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Abstract

The transition to a low-carbon electricity system is likely to require grid-scale energy storage to smooth
the variability and intermittency of renewable energy. I investigate whether private incentives for op-
erating and investing in grid-scale energy storage are optimal and the need for policies that comple-
ment investments in renewables with encouraging energy storage. In a wholesale electricity market,
energy storage systems generate profit by arbitraging inter-temporal electricity price differences. In
addition, storage induces non-pecuniary externalities due to production efficiency and carbon emis-
sions. I build a new dynamic equilibrium framework to quantify the effects of grid-scale energy
storage and apply it to study the South Australian Electricity Market. This equilibrium framework
computes a supply function equilibrium using estimated best responses from conventional sources
to observed variation in the residual demand volatility. Accounting for storage’s effect on equilibrium
prices is quantitatively important: previous methods that ignore this channel overestimate the prof-
itability of operating a storage unit. The first set of results shows that although entering the electricity
market is not profitable for privately operated storage, such entry would increase consumer surplus
and total welfare and reduce emissions. A storage operator that minimizes the cost of acquiring elec-
tricity could further improve consumer surplus by twice as much. Importantly, a competitive storage
market cannot achieve this outcome because other power plants distort prices. These results argue
for a capacity market to compensate for a private firm for investing in storage. The second set of re-
sults shows that at moderate levels of renewable power, introducing grid-scale storage to the system
reduces renewable generators’ revenue by decreasing average prices. For high levels of renewable
generation capacity, storage increases the return to renewable production and decreases CO2 emis-
sions by preventing curtailment during low-demand periods.
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1 Introduction

Energy storage is the capture of energy produced at one time for use at a later time. Without
adequate energy storage, maintaining the stability of an electric grid requires equating electricity
supply and demand at every moment. System Operators (SO) that operate deregulated electricity
markets call up natural gas or oil-fired generators to balance the grid in case of short-run changes on
either side. These peaker units are generally fast and flexible, but due to rapid adjustments in their
heat rates, they are inefficient and emit high levels of carbon. Production of Variable Renewable
Energy (VRE) resources, such as wind and solar energy, exacerbates the gap between demand and
supply due to their short-run variability in output. Energy storage presents a more efficient and
environment-friendly alternative.

A grid-scale energy storage firm participates in the wholesale electricity market by buying and
selling electricity. Energy storage creates private (profit) and social (consumer surplus, total wel-
fare, CO2 emissions1) returns. Storage generates revenue by arbitraging inter-temporal electricity
price differences. If storage is small, its production does not affect prices. However, when storage
is large enough, it may increase prices when it buys and decrease prices when it sells. This has
both pecuniary and real effects on welfare. The price arbitrage transfers surplus between produc-
ers and consumers. The production of storage also shifts the production of electricity from peak
periods to off-peak periods. The shift in production between generating units affects production
costs and CO2 emissions. Moreover, storing energy also allows increased utilization of available
capacity for VRE when supply exceeds demand. Without storage, generation from these sources
has to be curtailed.

In this paper, I ask whether the private and social incentives for investing and operating energy
storage in wholesale electricity markets are aligned. To answer this question, I develop a dynamic
framework to quantify the potential effects of energy storage in the wholesale electricity market.
My model uses data from an electricity market without energy storage to simulate the equilibrium
effects of a hypothetical storage unit on electricity markets. I cast the storage operator’s arbitrage
problem as an infinite horizon dynamic optimization with uncertainty. The charge level of storage
links one period to the next. The storage operator creates revenue by arbitraging short-run inter-
temporal electricity price differences. I account for the effect of this arbitrage on prices and find a
new market equilibrium in which I allow incumbent firms to respond to storage’s production. An
important challenge in this analysis is to obtain counterfactual supply function equilibria, which
is usually computationally intractable and not unique (Klemperer and Meyer (1989), Green and
Newbery (1992)). I solve this challenge by modeling incumbent firms’ best responses by treating
storage’s production as a shock to the distribution of residual demand conditional on a public sig-

1In this paper, I am excluding emissions’ impact on welfare. My approach can incorporate emissions costs into the
welfare analysis for any given level. I discuss the extent of emissions impacts on welfare in Section 6.
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nal. Thus, to solve for a new equilibrium, I compute a supply function equilibrium using estimated
best responses to observed variation in demand volatility in a market without energy storage.

In my model, private returns to storage are maximized by trading on intra-day price fluctua-
tions in the wholesale electricity market. These would be facilitated by fast response arbitrageur
technologies like batteries. This focus is also motivated by the rapidly decreasing cost of grid-scale
batteries; the last decade saw a 70% reduction in the price of lithium-ion battery packs. Batteries
have several advantages over other available energy storage technologies. First, batteries provide
faster adjustable production. High flexibility creates an advantage for batteries in responding to
short-run price variations and intermittency of renewables. Second, batteries can operate across
larger geographic areas. Installing a battery on any part of the power system does not require con-
siderable further investment in the grid. Third, batteries are scalable: they use a similar type of
technology regardless of their size.

To model the decision of firms, I represent the electricity market as a multi-unit uniform price
auction. Each day, before the auction, firms observe a public signal that contains information such
as publicly available demand and renewable production forecasts, and they then bid into the elec-
tricity market a day ahead of the actual production. I solve the storage operator’s dynamic opti-
mization problem using discrete-time finite-state value function iteration methods, given incum-
bent firms’ strategies. Then, I model storage’s production as a shift to demand. Storage decreases
the demand when it is producing and increases the demand when it is charging. I estimate in-
cumbent firms’ best responses to this shift in demand by using observed variation in demand in a
market without energy storage. Storage updates its best response conditional changes in thermal
generators’ strategy. The fixed point of this process gives new market equilibrium strategies.

In this research, I use South Australia (SA) Electricity Market data from July 2016 – December
2017.2 In the observed period, generation in SA consists of almost 50% VRE and 50% gas-fired
generators. This generation mix is a good candidate for an economically optimal low-carbon elec-
tricity production portfolio (De Sisternes et al. (2016)). It also produces some of the highest price
variability among electricity markets in the world, which creates a favorable environment for en-
ergy storage. The high penetration level of VRE also creates a large variation in residual demand,
which helps my model to recover firms’ best responses to storage’s production.

I evaluate the private and social returns of hypothetical energy storage by estimating equilib-
2In 2018, the world’s largest lithium-ion battery at the time, Hornsdale Power Reserve (HPR), came online in SA.

This also favors this market for being a test case for energy storage. Tesla Inc. built HPR for a cost of AU$70 million
after its CEO Elon Musk wagered ”100 days from contract signature or it is free”. HPR is privately operated, with
the government having the right to call on the stored power under certain, undisclosed circumstances. The unknown
features of this contract make the storage operator’s objective unclear. Also, around the same time, VRE capacity in SA
increased by around 40%, which creates problems for identifying the observed impact of the storage addition. Therefore,
I use this period’s data only for comparison and illustration purposes.
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rium strategies in the electricity market. I allow the decisions of grid-scale energy storage to affect
prices. My results suggest that accounting for the equilibrium effects of storage is important for
understanding the efficiency of the market. This result holds even for a unit that is only 5% of the
average daily capacity.3 Both the private and social returns are sensitive to this calculation. Previ-
ous methods that ignore this channel overestimate the profitability of operating a storage unit by
two-fold. Incumbent firms change their bidding strategies in response to the production of energy
storage. This response occurs because storage’s activity changes thermal firms’ residual demand,
and therefore, their market power. From a theoretical perspective, it is unclear how incumbent
firms update their bidding strategies in response to a change in the level of demand (Vives (2010),
Genc and Reynolds (2011)). I find that in the presence of energy storage, incumbent firms bid
more aggressively; in other words, energy storage helps to mitigate market power in electricity
markets. Accounting for generators’ best responses decreases the storage operator’s profit by 10%
and increases consumer welfare by 10%.

Next, I ask whether the absence of grid-scale storage is socially inefficient at current costs. I
find that due to high investment costs, entering the electricity market is not profitable for privately
operated storage. However, such entry would increase consumer surplus and total welfare while
also reducing CO2 emissions. The storage-induced consumer surplus change is two times as large
as the storage operator’s profit, and the combined benefits are higher than the investment cost.
This difference in private and social returns makes investing in storage unprofitable but socially
desirable, which presents an under-investment problem. Additionally, unlike the previous litera-
ture on storage’s CO2 emissions effect (Hittinger and Azevedo (2015), Lueken and Apt (2014)), I
find that storage decreases emissions in a market like SA. These results argue for a capacity market
to compensate a private firm for investing in storage.

This under-investment problem suggests a public policy response, including the form of reg-
ulation that should be enacted. A hotly debated area is who should be able to own and operate
storage units. In 2018, California Public Utility Commission mandated utilities to invest in around
2 GW capacity of storage. In contrast, Texas utilities are not permitted to own storage. Federal En-
ergy Regulatory Commission (FERC) does not allow SOs to use energy storage as a generating or
transmission asset. I consider different ownership structures for energy storage: monopoly, load
(consumer) owned, and competitive. I find that load-owned storage, which operates the unit to
maximize consumer surplus, almost doubles the consumer surplus increase. To address potential
market power concerns of a monopoly storage operator case, I also evaluate a perfectly competi-
tive storage market. Importantly, a competitive storage market increases total welfare but would
not yield a socially better outcome than the load-owned storage. In this case, profit and consumer
surplus increases are closer to the monopoly storage case than the load-owned case. This differ-

3The average flexible generation in SA is around 600 MW. These results hold for 120 MWH 30 MW storage.
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ence shows that the storage operator’s market power is important, but price signals are not the
right incentives to maximize social incentives, even when there is no market power, because other
firms distort prices.

Many countries and states subsidize investment in VRE to reduce greenhouse gas emissions.
Energy resources such as solar and wind power produce electricity at almost zero carbon emis-
sion but with high variability in output that depends on weather conditions rather than demand.
These VRE resources are only available at certain times; it is non-dispatchable and intermittent.
Solar generators produce electricity only when the sun is shining, and wind generators produce
electricity only when the wind is blowing. Therefore, the expansion of VRE capacity amplifies
short-run differences between demand and supply. Grid-scale energy storage can bridge this gap
efficiently, making it an important complement to VRE expansion. In February 2018, FERC issued
a final rule (Order 841) requiring SOs in the US to establish a participation model for energy storage
in electricity markets.

Finally, I quantify the complementarity between VREs and grid-scale storage. I study the inter-
action between these technologies by assessing changes in their revenues as renewable generation
is increased. At moderate levels of renewable power, when there is almost no curtailment for VREs,
I find that introducing grid-scale storage to the system reduces renewable generators’ revenue by
decreasing average and peak prices. This is the current situation in South Australia, and below
that, in most electricity systems worldwide. However, when VRE capacity is doubled from this
base, storage increases the return to renewable production and decreases CO2 emissions by pre-
venting curtailment. Higher VRE capacity also leads to higher revenue for energy storage as a
result of an increase in price variation. This non-monotonic relation between returns for VRE and
energy storage investment leads to a need for more carefully designed policies that complement
investments in renewables with encouraging energy storage.

Related Literature This paper contributes to four different literatures. First, this paper con-
tributes to the work exploring the value of energy storage. Several engineering-oriented studies
focus on energy storage’s private benefits (e.g., Graves et al. (1999) McConnell et al. (2015), Salles
et al. (2017)), its role in low-carbon electricity systems (De Sisternes et al. (2016)), and its effects on
social welfare (e.g., Sioshansi et al. (2009) , Sioshansi (2014))4.

The novelty of my approach relative to previous research on the value of energy storage is
modeling storage-induced price effects explicitly and allowing incumbent generators to respond
to resulting price changes. Much of the previous literature ignores these channels and makes price

4Other engineering studies include the interaction between storage and CO2 emissions (Hittinger and Azevedo
(2015), Lueken and Apt (2014)), storage and renewables (Sioshansi (2011)), and storage’s ownership (Sioshansi (2010),
Siddiqui et al. (2019)).
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taker assumption for storage. For small-scale storage, the assumption in the previous literature may
be fine. However, as storage gets larger, this assumption overestimate its profitability. Additionally,
failure to model price changes and generators’ responses to price effects results in large biases in
estimated social returns that include consumer welfare and CO2 emissions changes.

Second, this paper contributes to a large literature in economics on liberalized wholesale elec-
tricity markets by introducing energy storage technology. My paper studies energy storage’s mar-
ket power (e.g, Wolfram (1999), Borenstein et al. (2002), Wolak (2003), Mansur (2008)) and strategic
behavior in multi-unit auctions (e.g., Wolak (2007), Hortacsu and Puller (2008), Reguant (2014)).
In this literature, dynamic considerations of firms are usually ignored or simplified due to non-
essential cost complementarities of conventional technologies. In this paper, the inherently dy-
namic nature of the storage operator’s problem requires a more detailed dynamic approach.

Third, this paper contributes to the small but growing literature in economics on energy stor-
age. Carson and Novan (2013) focus on several battery storage technologies’ effects on emissions
by using hour-specific marginal emission rates in Texas ERCOT. They find that energy storage in-
creases carbon emissions. However, this result depends on the generation mix in the electricity
market. In general, the production of low-cost CO2 intensive generators like coal power plants in
the electricity network drives this result. I find that in SA energy storage decreases emissions in
most scenarios, even in the absence of carbon pricing. SA’s generation mix is a better candidate for
an economically optimal low-carbon electricity production portfolio, and therefore may be a better
representation of the environmental impact of energy storage on future electricity grids.

Overview The remainder of this paper is organized as follows: Section 2 illustrates the private
and social returns to storage in a simple electricity market, highlights the basic forces behind these
returns, and motivates my empirical strategy. Section 3 describes the SA market data I use in my
analysis. Section 4 develops a model of strategic behavior in the electricity market that incorpo-
rates the storage operator’s dynamic profit maximization decision. Section 5 outlines the empirical
strategies I use. Section 6 discusses estimates of the private and social returns to storage. Section 7
concludes.

2 Basic Economics of Energy Storage in Wholesale Electricity Markets

This section provides several graphical illustrations of different parts of my model. First, I de-
scribe (given storage’s fixed level production) how electricity production and prices change in the
wholesale electricity market. Second, I demonstrate the uncertainties and parameters in the stor-
age operator’s problem. Finally, I show how other firms in the market respond to storage-induced
price changes.
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Figure 1: Perfectly Competitive Electricity Market
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If storage is large, private incentives are not socially optimal.

2.1 Storage’s Price Effect

In this section, I illustrate storage’s private and social returns in a simple electricity market to high-
light the basic forces behind these returns and motivate my empirical strategy. I use a ”merit-order”
curve as a stylized depiction of the electricity market supply. This arranges generation sources in
order of increasing marginal cost or willingness to produce. The System Operator (SO) dispatches
generation in this order to meet the market demand at the lowest cost, and clears the market at
market prices. I assume the merit-order curve is convex.

Figure 1 illustrates the effects of storage’s price arbitrage on storage’s profits, welfare, consumer
surplus, and VRE generation revenue. To simplify exposition, I begin by assuming that the electric-
ity market is perfectly competitive. In this case, the merit order curvePC(Q), is simply the schedule
of marginal costs of each generators. Figure 2 demonstrates the same effects by relaxing the perfect
competition assumption in wholesale electricity markets, adding a market power supply realation
Pm(Q) that lies about the competitive PC(Q) cost curve. In both cases, I assume perfectly inelastic
demand, as is the case in electricity markets with no demand-side price responsiveness (e.g., when
customers do not face real time prices), and abstract away from externalities due to emissions.
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2.1.1 Perfectly Competitive Electricity Markets

In a perfectly competitive electricity market, price is a perfect signal for the marginal cost because
every producer bids its marginal cost. Let PC(Q), the inverse of the supply function, be the ag-
gregated marginal cost function of generators in the market. There are two periods, off-peak with
low demand D1 and peak with high demand D2, where prices are P1 = PC(D1) < P2 = PC(D2),
respectively. Same VRE production, V RE units, available at cost 0 in both periods. When V RE is
higher, it shifts PC(Q) to the right. The SO uses multi-unit uniform price auctions, so consumers
pay PC(Q∗) for each unit of their consumption of Q∗ units of electricity.

To engage in arbitrage, the storage operator buys q < D1+D2
2 in period 1 and sells it in period

2, assuming that storage works with 100% efficiency with no operational cost. Since demand is
inelastic, storage production q will have the same effect as a q shift in demand: storage increases
D1 by q and decreasesD2 by q. Storage’s production smooths prices, as new prices are set for both
periods, P1,S > P1 and P2,S < P2. Let 4P1 = P1,S − P1 and 4P2 = P2 − P2,S . Since PC(Q) is
convex, in Q the average price for the two periods decreases,4P2 > 4P1.

The storage operator profits from the inter-temporal price difference and induces pecuniary and
non-pecuniary effects. A pecuniary externality arises due to the change in prices for inframarginal
units. As q increases, inframarginal units become more expensive in period 1 and less expensive
in period 2, which drives the change in the cost of electricity acquisition. This change is a transfer
from producers to consumers. Since consumers use more energy in period 2,D2 > D1, and PC(Q)

is convex, the overall consumer surplus increases. VRE generators’ production does not change,
but the decrease in average price decreases its revenue.

Non-pecuniary externality arises due to production efficiency differences. Storage’s produc-
tion, q, shifts the marginal generator in the market between periods and changes production allo-
cation. The extra q units of production in period 1 replace the last q units of production in period 2.
Since the inframarginal units produce the same amount and demand is not flexible, the total wel-
fare change is the difference in the cost of electricity production of an extra q units in period 1 and
the last q units in period 2. The merit-order, PC(Q), is increasing in Q. Therefore, this production
shift lowers the total cost of production and increases total welfare. Storage’s profits, the changes
in welfare, consumer surplus, the VRE generator’s revenue, and the thermal producer surplus are
represented by:
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Π =
(
PC(D2 − q)− PC(D1 + q)

)
q,

4W =

∫ D2

D2−q

PC(Q)dQ−
∫ D1+q

D1

PC(Q)dQ,

4CS =
(
PC(D2)− PC(D2 − q)

)
D2 −

(
PC(D1 + q)− PC(D1)

)
D1,

4WR =
(
− PC(D2) + PC(D2 − q) + PC(D1 + q)− PC(D1)

)
V RE.

4TPS = 4W −Π−4CS −4WR.

The private and social incentives for storage’s production are not necessarily aligned. The
change in consumer surplus is a function of the price effect of storage’s production, where stor-
age’s profit is a function of price differences between periods. If PC(Q) is steeper, the price effect
4P1 and4P2 is larger , and therefore4CS is bigger. However storage’s profit, Π, decreases since
the price difference between periods is smaller. Notice that here the welfare change is larger than
storage’s profit,4W > Π. This is mostly due to the perfect competition assumption; this relation-
ship does not necessarily hold in imperfectly competitive markets (see Figure 2.1.2).

The change in average prices decreases VRE revenue since VRE production is the same in both
periods. However, this effect also depends on the VRE production profile. An important factor
for the magnitude of this effect is the correlation of VRE production and prices. Storage’s higher
price effects during peak periods, 4P2, decreases prices more than it increases prices during off-
peak periods,4P1. Therefore, if the correlation between VRE production and prices is high, then
storage’s price effect hurts VRE revenue more. In Section 6.4, I discuss the relation between storage
and VRE in more detail.

In order to check how much a change in q changes storage’s profits, welfare, consumer surplus,
and VRE generator’s revenue, let us look at the first-order conditions w.r.t. q:

∂Π

∂q
= PC(D2 − q)− PC(D1 + q)− (

∂PC(D2 − q)
∂q

+
∂PC(D1 + q)

∂q
)q

∂4W
∂q

= PC(D2 − q)− PC(D1 + q)

∂4CS
∂q

=
∂PC(D2 − q)

∂q
D2 −

∂PC(D1 + q)

∂q
D1

∂4WR

∂q
=
(
− ∂PC(D2 − q)

∂q
+
∂PC(D1 + q)

∂q

)
V RE

∂4TPS
∂q

= −∂P
C(D2 − q)
∂q

(D2 − V RE − q) +
∂PC(D1 + q)

∂q
(D1 − V RE + q).
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Figure 2: Imperfectly Competitive Electricity Market
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When storage’s production, q, is small, the price effect is negligible. Without storage’s price ef-
fect, profit and welfare maximization incentives are aligned. As storage’s production, q, increases,
its price effect increases, and private and social incentives diverge. A higher q, and therefore a
higher price effect, increases consumer surplus and decreases VRE revenue, but the price effect
can decrease Π. An increase in storage’s deployment increases welfare and consumer surplus but
decreases thermal and VRE revenues until the quantities sold in both periods are equal. Larger q
creates more market power for storage. Its production smooths prices and decreases arbitrage op-
portunities. Therefore, the storage operator has incentives to under-produce. However, the effect
of a change in q on Π is ambiguous. Section 2.2 shows how storage picks the optimal q.

2.1.2 Imperfectly Competitive Electricity Markets

Most electricity markets are characterized by generators with market power and firms do not nec-
essary bid the short-run marginal cost of their units (Wolfram (1999), Joskow and Kahn (2001),
Borenstein et al. (2002)).5 Figure 2 illustrates an inverse of the aggregated supply function where
firms bid more than their marginal cost, Pm(Q) > PC(Q), ∀Q. WLOG, I assume the same merit-
order is maintained; therefore, the marginal cost curve, PC(Q), is the same as in Figure 1. I also
assume the difference between marginal cost and the firm’s supply function, the markup, increases

5Especially around peak demand periods firms may have incentives to put higher markups on their bids. Some
generators with high production adjustment cost (ramping cost), such as nuclear, may have incentives to bid lower than
their marginal cost to make sure they continue to produce at low demand periods.
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in quantity, ∂P
m(Q)
∂Q > ∂PC(Q)

∂Q ,∀Q.6 Notice that the market power of firms distorts the price signal.
Therefore prices in an imperfectly competitive markets are higher than in the perfectly competitive
case, Pm1 > P1 and Pm2 > P2. In addition, the increasing markup creates more price variation
between the two periods, Pm2 − Pm1 > P2 − P1.

The higher price volatility gives more room for engaging in arbitrage; therefore, the storage’s
profit for a given q is higher in the imperfectly competitive case, Πm > Π. The inverse of the supply
curve Pm(Q), is steeper than PC(Q); therefore storage’s price effect is larger. Due to larger price
effects, changes in consumer welfare, VRE, and the thermal generator’s revenue are also larger
than in the imperfectly competitive case,4CSm > 4CS,4WRm > 4WR. Since the merit-order
is maintained, the change in welfare is the same as in the competitive case,4Wm = 4W .

The price in the imperfectly competitive electricity market is not a perfect signal for the marginal
cost of electricity production. Unlike in the perfectly competitive case, change in welfare and the
storage operator’s profit follows different supply curves, PC(Q) andPm(Q) respectively. Therefore
even when q is small profit and welfare maximization incentives are not aligned. As q increases,
the market power of storage amplifies the difference between private and social incentives. In this
case, the welfare change is not necessarily larger than the profit of storage. If the merit-order is
not maintained (cheaper units bid higher than more expensive units), then the misalignment of
private and social incentives can increase even further.

Figures 1 and 2 show that private and social returns and their comparisons depend on a partic-
ular market structure, inverse of the aggregated firms’ bids P (Q), and storage’s production q. This
ambiguity in a simple market model suggests a data-driven model is required for more precise and
accurate comparisons.

2.2 Electricity Arbitrage Problem

The storage operator engages in arbitrage by exploiting inter-temporal price differences. Unlike
thermal generators, storage’s production cost (the price of electricity at the time of charging) is
dynamic. Hence, storage solves a dynamic problem. In this section, I first describe storage’s tech-
nological constraints. Then, I study a two-period model to illustrate a storage operator’s arbitrage
problem.

Storage is typically characterized by its power capacity (MW), its energy capacity (MWh), and
its round-trip efficiency. Depending on the technology (e.g., lithium-ion, pumped hydro) and
the application (e.g., energy arbitrage, residential, ancillary services), these attributes significantly
vary.

6See Klemperer and Meyer (1989) for a more formal argument.
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Figure 3: Storage’s Problem in a Two Period Model

Storage compares expected prices and elasticities of inverse residual demands of two periods.

Power Capacity KCH is the maximum rate that storage can sell energy. KCH dictates the limit of
the energy flow of storage and how fast it can take advantage of arbitrage opportunities.

Energy Capacity MWh is a composite unit of energy equivalent to one 1 MW of power sustained
for one hour. KE is the maximum level of energy that storage can hold. KE limits the time extent
of storage’s ability to engage with an arbitrage.

Energy to Power Ratio The energy to power ratio (E/CH) determines how fast storage can take
advantage of arbitrage up to its capacity. LowerE/CH rates allow for faster charging/discharging;
therefore, storage can profit from arbitrage on smaller price fluctuations.

Round-trip Efficiency The process of charging and discharging expends some energy. The net
ratio of power retention is called round-trip efficiency, γ ∈ (0, 1), expressed as a percentage. Bat-
teries typically have higher round-trip efficiency rates, between 0.8-0.95, than other technologies
such as pumped hydro and molten salt.

The charge/energy level links the storage owner’s problem between days and periods. It affects
storage’s production in future periods. If storage sells all its energy at the end of a period, it cannot
sell any electricity next period. Therefore, storage’s operator solves a dynamic problem. Given
other firms’ bids and demand, storage faces the residual demand curve, i.e. total demand minus
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the bids of thermal firms. Storage considers residual demands going forward and decides how
much to buy or sell given technological constraints.

Let us study a two-period electricity market where a monopoly storage maximizes profit and
incumbent firms bid without considering storage’s effect. The storage operator faces the inverse
of the stochastic residual demands in two periods, RD−1

1 and RD−1
2 , where period 1 is off-peak

and period 2 is the peak period. Storage has a power capacity KCH = q̄, a round-trip efficiency
γ, and starts with zero energy. Figure 3 demonstrates the storage owner’s problem. The residual
demand, RD, has two sources of uncertainty: firms’ bid and demand. The storage operator forms
an expectation about inverse residual demand in both periods and decides to buy q units of energy
in the first period at P1,S . In the second period, the storage operator sells only γq due to round-trip
efficiency. The rectangle on the left-hand side of Figure 3 is what the storage operator pays in the
first period, and the rectangle on the right-hand side is the revenue that the storage operator gets
in the second period. The storage operator’s problem is expressed by:

max
q6q̄

E[RD−1
2 (γq)]γq − E[RD−1

1 (−q)]q,

This simple formulation decomposes the storage operator’s problem. In Section 4, I model each
of these pieces. First, residual demand includes demand, renewables, and other firms’ bids. Sec-
ond, the expectation operator requires an information structure for firms and the storage operator.
Last, storage’s production q affects other firms’ bids; therefore, it changes the residual demand. As-
suming for now that storage’s production does not change residual demand, first-order conditions
give:

q∗ =


−γ E[RD−1

2 (γq)]− E[RD−1
1 (−q)]

γ2 E[
∂RD−1

2 (γq)
∂q ] + E[

∂RD−1
1 (−q)
∂q ]

if q∗ 6 q̄

q̄, if q∗ > q̄

0, if q∗ 6 0.

If storage’s power capacity, q̄, is small storage, it either produces its full capacity or nothing
depending on the sign of q∗. If the expected price in the second period is higher than in the first
period, then q∗ > 0 and storage use its full capacity. As q̄ increases, the probability of q∗ being
an interior solution increases. The first-order condition, assuming q∗ is an interior solution, shows
several forces influencing storage’s optimal production.

The difference in expected prices affects optimal production. As the gap between periods’
prices increases, the arbitrage opportunity increases, and therefore q∗ also increases. Inverse resid-
ual demands’ derivatives are another factor in the arbitrage problem. As the expected derivative
of either period increases, q∗ decreases. The effect is due to increasing storage’s price effect, and

13



Figure 4: Thermal Generator’s Problem with Two Day Type

Storage’s production affects thermal generator’s market power.

therefore its market power. This force causes private and social incentives for storage to diverge.
If the residual demands are (in)elastic (in other words, storage has higher market power), then it
produces less(more) to keep the price difference high. In Section 4, I take this intuition to a fully
dynamic model and an equilibrium analysis.

2.3 Firms’ Response to Storage

The storage-induced price and quantity change both the profit and the market power of thermal
generators. Consequently, incumbent firms may want to update their bids by responding to stor-
age’s production. In the economic theory literature, supply function equilibrium (SFE) concepts are
used to solve equilibrium strategies of the players in wholesale electricity markets. However, em-
pirically solving SFE is usually computationally intractable, and it does not yield a unique solution
(Klemperer and Meyer (1989), Holmberg (2008) , Vives (2011)). Instead, I treat the production of
energy storage as a shock to demand and compute a supply function equilibrium using estimated
best responses to observed variation in firms’ residual demand volatility. Figure 4 illustrates my
estimation approach.

Let us examine a thermal generator’s problem for a single day without storage. There are
two possible inverse residual demand functions for the day, RD−1

2 (low) and RD−1
1 (high), where

RD−1
2 − RD−1

1 = q. The generator observes a public signal X , which can have two values, low
X l and high Xh, with the same probability g(X l) = g(Xh) = 1

2 . Conditional on signal X , in-
verse residual demand has a probability function f(RD−1|X). For simplicity, let us assume X l
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and Xh give perfect information about residual demand, f(RD−1
1 |X l) = f(RD−1

2 |Xh) = 1. Next,
the generator uses bids BR1 and BR2 with respect to signals X l and Xh.7 The expected bid of the
generator is BR = BR1+BR2

2 .

Consider a storage that produces qMW in a day with signalXh with some probability p ∈ (0, 1).
The production q shifts RD−1

2 to the left and makes it the same as RD−1
1 . In other words, storage’s

production turns the firm’s high residual demand day, RD−1
2 , in to a low residual demand day,

RD−1
1 . Now, assuming that signalXh still signals a high residual demand day, the signal mapping

f changes. I define an augmented mapping f̂ for the public signal X that includes information
about storage’s production, in which f̂(RD−1

1 |X l) + f̂(RD−2
1 + q|X l) = f̂(RD−1

2 |Xh) = 1. In this
case, signal X l also includes days with storage’s production at high residual demand days. With
the updated signal mapping f̂ , the firm still uses BR1 in days with signal X l since either with or
without storage it faces residual demand RD−1

1 . Also, the probability of signals needs to be up-
dated, ĝ(X l) = 1+p

2 , ĝ(Xh) = 1−p
2 . Now the expected firm’s bid becomesBR′ = BR1(1+p)+BR2(1−p)

2 .
Notice that storage’s production q > 0 decreases the market power of the generator, asBR is steeper
than BR′. From a theoretical perspective, the change in demand’s effect on an incumbent firms’
bidding strategies is ambiguous (Vives (2010), Genc and Reynolds (2011)).

Figure 4 illustrates my estimation approach as I model energy storage as a shock to firms’ resid-
ual demands and compute firms’ best responses using estimated best responses to observed vari-
ation in firms’ residual demand. In Section 4.4, I take this intuition to compute a supply function
equilibrium in the market with energy storage.

3 Institutions and Data

I use Australia’s National Electricity Market (NEM) between July 2016 – December 2017 to study
private and social returns of energy storage. In this section, I first discuss institutional details and
the generation mix of NEM. Then, I show statistics about demand, renewable production, and
prices. Finally, I illustrate the production of actual energy storage from January 2018 – December
2018.

3.1 National Electricity Market

In Australia, the Australian Energy Market Operator (AEMO) operates the electricity market, the
National Electricity Market (NEM). The NEM connects five regional market jurisdictions: Queens-

7The effect of increasing residual demand on market power is ambigous in the SFE literature. Under some assump-
tions, Vives (2010) shows firms bid more aggressively when residual demand is lower. Genc and Reynolds (2011) show
the set of possible equilibrium prices shrinks from below. I discuss the observed effect in the results section.
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land, New South Wales, Victoria, South Australia (SA), and Tasmania. AEMO operates an energy
market that produces between 15,000 and 65,000 MW, with around 85,000 MW of installed capac-
ity. The market serves more than 22 million people and collects over AU$16 billion in gross charges
per year.

The NEM is an energy-only pool; it only compensates power that has been produced. There is
no capacity market or technical forward market.8 All generators larger than 30MW must sell all
their output by submitting bids to the NEM. The NEM matches generation’s supply schedules with
demand9 in the most cost-efficient way for each 5-minute period. The NEM averages the 5-minute
prices and posts spot prices every 30 minutes for each of the five trading regions. In the NEM, the
minimum and maximum market prices are $AU14,500/MWh and –$AU1,000/MWh, respectively.
AEMO uses the spot price as the basis for settling financial transactions for all energy traded in the
NEM.

In the NEM, generating units submit their ’daily bid’ before 12:30 pm on the day before the sup-
ply is required. The daily bid consists of 48 individual bids, one for each half-hour period. Each
half-hourly bid is a step function with 10 different price-quantity steps. By market rules, the ten
price steps for all 48 half-hour bid should be the same. These market rules imply that a firm has a
490-dimensional daily strategy set for each unit that it owns. The quantity bids must be increasing
in prices and less than the generator’s capacity. The NEM uses these bids to clear the market and
construct a production agenda for the day. The day starts at 4:30 am. Every 5 minutes, the AEMO
releases the NEM Dispatch overview, which includes prices, demand, generation, renewable pro-
duction, and trade between regions for the last five minutes.

Data I construct a dataset from publicly available data from the AEMO. SA is a part of the NEM,
connected only with the Victoria region. In the counterfactual analysis, I use data from July 2016
– December 2017. There are two primary motivations for using this period. First, in January 2018,
the world’s largest (at the time) lithium-ion battery came online. Second, there is no entry or exit
in SA during this period.

The main variables in the data set are bids, production, demand data, and forecasts for demand
and renewable production. The bidding data includes daily bids and can be mapped to the gener-
ation units in Victoria and SA. The production data has actual quantities generated from all units
in the market for each 5 minute period. The demand data has realized demand and a proxy for res-
idential solar production for each 30 minute period. I also have data on generator characteristics,
such as the type of fuel used, thermal rates, age, location, emissions, and ownership. I provide a
more detailed explanation of the data in Appendix A.

8A high price ceiling provides adequate incentives to stimulate generation investment.
9There is no bidding on the demand side in the NEM.
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Table 1: Generation Mix for SA

Generator Name
Units Fuel Type Technology Owner

Torrens Island 333.1 1320 0.72 8 Natural Gas Steam Sub-Critical AGL

Pelican 218.0 529 0.48 1 Natural Gas CCGT Pelican Power

Osborne 124.9 204 0.57 1 Natural Gas CCGT Origin Energy

Quarantine 24.3 233 0.84 5 Natural Gas OCGT Origin Energy

Ladbroke 20.8 100 0.66 2 Natural Gas OCGT Origin Energy

Hallett 3.7 220 1.19 1 Natural Gas OCGT EnergyAustralia

Mintaro 3.6 105 0.96 1 Natural Gas OCGT Synergen

Dry Creek 1.1 171 1.36 3 Natural Gas OCGT Synergen

Pt Stanvac 0.8 65 1.49 1 Diesel oil Compression Lumo

Angaston 0.6 50 1.01 1 Diesel oil Compression Lumo

Lonsdale 0.4 21 1.49 1 Diesel oil Compression Lumo

Snuggery 0.3 69 1.49 1 Diesel oil OCGT Synergen

Port Lincoln 0.2 78 1.56 2 Diesel oil OCGT Synergen

Rooftop PV 138.7 780 0 - Solar Renewable Miscellaneous

Wind 553.8 1600 0 13 Wind Renewable Miscellaneous

Import from VIC 141.9 800 1.12 - Brown Coal Steam Sub-Critical Miscellaneous

Average Production 
(MW)

Capacity
 (MW)

CO2 Emission Rates
 (ton per MWh)

Notes: The sample is from the South Australia Electricity Market July 2016 – December 2017. Rooftop PV is AEMO's estimation. Import 
from Victoria's emissions rate is the quantity-weighted region average. 

Generation Mix In the sample period, production mostly comes from two types of resources: gas
and renewables. This generation mix is considered a good candidate for the economically optimal
low-carbon electricity production portfolio (De Sisternes et al. (2016)). There are 13 thermal units
with two fuel types: natural gas and diesel oil. Gas-fired generators generate almost all of the dis-
patchable electricity, with relatively low CO2 emissions rates. Diesel oil-fueled generators, peaker
plants, are only active for a few hours each month to meet peak demand, with high CO2 emissions
rates. As Table 1 shows, wind production constitutes around 35%, gas generators 45%, and So-
lar PV 10% of electricity production. There is a dispersion in CO2 emissions rates within natural
gas-fueled generators due to fuel efficiency, environmental regulation compliance, and production
profiles. Imports from the Victoria region mostly come from brown coal thermal generators. In SA
three firms, AGL, Pelican Energy, and Origin Energy, produce almost 95% of thermal generation.10

3.2 Variation in Demand, Renewable Production, and Prices

Figure 5 displays the average daily profile of demand, import, wind production, Solar PV produc-
tion, and gas power plant production in SA. SA’s peak-time demand is after sunset, due to high
solar energy production, similar to the ”duck curve” in California. Wind production is, on aver-

10The high market shares of these firms raised a lot of market power concerns in SA over the years.
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Figure 5: Daily Renewable Production and Demand Profiles in SA July 2016 – December 2017
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age, steady throughout the day. Even though these average production and demand profiles show
some familiar patterns in power systems, the variation from day to day is very high. Dashed lines
in Figure 5 show one standard deviation in the daily profile of demand and renewable production.
Regardless of the time of day, wind production has very high volatility, and solar has considerable
volatility around noon. The variability in intermittent resources and demand makes daily demand
and price patterns hard to generalize and helps the model recover firms’ best responses to storage’s
production. In particular, I exploit variation in residual demand (which includes both renewables
and demand) to estimate firms’ best responses to energy storage.

Highly volatile prices characterize the NEM. The high price periods help to solve the well-
known ”missing money” problem in energy-only electricity markets. This problem occurs because
marginal cost pricing with binding low price caps usually cannot provide sufficient incentives to
invest in a power plant in the first place. Many electricity markets address this problem via the
capacity market. The lack of baseload generators and the high penetration of wind generation in
SA further amplify price volatility. These features create even higher incentives for arbitrage, which
in turn creates a more profitable environment for energy storage.

In the observed period, the average price per MWh is AU$100.8, with a standard deviation of
AU$266. Daily prices peak at 6 pm (AU$190) and are lowest at 4 am (AU$60). This gives a ballpark
price spread of AU$130. However, deploying storage does not just depend on the difference be-
tween high and low prices; it also depends on the persistence of high and low prices. If the E/CH
ratio is high (i.e., it takes a long time to charge the battery), battery owners must find more periods
with low prices to buy and longer periods with high prices to sell.
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Figure 6: Price Patterns in SA July 2016 – December 2017
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Average prices (the black line in Figure 6) appear to follow predictable patterns. However,
they are not persistent due to high differences between days. Figure 6 also shows a histogram of
the highest (blue line) and lowest (red line) price periods within a day. Peak and off-peak price
periods within a day vary quite a bit. Because of this variation, storage cannot follow a simple,
formulaic strategy for buying/selling power at different times throughout the day. It needs a more
diversified day-to-day operations to utilize the arbitrage opportunity fully.

3.3 Strategies of Storage Operator: The impact of electricity price’s daily variation

Hornsdale Power Reserve (HPR) was the largest lithium-ion battery in the world in 2018. HPR
is located in SA, where it officially came online in January 2018. Tesla Inc. built HPR for a cost of
about AU$70 million, after it’s CEO, Elon Musk, wagered that it would be complete ”100 days from
contract signature.”. HPR provides ancillary and energy services in the NEM, with 129 MWh en-
ergy capacity and 100MW power capacity. HPR is privately operated, with the government having
the right to call on the stored power under certain circumstances. According to the HPR’s agree-
ment with SA’s local government, HPR must reserve 70 MW power and 9 MWh energy capacity
for the ancillary services market. The remaining 120 MWh energy and 30MW power capacity can
be used to engage in arbitrage in the NEM energy market.

The unknown features of HPR’s contract with the SA government make the storage opera-
tor’s objective unclear. Also, around this time, VRE in SA expanded around 40%, which creates
problems for my identification strategy. Although my estimation strategy does not use data from
this time period, I use data on HPR’s observed strategies to motivate some of my assumptions in
the model section. Specifically, I assume that the owners of energy storage use various dynamic
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Figure 7: Prices and Production of Hornsdale Power Reserve in 2018
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charge/discharge strategies conditional on the expected price variations.

The variation in within-day price paths creates different incentives for storage’s daily opera-
tions. Subfigures in Figure 7a illustrate storage’s behavior on two typical days. While HPR’s oper-
ations fluctuate day-to-day, these illustrations help motivate my assumptions in the model section.
The figure on the right has relatively stable prices. HPR does not engage in much arbitrage due
to low price variation. The figure on the right, on the other hand, has volatile prices. HPR’s pro-
duction closely follows short-run price changes. However, HPR does not always use its full power
capacity, 30 MW, when it is producing, suggesting that HPR could be under-producing due to its
market power.

HPR engaged in 1.12 full charge and discharge cycles per day in 2018. However, this average
obscures lots of day-to-day variation. Figure 7b shows CDF of storage’s total charge/discharge/net
charge decisions for each day in 2018. The high variation in both figures suggests that HPR does
not follow the same production pattern every day. Figure 7b also suggests that some days HPR
buys (sells) a lot and starts the next day with a fully charged (discharged) battery to engage in
arbitrage.

These different observed deployment policies suggest that the optimal arbitrage policy involves
dynamic considerations. In Appendix C, I consider static policies for energy storage such as buy-
ing/selling at the same hours, buying/selling at some certain prices, etc. In the model section, I
study a dynamic infinite horizon problem for the storage operator.

4 Model

In this section, I build a model of strategic behavior in the electricity market that incorporates the
storage operator’s dynamic profit maximization decision. In order to formalize firms’ decisions, I
represent the electricity market as a uniform price multi-unit auction.

I first describe the electricity demand and market-clearing prices. Next, I lay out payoffs and
strategies for firms with different production technologies and model trade between regions. With
this information, I derive equilibrium conditions for my model. Finally, I show an alternative best
response mapping and computationally tractable re-formulation of the equilibrium analysis.

4.1 Electricity Demand and Market Clearing

The System Operator (SO) runs a daily individual multi-unit uniform price auction for each of the
H periods of the following day. I take electricity demand for each period h of the day d, Ddh, to
be inelastic. In electricity markets, the bulk of demand is from utilities. The end consumer usually
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pays a fixed price per MWh, which makes the demand very inelastic in the short run.11.

Each day, before the auction, firms observe a public signal Xd ∈ X . The public information set
contains information such as publicly available demand and renewable production forecasts. The
H×1 demand vectorDd has probability density function fD(Dd|Xd) conditional onXd. The signal
Xd and the publicly known function fD inform firms about the distribution of the daily electricity
demand for the next day. Conditional on Xd, the signal Xd+1 has the probability density function
fX(Xd+1|Xd). This Markovian structure links demand profiles across days.

Each firm k submits a bid to the market each day for the following day. These bids are supply
schedules Skd(p) =

(
Skd1(p), . . . , SkdH(p)

)
, where Skdh : R → R for the period h of the day d. The

bid, Skdh, should be increasing in p. For each period h, the market clearing price pcdh satisfies the
condition

∑
k Skdh(pcdh) = Ddh. I assume there is no transmission constraint within the market.12

The vector pcd represents the price vector for the day d. Firm k gets paid
∑H

h=1 Skdh(pcdh)pcdh for the
day d.

4.2 Payoffs and Strategies

There are k = 1, . . . , N firms that maximize their profit. Each firm owns u = 1, . . . , Uk generators
to produce electricity with some technological capacity, e.g., a maximum/minimum level of pro-
duction. For ease of exposition, I assume each firm owns one generator. After deriving the model,
I explain how I incorporate firms’ portfolio decisions into their problems. I denote firm k’s bidding
strategy σk, and the market strategy σ = (σ1, . . . , σN ). There are three types of firms in the elec-
tricity market, sorted according to their electricity production technology: storage, thermal, and
renewable, for which I use i, j, r to represent each type of firm, respectively. The model considers
the bidding decisions of firms with different technologies in a daily electricity auction.

4.2.1 Storage Operator’s Problem

The storage operator’s problem is linked between days and periods through a charge level Ch ∈
CH. The charge level at the beginning of the day constrains the set of strategies storage can use
within that day. If the storage operator expects high (low) prices at the beginning of the next day,
it might decide to end today with a high (low) energy level to sell (buy) electricity at the beginning
of the next day. Hence storage solves an infinite horizon problem. To simplify exposition, I as-
sume storage’s round-trip efficiency γ is 1.13 No electricity market yet has charge-level contingent

11There is evidence in empirical literature to support this assumption (Ito (2014) and Borenstein and Bushnell (2015))
12In the NEM, transmission constraints within regions are rarely binding. My trade formulation allows for transmis-

sion constraint between regions.
13In Section 6, I specify γ to be 85%.
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bidding available for storage technologies. Therefore the model assumes that the storage operator
only picks quantities to produce, Sidh = Chdh − Chdh+1 = aidh, rather than supply schedules.

The storage operator starts day d with charge level Chd and picks a set of charge levels,ChdChdChd =

(Chd1, . . . , ChdH). The storage operator’s expected daily payoff is E[πid] = E
[
(Chd − Chd1)pcd1 +∑H

h=2(Chdh−1 − Chdh)pcdh
]
. The charge level at the end of the day carries over to the next day,

ChdH = Chd+1.

Assumption 4.1. The charge level at the beginning of the day, Chd, is private information.

Thermal generators can only infer the distribution of Chd conditional on the public signal X .
This assumption rules out any inference onChd conditional on the history of public signalsX , and
it keeps thermal generators’ problem Markovian. In Appendix C, I consider the case in which Chd
is public information, assuming that thermal generators perfectly infer to actual Chd conditional
on the history of public signals X .

I focus on Markov strategies for the storage operator. The bidding strategy of the storage opera-
tor is a mapping from the public signal and charge level at the beginning of the day to the vector of
charge levels, σi : X ×CH → CHHi , where CHi represents the sets of bids that satisfy technological
constraints such as power and energy capacity. Given the Markov strategy profile σ for the market,
the storage operator’s expected value function is

V (Xd, Chd, σi, σ−i) = E
[ H∑
h=1

πidh(ChdChdChd, p
c
dh, Chd) (4.1)

+ β

∫
V (Xd+1, Chd+1, σi, σ−i)fX(Xd+1|Xd)

∣∣σ−i, Xd, Chd],

where σ−i is the strategy of thermal generators.

As Figure 3 represents, the storage operator considers inverse residual demands pcdh to maxi-
mize its daily revenue. At the beginning of the day d, storage faces H expected residual demands.
I calculate the inverse residual demand function for storage by inverting the market clearing condi-
tion, pcdh(adh) = S−1

idh

(
Ddh − adh

)
, where S−1

idh is the inverse of the aggregated bids of thermal firms
and storage’s production is adh = Chdh−1−Chdh. The problem of the storage operator, maximizing
its net present value of revenue, at the beginning of the day d can be rewritten as

max
ChdChdChd∈CHHi (Chd)

E

[
H∑
h=1

adh

(∫ ∫
pcdh(S−idh, Ddh, adh)fDh(Ddh|Xd)σ−i(S−idh|Xd)

)
(4.2)

+
∑
Xd+1

V (Xd+1, Chd+1)fX(Xd+1|Xd)|σ−i, Xd, Chd

]
,
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where CHHi (Chd) represents a set of charge levels, constrained by technological constraints and
initial charge level Chd. The storage operator’s charge level decisions within a day do not affect
the continuation payoff unless they affect the terminal charge level Chd+1. If storage’s energy to
power ratio (E/CH) is high, the set CHHi (Chd) is smaller. In Section 5.2, I discuss how power and
energy capacity constraints interact.

4.2.2 Thermal Generators

Thermal firm j submits daily bids to maximize their expected profit conditional on their informa-
tion set and their beliefs about other players’ strategies, given by σ−j . Firm j’s information set, Ijd,
contains the public signal,Xd, and a signal εjd ∈ R. This private signal could be interpreted as any
shocks to firm j’s daily profit, such as cost shocks and information about demand or other firms.
Also, it gives an explanation for variation in data in thermal firms’ bid conditional on the public
signal.

Assumption 4.2. The signal εjd is a private signal and εjd ⊥⊥ εjd′ |Xd 6= Xd′ ∀j.

This assumption allows for the correlation of private signals conditional on the demand distri-
bution signal. For example, firms can have different hedging functions conditional on the demand.
However, the model does not allow for persistent shocks across days.

The model also assumes no cost complementarities across days for thermal generators, such
as start-up and ramp-up costs, but it allows for within-day cost complementarities. In the case of
high start-up and ramp-up costs, these complementarities can have an impact on the generator’s
profit. However, Reguant (2014) shows that start-up and ramp-up costs for gas power plants are
not significant. Since SA only has gas power plants as thermal generators, these low-cost links
between days do not affect a firm’s daily optimization decision.

The bidding strategy function of the thermal firm is a mapping from the private and public
signal to supply schedule vectors, σj : X ×R→ SHj , where Sj represents sets of supply schedules
that satisfy the technological constraints of the firm j and the market rules. If other firms’ strategies
are given by a strategy profile σ−j , firm j’s expected daily profit given a signal Xd and bid Sjd is

E[πjd|σ−j , Xd, εjd] = E
[ H∑
h=1

πjdh(Sjdh, p
c
dh, εjd)|σ−j , Xd, εjd

]
=

H∑
h=1

∫ ∫
πjdh(Sjdh, Dh, S−jdh, εjd)fD(Dh|Xd)σ−j(S−jdh|Xd)dDdS−jdh. (4.3)
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The ex post profit of firm j is πjd =
∑H

h=1 Sjdh(pc∗dh)pc∗dh − Cj(Sjd(pc∗d ), εjd), where Cj is the cost
function of firm j and pc∗d is a vector of market prices. The cost function for each day is a function
of the production vector for the day Sjd(pc∗d ) and the private signal, which allows for within-day
cost complementarities.

Trade SA trades electricity with its neighbor region, Victoria. To incorporate trading into the
model, I model Victoria as a firm bidding in the SA electricity market. Similar to the other ther-
mal firms, firm Victoria submits supply schedule SV IC(p) into the market. However, unlike other
thermal generators, I allow firm Victoria to purchase electricity when pV IC > pSA. This flexibility
allows SA to sell electricity when prices are lower relative to Victoria. Also, it mitigates curtailment
at some capacity when renewable production is higher than demand in SA. I use transmission line
capacity as the capacity of the firm Victoria, SV IC ∈ [−800, 700]. This allows for differences be-
tween the two regions’ prices.

I use the market-clearing condition for Victoria to calculate SV IC . I assume Victoria’s renewable
production, demand, and trade with other regions are exogenous. Therefore, the market-clearing
condition in Victoria is

SV IC,dh(p) = TradeSA(p) =
∑

k∈V IC
Skdh(p)−ExportOthers,dh −RenewableV IC,dh −DemandV IC,dh,

whereSV IC,dh(p) is a bid of firm Victoria in day d and period h. Notice that if the price in SA is lower
(higher) than Victoria, firm Victoria buys (sells), SV IC,dh(pV IC − ε) 6 0 (SV IC,dh(pV IC + ε) > 0) for
any ε > 0.

4.2.3 Renewable Production

As a part of greenhouse-gas-emissions mitigation targets, most countries have programs to sup-
port renewable production and investment: e.g., Renewable Portfolio Standards (RPS), Renewable
Energy Targets (RET), Production Tax Credits (PTC), and Feed-in Tariffs. Most of these policies are
output-based subsidies rather than investment subsidies. These financial supports disincentivize
a potential strategic reduction in renewable production. I assume renewable generator r with ar
capacity is non-strategic and its production is exogenous, ardh ∈ [0, ar].

Assumption 4.3. The renewable generator’s bid is equal to renewable production, Srdh = ardh.

Acemoglu et al. (2017) and Genc and Reynolds (2019) show that firms with diverse energy
portfolios might have incentives to manipulate renewable production or under-produce from their
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thermal generators. In my dataset, the owners of renewable generators do not have thermal gen-
erators in their portfolios. Therefore, I assume output-based subsidies are large enough for the
renewable generator to not under-produce.

4.3 Equilibrium

In this section, I define equilibrium in the daily electricity market. For every day d, thermal gen-
erators and storage simultaneously bid into the electricity market ahead of actual production. For
every realized demand level in every period h, the SO aggregates supply bids and clears the market
at the lowest possible price.

Definition 4.1. The strategy profile σ∗ is a Markov Perfect Equilibrium if

σ∗j (X, εj) = argmax
Sjd(p)∈SHj

E[πjd|σ∗, X, εj ], ∀j ∈ N \ {i} and ∀X, d, εj , (4.4)

V (X,Ch, σ∗) > V (X,Ch, σ′i, σ
∗
−i) ∀X,Ch, σ′i, (4.5)

Ddh =

N\{i}∑
j=1

Sjdh(pc∗dh) + aidh + ardh ∀d, h. (4.6)

Equation 4.4 requires that thermal generators maximize their expected daily profits. Since the
public signal is the only relevant information for demand, other firms’ bids and storage’s charge
level, thermal generators condition their strategy only on the public signal and their private signal.
Equation 4.5 guarantees that there is no profitable deviation from σ∗i , as storage’s value function is
defined in Equation 4.1. Both storage and thermal generators form their expectations on demand
conditional on public signalX . The SO runs a multi-unit auction, and the electricity market clears
at pc∗dh, where demand equals the sum of storage’s production, renewable production, and thermal
firms’ supply, as Equation 4.6 shows.

Solving the thermal generator’s problem, Equation 4.4, involves supply function equilibrium,
which is usually computationally intractable and not unique (Klemperer and Meyer (1989), Green
and Newbery (1992)). In the next subsection, I propose computationally tractable re-formulation
to find σ∗.

4.4 An Equivalent Best Response Mapping

In this section, I describe an equilibrium definition that is equivalent to Definition 4.1. This new
equilibrium definition suggests a computationally tractable algorithm in which the market equi-
librium without storage can be used to find an equilibrium with storage. First, I show the updated
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market-clearing condition after storage’s production and define an updated net demand. Then, I
describe a firm’s problem under a new signal that conveys information about updated net demand.
I show how this new signal changes storage’s problem. Finally, I propose a new equilibrium defi-
nition.

First, let us construct the best response function for storage, Λi : σσσ−i → σσσi, which is a mapping
from strategies of thermal generators to sets of strategies for the storage. For any set of strategies
for the rest of the market, σi = Λi(σ−i) gives the set of strategies that maximizes net present value
of the revenue of storage, as in Equation 4.5. Similarly, for the thermal generators, let us define the
best response function Λj : σσσi × σσσ−ij → σσσj , where σ−ij is strategies of thermal firms other than
firm j, as in Equation 4.4.

4.4.1 Net Demand After Storage’s Production

Let us define market equilibrium strategies in a market without a storage as σ−is, in which thermal
firm j’s strategy is σjs. The strategy σ−is satisfies Definition 4.1 in a case in which storage’s produc-
tion is always zero, aidh = 0 ∀d, h and it can be observed in data. Storage enters the market, and its
operator maximizes net present value of the revenue in response to market strategies of thermal
firms, by σi = Λi(σ−is).

Storage’s production is inelastic, and it has a lower merit order than thermal generators. There-
fore, the SO starts clearing the demand by using storage’s production. Storage’s production for
period h, ah is distributed conditional onX with probability distribution σ̄ih(ah|X). Thermal firm
j forms an expectation about storage’s production. Since charge level is private information, the
only relevant information about storage’s production is the signal X . The expected distribution
of storage’s production conditional on public signal X is σ̄i(a|X) = Ej [σi(X,Ch)|X]. Recall the
market clearing condition for period h after storage production ah,

N\{i}∑
j=1

S
σ−is
jh (pch) = Dh − ah = D′h,

where Sσ−isjh is a bid of firm j under the strategy σ−is, and D′h is the net demand after storage.
Since the SO first clears storage’s production, thermal generators compete to meet net demand after
storage’s production, D′h, instead of Dh. Net demand after storage D′h consists of the difference of
two random variables, Dh and ah, with distribution conditional on X , σ̄ih(ah|X) and fD(Dh|X),
respectively.

Let us define the probability density function of net demand after storage conditional on signal
X , fσiD′(D

′|X) =
∫KCHKCHKCH
−KCHKCHKCH

f(D−a|X)σ̄i(a|X)da. Now, net demand after storage,D′, is a more relevant
object for thermal generators’ residual demand than demand, D. Therefore thermal generators’
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respond to the new distribution fσiD′(D
′|X).

4.4.2 Thermal Generators’ Response to Storage’s Production

Thermal generators compete to meet net demand after storage’s production, D′h, given storage’s
production strategies σi. Let us define another signal Xσi from the same set as X ∈ X , which
conveys information about the distribution of D′.

Definition 4.2. If two signals Xσi , X belong to the same set Xσi , X ∈ Xm, then the distribution of D′

conditional on Xσi is the same as the distribution of D conditional on X ,

fσiD′(D
′|Xσi) = f(D|X), ∀X,Xσi .

Notice that this definition implicitly assumes that the distribution ofD′ can be partitioned into
sets conditional on a signal Xσi , fσiD′(D

′|Xσi), such that these new distributions can fit into par-
titioned distributions of D conditional on signal X , f(D|X). Storage’s production often smooths
daily demand profiles by engaging in arbitrage. Therefore, if X is rich enough, such a signal can
be defined. I discuss out of sample issues for D′ in Section 5.3.

I assume thermal generators observeXσi but notX . Given a day withXd ∈ Xm, the signalXσi
d

does not necessarily belong to set Xm. For some realization of net demand Dd, storage’s produc-
tion can be large enough to shift D′d, and signal Xσi

d can belong to a different set Xm′ . Therefore,
conditional on observing signalXσi

d ∈ Xm′ a thermal generator cannot distinguish a day with pub-
lic signal Xd ∈ Xm and Xd ∈ Xm′ . With the new signal Xσi and given other firms’ strategies σ−ij ,
the thermal generator j’s problem becomes

argmax
Sjd(p)∈SHj

[ H∑
h=1

∫ ∫
πjdh(Sjdh, D

′
h, S−jdh, εjd)f

σi
D′(D

′
h|X

σi
d )σ−ij(S−jdh|Xσi

d )dD′dS−jdh

]
.

By Definition 4.2, conditional on two signals belonging to the same category, the distribution
of net demand after storage’s production is the same as the distribution of net demand. Therefore,
I use the firms’ strategies σ−is to find a new equilibrium.

Proposition 4.1. If two signals Xσi , X belong to the same category Xm, and a strategy set σjs is a firm’s
equilibrium strategies in a market without storage, define

σ̂j(Sjd|Xσi
d ) = σjs(Sjd|X) ∀j,Xm ∈ X .

Then market strategies for firms, σ̂−is, is an equilibrium for firms in a market where storage uses strategy
σi.
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Proof: See Appendix 4.

Here the signalXσi coordinates thermal generators’ strategies conditional on signalXσi . Since
Xσi , X both belong to the same set Xm, the thermal generator’s net demand distribution under
both signals is the same. Therefore if thermal generators use their strategies under signalXσi in the
same way as under signal X , their strategies constitute an equilibrium, as they were in the market
without energy storage. Notice that σ̂−is is an equilibrium given storage’s strategy σi. Therefore
thermal generator j’s best response to storage’s strategy is Λj(σi, σ̂−ijs|Xσi) = σ̂j .

4.4.3 Revisiting Storage’s Problem

The update in firms’ strategies, σ̂j , changes storage’s problem. Although storage knows its pro-
duction adh, it does not know the realization of demand. Therefore, I assume that storage does
not observe Xσi and cannot infer Xσi . Thermal generators update their market strategy to σ̂−is.
Conditional on observing X , thermal generators’ strategy is

σ̂−is(S−is|X) =
∑
Xσi

wXσi ,Xσ−is(S−is|Xσi),∀X,

where weight wXσi ,X is the probability of signal Xσi conditional on signal X . With the updated
firms’ strategy σ̂−is, storage solves its best response problem again, σ̂i = Λi(σ̂−is).

4.4.4 Equilibrium

Here, I define equilibrium as a fixed point of the best response functions of storage and firms.

Proposition 4.2. The strategy profile σ∗ is a Markov Perfect Equilibrium if

Λi(σ
∗
−i|X) = σ∗i , (4.7)

Λj(σ
∗
i , σ
∗
−ij |Xσ∗i ) = σ∗j , ∀j ∈ N \ {i} (4.8)

Ddh =

N\{i}∑
j=1

Sjdh(pc∗dh) + aidh + ardh ∀d, h, (4.9)

where strategies of thermal firms other than firm j is σ−ij .

This equilibrium definition embeds an algorithm for finding an equilibrium. First, the storage
operator’s best responses to the rest of the market’s strategies are conditional on signal X . Stor-
age’s production leads to another signalXσi for updated net demand, as in Section 4.4.1. Thermal
generators observe this signal and respond to both storage and each other, as in Section 4.4.2. Then,
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storage updates its best response conditional on changes in thermal generators’ strategy, as in Sec-
tion 4.4.3. This process can be iterated until a fixed point, σ∗, is found. The process converges when
there is no update in any wXσi ,Xs.

5 Empirical Strategy

In this section, I outline my empirical strategies. First, I show the estimation of public signalX and
the conditional distribution of net demand fD(D|X). Then, I describe the algorithm I use to solve
storage’s infinite horizon problem under different ownership structures. I present the algorithm for
finding the equilibrium in a market with storage. Then, I discuss how to incorporate an expansion
in renewable capacity into my model. Finally, I discuss how I calculate CO2 emissions, electricity
production, and storage investment costs.

5.1 Classifying Days: Estimating Distribution of Demand

In electricity markets, renewable resources usually have lower merit order. Therefore, the SO first
clears the demand with renewables then calls on storage and thermal generators. I define a new
variable, net demand, which is the difference between demand and renewable production. Net
demand is a more relevant variable for the model since thermal generators and storage compete
for the net demand.

There are two renewable resources in SA; one is solar, the other is wind. All the solar generation
in SA comes from rooftop solar PVs. Customers directly consume this electricity; therefore, they
buy less from the grid. The demand in the dataset is demand after solar PV production. I calculate
net demand in data as the difference between demand and wind generation. In the dataset, I do not
observe curtailment for renewable. According to the AEMO’s Quarterly Energy Dynamics reports
(AEMO (2018)) , wind curtailment around this period is less than 5 % in SA; therefore, I assume
there is no curtailment.

In order to define signalX , I assign observed net demand vectorsDd (size 48×1) toNX groups
X = {X1, . . . , XNX} by using their corresponding forecast vector FDd. I use the k-median cluster-
ing algorithm to group days and construct X . For given number clusters, this algorithm partitions
vectors into clusters. The objective of this algorithm is to minimize within-cluster sum of squares,

argmin
X

NX∑
m=1

∑
d∈Xm

||FDd −µXmµXmµXm ||2,

where µXmµXmµXm is the median vector in Xm.
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Figure 8: Mean Net Demand for 3 Clusters
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I use the elbow method to pick the optimal number of clusters, NX . The elbow method looks
at the total within-cluster sum of squares as a function of the number of clusters and picks a point
in which a new cluster does not improve the objective much. I pick the number of clusters to be
NX = 16. The observed data shows a wide variety of net demand patterns.

Figure 8 shows expected net demand conditional on X ∈ Xm, E[D|X] for 3 different signal X .
The green line demonstrates a day in which net demand is almost 0. Particularly observed thermal
generators’ bids in this day provide information about how thermal generators bid in a day with
abundant renewable production. Next, the red line displays a smoother net demand profile than
the blue line. Storage production in a blue line day can smooth net demand and transform it into
a red line day. These types of richness in net demand patterns addresses out-of-sample concerns
for the procedure in Section 4.4.2 and in Section 5.5.

In order to fully characterize fD(D|X), I estimate the distribution of net demand conditional
on signalX . Within the day, I assume net demand follows an AR(1) process within each clusterm,

Ddh = βmhDdh−1 + αmh + εmdh∀h,m,

where αmh stands for fixed effects of period and cluster, βmh is the persistence in net demand, and
βm1 = 0 for each m. Within each cluster m, net demand D follows a distribution following the
AR(1) model with parameter set θm = (αm1, βm1 . . . , αm48, βm48). In Appendix B I present θm. I
assume a Markov process for the transition of signal X , fX(Xd+1|Xd).
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5.2 Solving Storage’s Problem

In order to solve the storage operator’s problem in Equation 4.2, first I assume the charge level at
the end of the day, Chd+1, is a discrete multiple of 30 MW.14 Since bothX andKCH are finite, there
are only NX × KCH

30 value functions of storage to assign a value. Notice that storage’s charge level
within the day is still continuous.

For the storage operator’s flow payoff, I simulate the price function pcdh in Equation 4.2 by draw-
ing 100 sets of Ŝ−idh and D̂dh conditional on X from σ−i and fD respectively. I estimate thermal
generator j’s strategies, σj , by using its bids in data. Then I calculate price function pcdh by inverting
the market-clearing condition from Equation 4.6. The inverse of the sampled aggregate supply bid,
S−1
idh, is not smooth; therefore, I locally approximate the price function by a quadratic polynomial.

I constrain the quadratic polynomial approximation to be decreasing in storage’s production adh.

Given initial continuation values, I use discrete-time, finite states value function iteration meth-
ods to solve for σ∗i = Λi(σ−i). I solve storage’s problem for every initial charge level Chd, condi-
tional on ending the day with every terminal charge level Chd+1. Then, I pick the terminal charge
level that gives the highest net present value of revenue. I update values for continuation values
at iteration t + 1 by inverting the bellman equation, by abuse of notation, V t+1 = (I − βF )−1Πt.
Given the updated values, I solve storage’s problem to find t+ 1th iteration’s flow payoff, Πt+1. In
Appendix B, I show details of the procedure.

Ownership

I consider different storage ownership structures to examine the extent of the disparity between
storage’s private and social incentives. Section 2.2 considers only monopoly storage’s problem,
where it maximizes its revenue. In this section, I consider three different ownership structures:
monopoly, load-owned, competitive.

Depending on the ownership structure, the storage operator’s objective varies. Monopoly stor-
age is essentially a monopolist in the storage market, in which it maximizes its revenue. On the
other hand, a load-owned storage minimizes the market electricity acquisition cost. This case gives
the highest consumer surplus increase that storage can reach since I assume demand is inelastic.
The competitive storage case is the environment where many small storage units engage in arbi-
trage simultaneously, maximizing individual revenues. Individual small storages do not internal-
ize their price effect, but at the aggregate level, they affect prices. This case can be thought of as a
perfectly competitive storage market.

To illustrate the different objectives, similar to Section 2.1, I consider a market with two periods.
Storage buys in first period and sells in second period. Price functions are P1, P2, with an inelastic

14In the NEM, all generators larger than 30MW must sell all their output by submitting bids.
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demand Q1 and Q2. The objectives and first-order conditions are

max
q
−P s1 (q)q + P s2 (−q)q , FOC : P s2 (−q)− P s1 (q)− ∂P s2 (−q)

∂q
q − ∂P s1 (q)

∂q
q,

max
q
−P s1 (q)(Q1 + q)− P s2 (−q)(Q2 − q) , FOC : P s2 (−q)− P s1 (q)− ∂P s2 (−q)

∂q
(q −Q2)− ∂P s1 (q)

∂q
(q +Q1),

max
q
−P s1 (q)q + P s2 (−q)q , FOC : P s2 (−q)− P s1 (q),

in which storage is monopoly, load-owned, and competitive, respectively, and P s1 (q) = P1(Q1 + q)

and P s2 (−q) = P2(Q2 − q).

Notice that, when storage’s production q is small, the price effect is negligible and all the objec-
tives are aligned. As storage’s production gets larger, monopoly and competitive storages’ problem
depart due to market power. Monopoly storage sells when the price is high and its price effect is
low to maximize its revenue. On the contrary, load-owned storage sells when price effect and de-
mand after storage’s production are high to maximize the decrease in electricity acquisition cost.
In other words, monopoly storage prefers low price elasticity periods to buy and sell.

Yet, load-owned storage prefers high (low) price elasticity periods to sell (buy). I discuss the
results of different storage ownerships in Section 6.3.

5.3 Simulating Thermal Generator’s Best Responses and Defining a New Signal

To solve for σ∗ in Section 4.3, I start with estimated market equilibrium strategies of thermal firms,
σ−is. First I solve σi = Λi(σ−is) by following Section 5.2. Given the storage operator’s strategies
σi, for each simulated D̂dh and storage’s production adh, I calculate D̂′dh. I check the distance be-
tween realized net demand after storage’s production, D̂′dh, with mean demand of the clusters
{X1, . . . , X16}. I assign day d to a cluster whose mean demand is the closest to D̂′h, Xm.

I define the new signal Xσi
d to be a member of Xm. In order to approximate weight wXσi ,X

(probability of signal Xσi conditional on signal X),

wXσi ,X ≈
∑

D̂′d(X)∈D̂DD
′
d(X)

1{µXσi = argminm∈{1,...,NX}‖D̂
′
d(X)−µXmµXmµXm‖}

100
, ∀X,Xσi ,

where D̂DD
′
d(X) is the set of simulated net demand after storage’s production for a day given the state

X , µXmµXmµXm is the mean vector in Xm,
∑

X′ wXσi ,X = 1, and wXσi ,X > 0,∀X,X ′.

Here, I compare simulated net demand after storage’s production with mean demand of es-
timated demand clusters in Section 5.1. For iteration of Λj(σi, σ−ij |Xσi), I use these weights to
update thermal generators’ strategies σ−i, as in Proposition 4.1. I update draws of Ŝ−id according
to weights wXσi ,X in the storage operator’s problem in Section 4.4.3. Then, I iterate this process
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Table 2: Generation Costs for SA

Generator Name
Marginal Cost Ramping Cost Start-up Cost Operational Cost 

(AU$/MWh) (AU$/MWh)^2 (AU$/MW) (AU$/MWh)

Torrens Island 57.32 0.03 15 7.19

Pelican 59.56 0.03 15 7.19

Osborne 88.88 0.05 5 2.16

Quarantine 86.20 0.05 100 10.69

Ladbroke 98.59 0.05 100 10.69

Hallett 123.48 0.07 100 10.69

Mintaro 105.56 0.06 100 10.69

Dry Creek 113.61 0.06 100 10.69

Pt Stanvac 65.48 0.04 100 11.18

Angaston 106.06 0.06 100 11.18

Lonsdale 65.48 0.04 100 11.18

Snuggery 111.45 0.06 100 10.69

Port Lincoln 106.31 0.06 100 10.69

Import from VIC - - - -

Notes: The table shows AEMO's Integrated System Plan's estimates of electricity production 
cost for each generator in  South Australia Electricity Market July 2016 – December 2017.

until there is no update in weights. Appendix B shows the details of the algorithm. I do not prove
the existence or uniqueness of the fixed point. However, in my dataset, the procedure converges
to a fixed point.

5.4 Welfare and Emissions changes, Storage Investment Cost and Round-trip Efficiency

Welfare and Emissions Changes Storage changes the electricity production of thermal genera-
tors. Therefore, it affects the cost of producing electricity and CO2 emissions. By comparing these
production changes, I calculate the consumer surplus, total welfare, and CO2 emissions changes
in the market.

In my model, change in total welfare is equal to change in electricity production cost, since
demand is inelastic. AEMO’s Integrated System Plan (ACILAllen (2016)) contains information
about each generator’s heat rates (GJ/MWh), CO2 emissions (ton/MWh), fuel cost (AU$/GJ), and
start-up cost (AU$/MW). These industry-estimated costs are comparable with inflation and fuel
price adjusted versions of Reguant (2014) and Wolak (2007). I use Reguant (2014)’s estimates for
ramp-up cost, after adjusting by heat rates and fuel prices. I also calculate start-up and ramp-up
costs in terms of fuel and add the induced emissions into the CO2 emissions calculations. Table
2 shows industry estimates of cost parameters for each generating unit in SA. I use the following
model to calculate the cost of producing qjd by firm j in day d:
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Cj(qjd) =
H∑
h=1

αj1qjdh + αj21(qjdh > qjdh−1)(qjdh − qjdh−1)2 + αj31(Startjdh)qjdh.

Given the calculated market equilibrium strategies σ∗, I simulate 2000 consecutive days. Then,
I compare each generator’s production before and after the storage’s production. For each change,
I calculate differences in the cost of production and CO2 emissions.

Storage Investment I use the estimates from Fu et al. (2018) for storage investment cost. For
Energy to Power ratio 8, 4, 2, 1, 0.5, I use US$320, US$380, US$454, US$601, US$895 per KWH,
respectively. Similar to Lazard (2018), I assume storage has a 20-year lifetime and does not degrade
over its lifetime. Some prediction models use cycle life instead of calendar life. Some studies show
that storage’s charging patterns can drastically affect the level of degradation of its material (Koller
et al. (2013), Abdulla et al. (2016)). In Appendix C, I include a usage cost for storage’s production
to address these concerns.

Round-trip Efficiency I use HPR’s data in 2018 to estimate round-trip efficiency. The data in-
cludes how much HPR buys and sells in the energy market. A lot of factors can effect round-trip
efficiency: temperature, pace of usage, etc. I assume a uniform round-trip efficiency. I calculate
charge levels in data using

Chdh =

d∑
d′=1

h∑
h′=1

(1− γ ∗ I(adh > 0))adh.

I pick a γ that minimizes the range of Chdh, which includes possible charge levels of HPR
[0, 120]. I find 80% to have the best fit. However, the dataset does not include HPR’s supply to
ancillary services. I assume HPR supply to be 5% of its production to ancillary services. Therefore
I pick γ = 0.85.

5.5 Higher Penetrations of Renewable Resources

To model an increase in VRE capacity, I use the observed renewable production in the data. For
an M% increase in renewable capacity, I update total renewable production ardh by a′rdh = ardh ∗
(1 + M

100).15 If updated renewable production exceeds the total of demand trade capacity of SA
with Victoria, a′rdh > Ddh + 700, SO curtails the difference. Storage can decrease the curtailment
by buying electricity when renewable production exceeds demand. I define updated net demand
by

15Here, I am assuming that an increase in renewable capacity linearly increases renewable production. One can sim-
ulate the effects of different additional renewable production profiles by changing the update formulation.
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Dr
dh =

Ddh − a′rdh, if Ddh + 700− a′rdh > 0

0, if Ddh − a′rdh + 700 < 0.

Similar to the procedure in 4.2, I define a new signalXr ∈ X , which conveys information about
the distribution of Dr

dh. I follow the same procedure in Section 5.3 to estimate thermal generators’
strategies. The difference for Xr is that it is also observed by the storage. Therefore, storage’s
production does not affect the signal Xr unlike signal Xσi . Now wXr,X gives the probability of
signal Xr conditional on signal X , and needs to be calculated only once.

6 Results

In this section, I present my estimates of the private and social returns to storage in the electricity
market. Given the calculated market equilibrium strategies σ∗, I simulate 2000 consecutive days.
First, I discuss the fit of my model in the baseline case without energy storage. Here, I compare
summary statistics of my estimates for energy storage with Hornsdale Power Reserve (HPR) in
2018. Second, I compare models of energy storage and demonstrate how the price effect, uncer-
tainty, and firms’ responses affect the storage operator’s private incentives. Third, I look at different
ownership structures for storage. I assess the storage operator’s private and social returns under
each scenario: monopoly, load-owned, and competitive storage. Last, I discuss the interaction be-
tween storage and renewables under different levels of investment in renewables (solar and wind
generation) and storage.

6.1 Model Assessment

Before turning to estimates of energy storage’s effect, it is important to understand the fit of the
model in the baseline case without energy storage. First, the model assumes firms condition their
production on public signal Xd. In order to check the validity of the public signal, I calculate
the variation explained in thermal generators’ bids by the estimated clustering. The calculation
includes comparing supply schedules, Sjd. To construct the distance measure, I use L2 distance
for each of the observed market prices. Clusters explain 91% of the variation in the firms’ bids and
86% of the variation in the daily demand vector, Dd. Appendix B shows details of the k-medians
algorithm and constructed L2 distances.

Electricity price patterns are key for storage’s profitability. Note that the model doesn’t use
price moments. It also uses observed bids and demand conditional on the public signal. Figure
9 presents the simulated average daily prices against the actual data. Dashed lines in Figure 9
show one standard deviation in simulated prices. The simulated price pattern is comparable to
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Figure 9: Average Original vs. Simulation Prices
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the observed data, in spite of missing some price spikes. My model fails to match periods with a
price above AU$1000. These extreme prices periods only occur 0.4% of the time in the observed
period.16

I also compare summary statistics of my estimates for energy storage with observed energy
storage, HPR. Note that the model does not use HPR’s data. I use data from July 2016–December
2016 to calibrate my model, and I compare the calibrated estimates to HPR’s data from 2018. Aver-
age prices in these two periods are very similar, AU$100.8 and AU$99.8 with a standard deviation
AU$266.2 and AU$267.6, respectively. After adjusting for the AU$1000 price ceiling, HPR’s rev-
enue in 2018 is AU$1.52 million compared to my estimate of AU$1.34 million.17 In another aspect,
HPR did 616 charge/discharge cycles in 2018, whereas my estimate is 529 per year.

In reality, the storage operator updates storage’s production during the day in response to re-
ceiving more information about demand and other firms’ bids, whereas my model does not allow
within day adjustments. This new information leads to higher revenue and activity than my es-
timates. In Appendix C, I discuss how changing the storage operator’s information set effects its
strategies. On top of the adjustments, HPR solves a joint profit maximization in energy and ancil-
lary services markets and can adjust its participation accordingly, which can lead to an increase in
energy-only market revenue.18

16These extreme prices occur under sudden expected changes such as a failure of a generator, transmission outages.
It is very hard to simulate these prices without an extensive dataset of such changes. In Appendix C, I suggest a way to
incorporate the effect of extreme prices into the storage operator’s revenue.

17HPR made AU$2.43 million revenue from the energy-only market in 2018. Incorporating these extreme price periods
to my model by following Appendix C increases my estimates to AU$1.96 million

18My model incorporates this effect by decreasing the round-trip efficiency rate.
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Figure 10: Storage’s Price Impact Under Different Models for a Representative Day
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6.2 Private Returns: Market Power, Uncertainty and Firms’ Best Response Effects

The energy storage literature either ignores storage’s price effects or models them without consid-
ering the implications on other firms’ bidding (Sioshansi et al. (2009), De Sisternes et al. (2016),
Salles et al. (2017)). When storage is small, the price effect is negligible; therefore, storage does
not affect other firms’ revenues. However, as storage gets larger, biases from ignoring price effects
might arise. In this section, I consider the biases that afflict the model without storage’s price effect.

In Figure 10, I compare the storage’s price impact on a representative day under different mod-
els. When storage does not have a price impact, the storage operator does not have any incentives
to under-produce. The black line is the same price path as in the market without storage. Next,
I consider the storage’s price impact without allowing other firms to respond. As the storage op-
erator engages in arbitrage, it smooths the price path. Since in data, other firms submit supply
schedules as their willingness to produce, I can calculate new prices after storage’s production.
The red line is smoother than the black line, as the storage operator buys low and sells high. Last,
when storage affects prices, other firms may have incentives to change their bids, since the price
change affects their market power. Theoretically, the equilibrium impact on prices is ambiguous,
since the effect of storage on incumbent firms’ bidding strategies is ambiguous (Vives (2010), Genc
and Reynolds (2011)). However the blue line suggests, as it is smoother than the red line, firms bid
more aggressively as a response to storage. Therefore the equilibrium impact amplifies storage’s
price effect.

In Table 3, I evaluate the storage operator’s profit under four different models. The first column
assumes that the storage operator has perfect foresight about future prices, and the storage is small;
therefore, there is no price effect. Going from Model 1 to 4, I relax one simplifying model assump-
tion each time. In column 2, I relax the perfect foresight assumption. In this model, the storage
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Table 3: Storage’s Yearly Returns Per 1 MWh

(1) (2) (3) (4)

Storage's Private Returns

Revenue (1000 AU$ per MWh) 46.66 23.31 12.38 11.18

Cost (1000 AU$ per MWh) 25.27 25.27 25.27 25.27

Profit (1000 AU$ per MWh) 21.39 -1.96 -12.89 -14.09

Number of Cycles 994 842 601 529

Model Assumptions

Uncertainty ✕ ✓ ✓ ✓

Price Effect ✕ ✕ ✓ ✓

Firms' Response ✕ ✕ ✕ ✓

Notes: This table presents storage’s simulated private returns per MWh for four different 
specifications. In all specifications, the Energy to Power ratio is 4 and round-trip efficiency is 85%. 
For specifications (3) and (4), storage has 120 MWh, 30 MW capacity. The sample is from the South 
Australia Electricity Market July 2016 – December 2017.

operator does not observed prices but observes a public signal, Xd, and produces conditional on
that signal. I use Equation 4.1 to formulate the storage operator’s uncertainty. In column 3, storage
is large, so I relax no storage-induced price effect assumption. In column 4, I allow other firms to
respond to storage’s production and calculate a new equilibrium following Section 4.4.

Table 3 suggests that omitting the price effect and uncertainty of large storage overestimates its
profit. Comparing columns 1 and 2 shows that uncertainty significantly affects profitability, even
if storage is small. One concern about this comparison is that the results may not be robust to the
modeling of uncertainty and the storage operator’s information structure. In the model, there are
two main sources of uncertainties in the storage operator’s problem, net demand and other firms’
bids. In Appendix C, I address the robustness of the results for information structure of the former.
Results qualitatively unchanged.

Column 3 shows that when storage is large, the price effect has a significant impact on stor-
age’s profitability. Electricity prices smooth out as the storage operator buys and sells more. Inter-
temporal price differences decrease as storage’s production increases and arbitrage opportunity
shrinks. Therefore, the storage operator’s profit per unit decreases. This result suggests that using
price taker models for large storage significantly overestimates its profit. Without the price effect
storage almost break-even, in column 2, whereas with price effect, there needs to be substantial
improvements on the cost side, in column 3. Failing to address this price effect channel in energy
storage profitability calculations can lead to incorrect conclusions.
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Figure 11: Optimal Energy Level Under Different Ownership Structures for a Representative Day
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If there is no price effect due to storage’s production, other firms do not have any incentive to
change their strategies. However, when there is a change in prices, firms update their strategies
due to changes in their market power. The literature on supply function equilibrium suggests
that the effect of this update on the storage operator’s profit is ambiguous (Vives (2010), Genc and
Reynolds (2011)). Comparing columns 3 and 4 shows that firms’ response to storage decreases
the storage operator’s profit. This means firms respond to the change in market power by bidding
more aggressively, thereby decreasing peak prices and the storage operator’s profit. This change
suggests that storage mitigates incumbent firms’ market power and increase consumer welfare. In
the next section, I discuss the effects of increasing competition on welfare and consumer surplus.

6.3 Private Incentives are not Socially Optimal

In this section, I use my model estimates to discuss private and social returns for energy storage
with a capacity of 120 MWh and 30 MW under different ownership structures: monopoly, load
(consumer) owned, and competitive. Each ownership has different objectives as I formalize in 5.2.
Figure 11 displays the differences in the optimal charge level of the storage operator under different
ownership structures for a representative day. Table 4 shows the private and social returns of the
storage operator under different ownership structures. For calculating storage’s installment and
market’s production cost, I use industry estimates by following the models in Section 5.4. The rest
of the summary statistics comes from the counterfactual exercises.

In this section, I am excluding emissions impact on welfare and considering them separately in
Section 6.4. My approach can incorporate emissions costs into the welfare analysis for any given
level.
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Table 4: Storage Operator’s Private and Social Returns Under Different Ownership Structures

Per Year

Million AU$ Thousand MWh Thousand Ton

Storage's Δ in Market's Δ in Production of

Ownership Revenue Cost Profit Cost

Monopoly 1.34 3.03 -1.69 3.25 -1.54 19.70 -10.31 -3.12 529

Load Owned 0.59 3.03 -2.44 5.45 -2.21 34.42 -14.34 1.61 1120

Competitive 1.06 3.03 -1.97 3.56 -1.77 27.08 -12.34 -2.64 820

Number 
of CyclesΔ in CO2 

EmissionsConsumer 
Surplus

Natural Gas
Generators

Diesel-Oil
Generators

Notes: This table presents storage’s simulated private and social returns. In all cases, storage has 120 MWh, 30 MW capacity, 
with 85% round-trip efficiency. The sample is from the South Australia Electricity Market July 2016 – December 2017. 

Monopoly Case: Positive externalities cannot be internalized by market prices

In monopoly case, I use single grid-scale energy storage that maximizes its profit. Monopoly
case gives the highest private return; therefore, it is the most relevant case to understand entry in-
centives for the storage operator. Also, monopoly storage has incentives to under-produce because
of its market power. As Figure 11 presents, monopoly storage engages in less arbitrage relative to
the other ownership structures. The first row of Table 4 shows private and social returns. Storage
undergoes 529 full charge and discharge cycles over a year on average to maximize its profit. The
number of cycles can be interpreted as the production (activity) of energy storage.

The negative profit (conditional on entry) shows energy storage is not profitable. There are
two forces that affect profitability: the extent of the arbitrage and the cost of investment. Although
the SA electricity market has one of the highest price spreads in the world, results show that the
electricity market is not yet profitable enough for fully private investment in storage to only engage
in arbitrage. However, a substantial improvement on the cost side, around 60%, can trigger entries
for energy storage. Also, there might be some concerns about the robustness of the information
structure of the storage operator, which can affect revenue. I address some of these concerns in
Appendix C.

Storage introduces positive non-pecuniary externalities by changing the production efficiency
and emissions content of marginal units. The difference between storage’s revenue and change in
market cost shows that there is a misalignment of private and social returns. As I discuss in Section
2.1.2, firms’ bids do not necessarily reflect their production cost. The market power of other firms
distorts market prices and cause misalignment of private and social incentives.

Storage also introduces positive pecuniary externalities for consumers by changing the infra-
marginal units’ revenue. Storage operator sells (buys) when prices are high (low) and decreases
(increases) prices. It decreases average prices since the energy storage price effect is higher at high
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time prices (due to higher residual demand elasticity, as in Section 2.1). A decrease in average prices
decreases electricity acquisition costs. Since the model assumes demand to be inelastic, electricity
acquisition cost decrease is equal to the consumer welfare increase.

Even though investing in storage is not privately profitable, it is socially desirable from the
consumer’s point of view. The storage-induced increase in consumer surplus is larger than its cost.
This gap between private and social returns suggests a market failure, namely an under-investment
problem. The storage operator does not internalize pecuniary externalities for its investment de-
cision. This market failure resembles the ”missing money” problem in electricity markets (e.g.,
Hogan et al. (2005) and Joskow (2008)).

Like the solution of the ”missing money” problem, a lump-sum payment or capacity markets
for storage can address this entry problem, in which the storage operator gets paid the difference
between a change in consumer surplus and its revenue. Some capacity markets require units to be
ready to produce on call. Since storage’s production is contingent on its charge level, this require-
ment imposes a floor on storage’s capacity at all times. Reserving some capacity directly affects
storage’s production and profit; therefore, it requires analysis with different regulatory constraints.

There are two factors that drive the discrepancy between the storage operator’s profit and the
increase in consumer surplus, the market power of other firms, and the storage operator. The
market power of other firms distorts the market prices, and the market power of monopoly storage
causes an under-production. In the next two cases, I disentangle the effects of these two forces.

Load-Owned Case: Ownership change can extend the social returns

Load-owned case adds the inframarginal considerations to the storage operator’s problem and
gives the greatest storage-induced consumer surplus change. As Figure 11 shows, load-owned
storage’s production could be drastically different from the monopoly case. Load-owned storage
searches for periods for higher price effect and higher demand to sell to maximize the price impact
of the storage, whereas monopoly storage only looks for low price effect periods to keep price
difference between periods high.

Load-owned storage maximizes the transfer from the consumer side to the producer side and
helps to mitigate the market power of thermal generators. Therefore, if the SO has concerns such
as mitigating market power and decreasing electricity acquisition cost in the electricity market, the
load-owned case can be interpreted as SO owned storage. However, load-owned storage does not
necessarily maximize welfare, since market prices are not necessarily the marginal cost of electricity
production. If SO does not elicit information about the generator’s cost of production, consumer
surplus maximization can also be interpreted as a proxy for welfare maximization.

The second row of Table 4 indicates that load-owned storage almost doubles the monopoly
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storage’s consumer surplus increase. It does so by doubling the number of cycles of monopoly
storage, losing more than half of its revenue. Although load-owned storage does not necessarily
maximize the total welfare, it increases the welfare compared to the monopoly case. However, it in-
creases CO2 emissions. This effect is mostly due to the higher activity of storage. More production
of storage leads to more energy lost to round-trip efficiency.

The significant difference between the monopoly and load-owned cases for consumer surplus
increase shows that solving the under-investment problem of the storage operator is not necessarily
enough to reach higher social returns. One concern with the misalignment of private incentives for
operating can be the market power of storage, as I discuss in Section 2.2. The economics literature
widely discusses the market power of thermal generators (e.g., Wolfram (1999), Borenstein et al.
(2002), Wolak (2003)). Sioshansi (2014) considers a case in which storage decreases welfare due
to its market power. To address concerns about the storage operator’s market power, I consider a
competitive storage market case.

Competitive Case: Highest social return cannot be achieved by increasing competition

In competitive case, I use single grid-scale energy storage with no market power that maxi-
mizes its profit. One can interpret this case as many small storage providers that do not internalize
their price effect but affect prices at the aggregate level. These storage operators want to minimize
price differences. As Figure 11 shows, competitive storage’s production is closer to the monopoly
case. Competitive storage engages in arbitrage without considering its price effect. As Section 2.1.1
suggests, this case perfectly aligns with maximizing welfare (and consumer welfare), under the as-
sumption of a perfectly competitive electricity market. Therefore other firms’ market power effects
can explain the difference between competitive and load-owned cases.

Table 4’s third row shows that competitive storage increases consumer surplus and welfare
more than the monopoly case, but does not reach the load-owned welfare levels. Also, the decrease
in revenue is not as large as in the load-owned case. As Section 5.2 suggests, increasing competition
decreases the distance between the load-owned and monopoly cases. Monopoly energy storage can
deliver high enough social returns, while load-owned storage pushes it even further. The compet-
itive case yields intermediate returns between monopoly and load owned. However, results also
suggest that there is still a significant gap between private and social returns in the absence of the
storage operator’s market power.

The comparison between these three cases suggests two conclusions for private and social re-
turns disparity: storage operator’s market power is important, but even abolishing that power is
not enough to fully utilize energy storage. As I discuss in Section 2.1.2, due to the market power
of incumbent firms, the storage operator profit-maximizing incentives do not align with welfare-
maximizing incentives in a market with imperfect competition even when storage is small. This
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Table 5: Storage Operator’s Private and Social Returns Under Different Renewable Levels

Per Year

Million  AU$ Thousand Ton Thousand MWH

Storage's Δ in Market's

Curtailment
Revenue Cost Profit Cost

Baseline 1.34 3.03 -1.69 3.25 -1.54 -1.70 -0.44 -3.12 -

Double Wind 2.75 3.03 -0.28 6.12 -3.12 1.63 -0.38 -8.89 -18.6

Double Solar 1.65 3.03 -1.38 4.30 -2.12 -1.43 -0.78 -4.15 -0.1

Δ in CO2 
EmissionsConsumer 

Surplus
Wind 

Revenue
Solar PV 

Save

Notes: This table presents storage’s simulated private and social returns under different renewable production capacities. In 
the baseline case, renewable capacities are at levels as they are currently seen in South Australia. In the double wind (solar) 
case, I double wind (solar) production by using observed renewable profiles in South Australia. In all cases, storage is a 
monopoly and has 120 MWh, 30 MW capacity, with 85% round-trip efficiency. The sample is from the South Australia 
Electricity Market July 2016 – December 2017. 

discrepancy affects the day-to-day operations of the storage operator and cannot be fixed via com-
petition or fixed payments. This result suggests that FERC’s rule for not allowing SOs to use energy
storage as a generating asset may lead to socially inefficient or no usage of energy storage.

6.4 Renewables and CO2 Emissions

An increase in VRE capacity is one of the main motivations for investing in energy storage. Energy
storage supports VRE by smoothing the variability and intermittency and decreasing the curtail-
ment of VRE. On the other hand, VRE increases intertemporal price differences and increases pri-
vate returns for energy storage investment (Woo et al. (2011), Ketterer (2014)). Therefore this leads
to the intuition that should both exist in support each and promote simultaneous expansion.

I study the interaction between VRE and storage by considering changes in VRE capacity. For
each wind and solar pv generations I double the production capacity and first calculate the equilib-
rium without energy storage by using the model in Section 5.5.19 Then I introduce energy storage
in both cases to calculate storage’s impact on the doubled renewable scenarios. Table 5 shows
the private and social returns of monopoly energy storage and non-strategic renewables’ revenue
under different generation capacities.

There are two factors that affect energy storage’s effect on renewable revenue: the change in
average prices and the correlation of renewable generation and prices. First, storage decreases av-
erage prices by smoothing price differences. Overall this force leads to a decrease in renewable

19Note that the VRE capacity expansion may lead to some thermal generator exits. My results for VRE generation
expansion might not be a long-run equilibrium.
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revenues since renewable production is exogenous. Second, if renewable production is negatively
correlated with prices, then the storage price effect increases renewables’ revenue by smoothing
the prices. Depending on the magnitude of these components, energy storage can hurt or support
renewables. The literature on renewables considers a high correlation between demand and re-
newables’ production as a high value for renewables (Keane et al. (2010)). In my model, storage
damages higher value renewables’ return more by engaging in arbitrage, decreasing high prices,
and increasing low prices.

First, I find that at moderate levels of renewable power (when there is almost no curtailment for
VREs), as currently seen in South Australia, introducing grid-scale storage to the system reduces
renewable generators’ revenue. For wind, on average, its production is stable throughout the day,
as in Figure 5, the decrease in average prices hurts wind generators’ revenue a lot. Even though
wind production is negatively correlated with prices, -0.193, the average price effect dominates.
On the other hand, solar generation and prices are positively correlated, 0.014. Therefore for solar,
both forces hurt its revenue.

Second, I increase wind generation production from 35% to 70% of the overall market pro-
duction. Due to high electricity generation from VRE at times, this expansion leads to around 50
thousand MW yearly curtailment of electricity. I find that doubling wind production doubles the
storage-induced consumer surplus and total welfare increase. The main factor driving this welfare
change is a decrease in curtailment. Storage increases the return to wind production by preventing
a notable portion of the curtailment. Additionally, higher wind generation capacity leads to higher
revenue for energy storage as a result of an increase in price variation. In this case, entering the
electricity market becomes almost profitable for privately operated storage.

Third, I increase solar generation production from 10% to 20% of the overall market production
by following the model in Section 5.5. Since solar generation is at a moderate level (no curtailment),
it results in around a 500 MW yearly curtailment of electricity. Since there is no significant curtail-
ment, I find that doubling solar production does not lead to a significant change in private and
social returns to energy storage. However, as solar production increases, storage still hurts its rev-
enue. Although in the scenario correlation between solar production and prices becomes negative,
-0.033, the average price impact still dominates.

Unlike the previous literature on storage’s CO2 emissions effects (Hittinger and Azevedo (2015),
Lueken and Apt (2014)), I find that storage decreases emissions. Two main factors affect emissions:
the change in emissions content of the marginal unit and storage’s round-trip efficiency. Changing
the emissions content of the marginal units may have different implications. The CO2 emissions-
order does not necessarily follow the merit order; therefore, this shift can increase emissions. Ta-
ble 5 suggests that, on average, storage replaces units that have higher CO2 emissions with ones
that have lower CO2 emissions in SA. This is because it tends to increase low-emission natural
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gas generators’ production and decrease high-emission diesel-oil generators’ production. On the
other hand, low round-trip efficiency causes more waste, which in return increases production and
emissions. The former effect in CO2 emissions is large enough to more than offset the loss due to
round-trip inefficiency. In the case of curtailment, energy storage decreases emissions even more
by preventing a notable portion of the curtailment.

7 Conclusions

Many governments have adopted policies to encourage and subsidize investment in renewable
energy to reduce greenhouse gas emissions from their electricity sectors. The characteristics of re-
newable energy from wind and solar power pose particular challenges to the operation and stabil-
ity of the electricity grid. Grid-scale energy storage holds the promise of mediating the operational
challenges created by their inherent variability, intermittency and non-dispatchability. However,
if private incentives for operating and investing in grid-scale energy storage are not aligned with
social incentives, there may be under-investment and under-utilization of storage capacity.

In this paper, I introduce a dynamic framework to model the effects of introducing energy stor-
age into a wholesale electricity market. The model incorporates storage production’s price effect
and allows for a new equilibrium to arise due to incumbent generating firms’ responses to stor-
age. I use estimated responses from thermal generation sources to observed variation in demand
volatility in a market without energy storage to recompute the new supply function equilibrium
when storage is introduced to the market.

My results have several policy implications on energy storage in electricity markets. First, in-
vesting in storage may not profitable, even when such entry would increase consumer surplus and
reduce electricity production cost and emissions to the extent that it becomes socially desirable.
This result argues for public policy responses such as subsidies or capacity markets for energy
storage. Second, changing the ownership (objective) of energy storage can improve its social re-
turns. However, these improvements cannot be attained by a competitive storage market. This re-
sult suggests a further regulation assessment on the ownership question of energy storage. Third,
there is a non-monotonic relation between returns for renewables and energy storage investment.
For moderate levels of renewable power, storage reduces renewable generators’ revenue; however,
for high levels of renewable power, storage increases renewable generators’ revenue. This result
suggests a need for policies that complement investments in renewables at different penetration
levels with energy storage.

This paper motivates several future lines of future work. First, in this paper, I only consider the
revenue of storage capacity in a wholesale energy market. System Operators manage many markets
to maintain grid reliability and stability, such as ancillary services and capacity markets. Although
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ancillary services are smaller markets compared to energy markets, the revenue stacking approach
(which combines ancillary services and capacity markets as well) may give a better approximation
for the profitability of energy storage. Second, regulations in electricity markets can be updated
to allow for fair and efficient energy storage entry and participation. Storage units’ responses to
such changes in incentives can be calculated to find an optimal regulatory framework for energy
storage. Third, in this paper, I use the Australian National Electricity Market, which has zonal
pricing. By extending my model to nodal pricing, it would be possible to find location-specific
returns for energy storage investments in the US electricity girds.
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Table 6: Storage Operator’s Private Returns Under Different Specifications

Information Structure Storage Operator's Policy Roundtrip Effiency Charging Cost per MW

 Static Strike Prices Higher Lower AU$200 AU$100 AU$50

Storage's Private Returns (Per Year)

Revenue (Million  AU$) 1.32 2.10 0.87 1.01 1.61 1.20 0.67 0.88 1.09

Cost (Million  AU$) 3.03 3.03 3.03 22.50 3.03 3.03 0.52 0.69 0.88

Profit (Million  AU$) -1.71 -0.93 -2.16 -21.49 -1.42 -1.83 0.15 0.19 0.21

Number of Cycles 527 551 365 467 518 601 22 58 148

 Ch is public 
information

Storage 
observes bids

Notes: This table presents storage's simulated private returns. For information structure, I consider two specifications; storage's charge 
level to be public and storage observes other's bids. For storage operator's policy, I consider two policies: the same charge/discharge policy 
every day and charge/discharge policies by using strike prices. For roundtrip efficiency, I consider two different roundtrip efficiencies: 75% 
and 95%. For charging costs, I assume different operating costs corresponding to cycle lifetime levels 2500, 5000, and 10000. In all cases, 

storage is a monopoly and has 120 MWh, 30 MW capacity. The sample is from the South Australia Electricity Market July 2016 – December 
2017.

Appendix (coming soon)

A Data Appendix

B Estimation Details

C Robustness

C.1 Storage with Different Technological Constraints

C.2 Renewable and Storage with Different Technological Constraints

51



Table 7: Storage Operator’s Private and Social Returns Under Different Power and Energy Capaci-
ties

Per Year

Million  AU$

Storage's Δ in Market's

Revenue Cost Profit Cost

Panel A. Change in Power Capacity

120 MWh, 120 MW 1.98 4.79 -2.81 4.73 -1.28

120 MWh, 60 MW 1.64 3.62 -1.98 3.91 -1.32

120 MWh, 30 MW 1.34 3.03 -1.69 3.25 -1.54

120 MWh, 15 MW 1.19 2.56 -1.37 2.79 -1.85

Panel B. Change in Energy Capacity

240 MWh, 30 MW 1.69 5.12 -3.43 3.67 -1.61

120 MWh, 30 MW 1.34 3.03 -1.69 3.25 -1.54

60 MWh, 30 MW 1.12 1.81 -0.69 2.78 -1.42

30 MWh, 30 MW 0.87 1.12 -0.25 2.14 -1.21

Consumer 
Surplus

Notes: This table presents storage’s simulated private and social returns under different 
storage capacities. In all cases, storage is a monopoly with 85% round-trip efficiency. The 
sample is from the South Australia Electricity Market July 2016 – December 2017. 
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Table 8: Storage Operator’s Private and Social Returns Under Different Renewable and Storage
Capacities

Per Year

Million  AU$ Thousand Ton Thousand MWH

Storage's Δ in Market's

Curtailment
Revenue Cost Profit Cost

Panel A. 60 MWh 15 MW

Baseline 0.83 1.51 -0.68 2.02 -0.92 -1.05 -0.31 -1.43 -

Double Wind 1.82 1.51 0.31 3.88 -1.89 1.09 -0.28 -4.85 -10.2

Double Rooftop 1.17 1.51 -0.34 2.75 -1.21 -0.97 -0.50 -1.57 -0.1

Panel B. 240 MWh 60 MW

Baseline 1.89 6.06 -4.17 5.36 -2.13 -2.34 -0.64 -6.22 -

Double Wind 4.87 6.06 -1.19 9.70 -5.14 2.60 -0.45 -13.43 -26.6

Double Rooftop 2.01 6.06 -4.05 6.02 -2.19 -2.01 -0.82 -6.87 -0.3

Δ in CO2 
EmissionsConsumer 

Surplus
Wind 

Revenue
Solar PV 

Save

Notes: This table presents storage’s simulated private and social returns under different renewable production capacities. In 
the baseline case, renewable capacities are at levels as they are currently seen in South Australia. In the double wind (solar) 
case, I double wind (solar) production by using observed renewable profiles in South Australia. In all cases, storage is a 
monopoly with 85% round-trip efficiency. The sample is from the South Australia Electricity Market July 2016 – December 
2017. 
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