktons of CO_2 , 31 ktons of CO_2 , 1633 tons of NO_x , 25 tons of $PM_{2.5}$ and 30 tons of PM_{10} in 2018		"The total effect of ride-hailing on the environment is disputed at this stage"			1
1					,	
Ride-hailing trips demanded during peak hours, or for shopping, are more likely to have transit alternatives of similar duration; 31% of ride-hailing trips		Individual modes most replaced are metro, buses, car as a driver, ridesourcing/c-hailing and microbus	Taxis, public transport and driving personal cars are the modes most substituted by ride- hailing: Ride-hailing can both substitute for and complement public transport, but results on magnitude of impacts are mixed		Ride-hailing person trips substitutes 27% of car or taxi trips, 58% of walk, bike or transit trips, while 15% trips are added with no substitution for another mode	
Differences in travel- time often to be caused by transfers and lengthy walk- and wai-times for transit			Reasons to choose ride-haling: trip cost, travel time, ease of payment, to avoid alcohol, to avoid searching or paying for parking, public transport inconvenience, comfort, security and safety		Ride-hailing contributes to an increase of 55% in vehicle hours traveled, 51% in vehicle hours of delay, and to 55% in speed decrease	
			Mixed land uses increase ride-hailing use. The service is mostly used for occasional trips. Ride-hailing most likely increases motorized traffic in the cities where data are available. Its deadheading rate is lower than taxi's			Females generate more trips; people working from home generate trips on weekdays, while full- time workers do so on weekends

(Sui et al., 2019)	(Malalg oda and Lim, 2019)	(Henao and Marshal I, 2019)	(Haddad et al., 2019)	(Habib, 2019)	(Cai et al., 2019)	
Compare fuel consumption and emissions between ride-hailing and taxis in Chengdu, China	Examine the effect of TNCs and transit effectiveness on public transit ridership in the USA from 2007-2017	Analyze impacts of ride-hailing on rtransportation efficiency (deadheading, vehicle occupancy, mode replacement, and vehicle miles traveled (VMT)) in Denver	Estimates the socioeconomic impacts of ride-hailing in São Paulo	Investigate whether Uber competes with other modes in the Greater Toronto and Hamilton Areas	Quantify the environmental benefits of ride sharing in Beijing	
Data analysis	Statistical (regression) analysis	Ethnographic and survey-based approach	Simulation (Spatial Computable General Equilibrium (SCGE) model)	Simulation (choice model)	Simulation (optimization model)	
		13% of respondents reported owning fewer cars due to ride-hailing				
		The lower end percentage of deadheading miles from ride-hailing is 40.8%; ride-hailing leads to approximately 83.5% more VMT			Reduced by 33% (with a rider's tolerance level to trip deviation at 10 min)	
Fuel consumption and CO, NOX, and HC emissions per passenger-on kilometer of taxi trips are about 1.36, 1.45, 1.36					Annual total reduction of vehicular NO ₈ , PM ₁₀ , and CO emissions by 0.24%, 1.4%, and 0.28%, respectively. CO ₂ emission is not reduction is not	
	TNC availability increased rail ridership in 2015; year-by-year, rail effectiveness trumped effectiveness trumped TNC availability; TNCs are neither a complement nor a substitute of bus transit	Ride-hailing trips substituted: 19% of single-occupancy vehicle trips: 34% of walking, biking, or transit; and more than 12% would not have been taken otherwise	83% of trips substitute traditional motorized private modes, the remaining comes from public transit	There is not any evident competition be- tween Uber and private cars, public transit, or non-motorized modes; Uber tends to fill gaps in transit services		have transit alternatives of similar duration (≤15-minute difference); 27% of ride-hailing trips have poor transit-based alternatives
1			Productivity gains and improved access of workers lead to reduction of economic and spatial inequality, and and increased economic efficiency and activity		,	
Ride-hailing's emissions are lower because of lower deadheading, compared to taxis		The average vehicle occupancy is 1.4 passengers / ride; distance weighted vehicle occupancy is 1.3 (without deadheading) and 0.8 (with deadheading)	Effects on congestion are small	, ,		

						and 1.44 times			
						that of ride- hailing trips, respectively.			
(Timoki	Termine the near of	Orntintian (manuancian)				respectively.		N f = Jan waart mikatitutad	Durkskla inopa
(Tirachi ni and del Río, 2019)	Examine the use of ride-hailing in Santiago de Chile	Statistical (regression) analysis			,			Modes most substituted are public transport and traditional taxis	Probable incr traffic becau each rider combines hailing and transport, 11 substitute the
(Ward et al., 2019)	Estimate effects of ride-hailing on per- capita vehicle ownership, energy use, travel distances, and emissions in U.S. states (2005-2015)	Statistical analysis (difference-in- difference propensity score-weighted regression model)	Ride-hailing companies' entry in markets reduce state per-capita vehicle registrations by 3%, on average	Not conclusive		Volatile organic compounds (VOCs) emissions decrease by 4.8%			Decrease in emissions represent savi \$300-\$900 mi externalities
(Wenzel et al., 2019)	Quantify VMT and energy use effects of ride-hailing due to deadheading (empty vehicle miles driven)	Analysis of driving data provided by a ride-hailing company in Austin, TX		Deadheading increases VMT: net effect on energy use is a 41–90% increase (compared to pre- service personal travel)	More efficient vehicle fleet is used, thus partially offsetting additional energy consumption			·	
(Young and Farber, 2019)	Understand the consumer profile of ride-hailing users and whether this service substitute other travel modes in Toronto	Survey analysis						Ride-hailing does not impact public transit and car use, but there is a significant decrease in taxi ridership and a rise in active modes of travel in specific market segments	
(de Souza Silva et al., 2018)	Analyzes socio- demographic and travel characteristics of ride-hailing demand in Brazilian cities	Statistical (regression) analysis			,		,	Majority of trips is replacing taxi and public transport	Safety and cos the determinants of
(Hall et al., 2018)	Estimate the effect of Uber on public transit ridership across U.S. metropolitan areas	Statistical (difference- in-differences regression) analysis				'	'	Uber is a complement for the average transit agency, increasing ridership by 5% after two years	Uber re commute time public transit while incr congestion
(Rodier, 2018)	Analyze the effects of ride-hailing on auto ownership, VMT, and mode choice	Literature review	Modest reductions in auto ownership, varying due to studies' assumptions	New vehicle trips from ride-hailing availability: 8% to 22%; deadheading also increases VMT		,	'	Ride-hailing mostly substitutes than complements public transit	
(Schwie terman and Smith, 2018)	Explore travel time and fare differences between UberPool and traditional transit service in Chicago, Illinois	Statistical (regression) analysis			,		,		Trip times reduced by b 13.7% and depending o area. Co savings

	AVs' increasing travel demand may increase fuel use and petroleum-based fuel prices, while their efficiency improvements could reduce prices, which can increase or reduce the competitiveness of			AV's impacts on fuel prices could yield positive or negative impacts on emissions			Simulation (energy systems optimization model – MARKAL)	Analyze different effects of vehicle automation on energy efficiency and demand in the USA	(Brown and Dodder, 2019)
Degraded EV fuel economy due to automation would require higher levels of fleet electrification and/or further constrain the total vehicle travel allowable	,	· · ·	·	To meet decarbonization targets of 80% or 90%, respectively, it is necessary to reduce the electricity generation carbon intensity to close to zero along with electrification of about 67% or 84% of vehicle travel			Simulation model	Examine the changes needed in vehicle electrification, electricity cathon intensity, and travel demand to meet reduction targets of 80% and higher for passenger vehicle transport in the USA by midcentury	(Alarfaj et al., 2020)
	More VKT lead to congestion (increase in travel delay up to 23%), while the journey time of those travelets who shifted from transit to AMOD can be significantly improved			CO ₂ emissions are not calculated, although there is an increase in energy consumption (16.94 - 24.33% from baseline). Decrease of 4.3 - 5.7% in NOx and 5.6 - 8.2% in PM		Increase of 11.8 18.5% from baseline	A gent-based simulation model	Investigate the network impacts of Automated Mobility-on-Demand (AMOD), including detailed models of AMOD fleet operations, in Singapore	(Oh et al., 2021)
								ous vehicles (AVs)	Autonom
Ridesharing leads to longer trip distances; emission reduction could have been greater if not for rebound effects	Road traffic decreases between 29 - 21%, congestion decreases between 20 - 5%, depending on the scenario and time of the day analyzed	Ridesharing substitutes public transit and active modes	·	Decreases by 37 – 18%, depending on the scenario and time of the day analyzed			Simulation (integrated transport-land-use model)	Investigate the CO ₂ emission reduction potential of ridesharing in the Paris region	(Yin et al., 2018)
		43% of ride-hailing rides substituted private vehicles, while the remaining rides replaced other modes		Increased gasoline consumption led to additional 0.8 million tons of CO ₂ emissions	-		Simulation (evaluation model)	Evaluate ride-hailing's impact on energy use and CO ₂ emissions in China	(Wu et al., 2018)
"Acceptability in the developed and the developing world is very different"	Provision of extra transportation option for the "mobility poor" and for those concerned about urban security						Literature review and survey analysis (multi- criteria analysis)	Estimate the potential for ridesharing in the developing world (case study: Cape Town) and its economic, social and environmental inpacts	(Vander schuren and Baufeldt , 2018)
transfers or walk long distances	between \$.38/minute and \$1.29/minute								

	Total travel time decreases (-35% for intra-urban roads and -21% for highways), and average network speed increases (48% for intra-urban road		AVs' lifetime GHG emissions are higher than other technologies' (35% higher than internal combustion	,	VKT increases by 8% on highways and decreases for intra- urban roads (-5%)	Simulation (Life cycle assessment (LCA) model and traffic simulation model)	Analyze the carbon footprint of electric AV adoption in Rome	(Patella et al., 2019)
			Depends on fuel consumption rates. AVs reduce emissions when they have better fuel economy and higher penetration rates	Improved: between 0.4%- 7.8%, depending on scenario	No significant change (assumptions too conservative)	Simulation (different scenarios of AV penetration rates and fuel consumption based on literature)	Evaluate the effects of AV deployment on GHG emissions in China	(Liu et al., 2019)
AV adoption might be higher in Germany (between 10% and 38%) than in the USA (between 8% and 29%)		AVs substitute public transport, whose share decreases between 3 – 11% in Germany and between 6 – 18% in the USA. Non-motorized modes' shares also fall. In Germany: 0.8 – 3.35%; USA: 2 – 6%			Increase between 2.4 - 8.6% in Germany; 3.4 - 8.6% in the USA, depending on the scenario analyzed	Simulation (diffusion model and an aspatial travel demand model)	Model impacts of AVs on travel behavior in Germany and the USA	(Kröger et al., 2019)
Environmental and economic benefits of vehicle electrification are larger if electric SAV charging is optimally aligned with renewable electricity generation	Shared AVs lower costs (even in scenarios where VMT increase)		Reduced emissions (even in scenarios where VMT increase)	Effects are amplified when electric, more efficient vehicles are used	1	Simulation (energy systems optimization model – OSeMOSYS) for Austin, TX	Explore the contributions of shared AVs (SAV) to climate change mitigation	(Jones and Leibowi cz, 2019)
	Increased due to reduction in generalized transportation costs, changes in modal split, relocation	In full automation, shared AVs replace transit; longer commutes explain why bicycles are replaced				Simulation (general equilibrium model)	Examine both the spatial and the welfarc effects of AVs in two scenarios: car and public transit automation in the Netherlands	(Gelauff et al., 2019)
			Energy and GHG emissions are reduced by 60%. Further reductions of up to 87% can be achieved with electrical grid decarbonization, dynamic ride- share, longer vehicle lifetime, more energy efficient computer systems, and faster fuel efficiency			Simulation (Life cycle assessment (LCA) model)	Study direct and indirect effects of electrified autonomous taxis (ATs) at the subsystem, vehicle, and mobility-system levels in Austin, TX	(Gawro n et al., 2019)
	alternative-fueled vehicles, respectively							

(Venturi ni et al., 2019)	(Taiebat et al., 2019)	(Stogios et al., 2019)	(Soterop oulos et al., 2019)	(Sethura man et al., 2019)	
Assess the impact and effectiveness of transport policy measures in reaching emission reduction	Forecast induced travel and energy rebound effects from AVs	Analyze the effects of AVs and vehicle electrification on GHG emissions	Review modelling studies investigating the impacts of AVs on travel behavior and land use	Assess the impacts of electric AVs on energy consumption, ride comfort, travel time and infrastructure in Singapore	
Simulation (energy systems optimization model – TIMES-DK)	Simulation (microeconomic model of VMT choice under income/time constraints, which is used to estimate elasticities with respect to fuel and time costs)	Simulation (traffic microsimulation and emission modeling)	Literature review	Simulation model	
			Reduced, especially when shared AVs are considered		
	2-47% increase in travel demand for an average household. Net rise in energy use is a possibility, especially in higher income groups		Most studies show increase in VMT/KT: reduction when shared AVs are considered		
· ·				Energy savings of up to 9,3 % when the driving cycle is optimized, is optimized, can increase by 6.2% with platooning	
AVs lead to emissions reduction because other modes are cheaper and thus preferred; MaaS also reduces emissions because of higher vehicle occupancy rates		In a high traffic situation, in either an expressway or urban corridor, aggressive AV driving reduces emissions by 26% and 3.44%, respectively, respectively, while cautious driving increases emissions by 35% and 19.62%			engine vehicles, 22% higher than hybrid EVS, 5% higher than BEVS), 100% AV adoption leads to lower mobility system level emissions of about 60%
			1		
High car occupancy of MaaS generates a shift from bikes and buses towards cars			Reduced public transport and slow modes share, especially from private AVs (some results show increase in walking/cycling)		
Market signals (taxes on CO2 and fossil fuels), have the highest impact to cut carbon emissions from transportation, while MaaS is the most cost-effective measure (more efficient use of transport due to	Combined price elasticity of VMT demand is -0.4; demand is more clastic among the wealthy; households at all income levels are more sensitive to time costs than to fuel costs		AVs could lead to or curb urban sprawl, depending on assumptions on value of time, sharing and efficiency of other modes		and 37% for highways)
			Shared AVs could reduce the number of parking spaces	The path width required for a micro- transit AV to turn 1800 degrees is approximately 43% lower than for a standard urban bus	

								higher occupancy	
	1							rates)	
(Zhang et al., 2019)	Quantify AV's energy consumption and GHG emissions based on vehicle dynamics in a case study in NYC	Simulation (multiphysics energy model)		,	GHG emissions are 6.5% higher in an electric AV with a driver than in an AV without a driver	1		1	
(Fox- Penner et al., 2018)	Project how electrification, sharing, and AVs will change transportation electricity demand and GHG emissions in the United States to 2050	Simulation (scenarios based on literature)	AVs increase VMT in both policy and stress case (high electricity use) scenarios, leading to more energy consumption	AVs are modelled as energy efficient (because of, for instance, platooning), thus decreasing energy intensity	56% emission reduction in policy case (EVs with AVs), going up to 80% in a decarbonized power sector. Scenario with AVs but no EVs has minimal GHG reduction				
(Gawro n et al., 2018)	Assess the contribution of CAV sensing and computing subsystems to vehicle life cycle energy use and GHG emissions	Simulation (Life cycle assessment (LCA) model)			CAV can increase energy use and GHG emissions by 3–20% due to increases in power consumption, weight, drag, and data transmission, but when use is optimized (e.g.: eco-driving, platooning, and intersection platooning, and intersection there is a 9% reduction				
(Hidaka and Shiga, 2018)	Estimate travel demand from AVs by forecasting growth on population and number of drivers	Simulation (human mobility and activity generation model)			'		Private AVs do not replace other modes; shared AVs replace all transportation modes but walking	Increased utilit multitasking in which contrib modal replacement	y from n AVs, utes to share
(Taiebat et al., 2018)	Examine AVs impacts on vehicle, transportation system, and urban system, and society	Literature review	Higher vehicle utilization rate, more frequent and longer trips, deadheading result in greater VMT; fleet downsizing reduces VMT	Higher energy due efficiency due to: optimal driving cycle, less idling, other driving functionalities; self-parking; rightsizing; platooning, etc.		Fewer crashes and less accident- related traffic	Integration or competition with mass transit; modal shift (e.g., rail/aviation to road travel)	Congestion in due to inducec increased sprawl; displacement unemploymen reduced labor	creases l travel; urban job and t; costs
(Vahidi and Sciarrett a, 2018)	Assess the energy saving potential of CAVs based on first principles of motion, optimal control theory, and a review of the eco-driving literature	Literature review		Energy savings of up to: 3% from preview of static road information; 10% from traffic signals via Vehicle-to- Infrastructure					

(Stephe ns et al., 2016) AVs efficie consur	(Ross Identi and AVs' Guhatha energy kurta, 2017)	(Milakis Asses et al., review 2017) jeolicy identity researt	(Kockel Analy man et under: al., percer 2017) AVs willing	
ate ranges of ial effects of on VMT, fuel ncy, and costs to ners	fy and quantify impacts on / consumption	s, from literature v, AVs' effects to r, and society, and fy areas for future ch	ze and stand the U.S ail public's stion towards and their gness of adoption	
Simulation	Simulation (scenarios based on literature)	Literature review	Survey analysis and simulation	
		Shared AVs could replace between 67%- 90% of conventional vehicles while delivering similar mobility levels	Falls because less cars will be owned (the same vehicle drives itself to serve household members at different times/locations)	
Increased VMT, but lower in scenario full AV/with ridesharing	Increased VMT from induced travel/new user groups, which increases energy use. Ridesharing offisets part of that.	Increase in travel demand (between 3%-27%) due to longer trips, modal shift, underserved populations, deadheading. deadheading. Impacts mitigated with shared AVs	Increased VMT because opportunity cost of driving falls; underserved populations get access to mobility	
More efficient in scenario full AV/with ridesharing	1	Fuel savings between 31%- 45%		(V2I) communication; 20% from reservation- based intersection control systems; 3% from anticipative car following: 7- 10% from platooning for trucks; 20% from harmonizing impact of stop and go driving on traffic
	·	AVs can lead to lower emissions of NOX, CO, and CO2, with higher positive impacts for shared AVs		
	ı	Increased, especially at higher adoption rate; cyberattacks and other technical issues may be a risk	More than 2,400 lives saved/year in Texas (at 90% market penetration)	
		Modal shift from public transit, walking		
Decrease in costs to consumers due to savings on insurance, value of travel time		Increase in costs (pricey new functionality); decrease in travel time	Congestion falls because traffic becomes more efficient; freight costs fall because of avoided labor costs; billions in economic savings from avoided intraffic accidents; increased productivity and leisure time	
		Increase in highway, intersection capacity; decrease in parking infrastructure (up to 90%)		