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Abstract

How does carbon pricing affect the economy? Answering this question is

crucial for governments to calibrate policies to fight climate change. Exploit-

ing institutional features of the European carbon market and high-frequency

data, I estimate the dynamic causal effects of a carbon policy shock. I find

that a shock tightening the carbon pricing regime leads to a significant in-

crease in energy prices and a persistent fall in emissions. The drop in emis-

sions comes at the cost of a temporary fall in economic activity, which is not

borne equally across society: poorer households lower their consumption

significantly while richer households are barely affected. My results suggest

that targeted fiscal policy can reduce the economic costs of carbon pricing

and increase the public support of such policies – without compromising

emission reductions.
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1. Introduction

Climate change is one of the greatest challenges of our time, posing significant
threats not only to our lives, livelihoods and the environment, but also to the
global economy. Fighting climate change, however, has proved very difficult be-
cause of its global nature and the pervasive externalities involved. As the threats
of a climate crisis are becoming more acute and visible, climate change is now a
key priority for policymakers around the world. There is broad agreement that
putting a price on carbon emissions is the most effective way to mitigate climate
change and several countries have enacted national carbon pricing policies, ei-
ther via carbon taxes or cap and trade systems. Yet, little is known about the
economic effects of such policies – information that is crucial for policy design
and calibration.

This paper aims to contribute filling this gap. I propose a novel approach to
estimate the dynamic causal effects of a carbon policy shock, exploiting institu-
tional features of the European carbon market and high-frequency data. The Eu-
ropean Union Emissions Trading System (EU ETS) is the largest and oldest carbon
market in the world, accounting for around 40 percent of the EU’s greenhouse
gas (GHG) emissions. The market was established in phases and the regulations
have been updated continuously. Following an event study approach, I collected
113 regulatory update events concerning the supply of emission allowances. By
measuring the change in the carbon futures price in a tight window around the
regulatory news, I am able to isolate a series of carbon policy surprises. Reverse
causality can be plausibly ruled out as economic conditions are known and priced
by the market prior to the regulatory news and unlikely to change within the tight
window. Using the surprise series as an instrument allows me to estimate the dy-
namic causal effects of a structural carbon policy shock.

I find that carbon pricing has significant effects on emissions and the economy.
A carbon policy shock tightening the carbon pricing regime causes a strong, im-
mediate increase in energy prices and a persistent fall in overall GHG emissions.
Thus, carbon pricing appears to be successful in achieving its goal of reducing
emissions. However, this does not come without cost. Consumer prices rise
significantly and economic activity falls which is reflected in lower output and
higher unemployment. Interestingly, the fall in activity appears to be somewhat
less persistent than the fall in emissions. This is also reflected in the stock mar-
ket response, which displays a significant fall in stock prices for about one and a
half years but then rebounds and turns even positive after. The shock also causes
a real depreciation of the euro, which in turn causes a significant decline in im-
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ports. While the shock leads to somewhat heightened financial uncertainty and
a short-term deterioration of financial conditions, the main transmission channel
appears to work through higher carbon prices, which passing through energy
prices lead to lower consumption and investment. At the same time, carbon pric-
ing creates an incentive for green innovation, which is reflected in a significant
uptick in low-carbon patenting.

Carbon policy shocks have also contributed meaningfully to historical vari-
ations in energy prices and emissions. At the one year horizon, they account
for over a third of the variations in energy prices and for a quarter of the varia-
tions in emissions. They also explain a non-negligible share of the variations in
macroeconomic and financial variables. Looking at the historical decomposition,
we can see that carbon policy shocks played an important role in many historical
episodes but importantly, they did not account for the fall in emissions associated
with the global financial crisis – supporting the validity of the identified shock.

My results illustrate that carbon pricing is successful in reducing emissions
and mitigating climate change. However, this comes at the cost of lower eco-
nomic activity today. Importantly, these costs are not equally distributed across
society. Using detailed household-level data, I document pervasive heterogene-
ity in the expenditure response to carbon policy shocks. While the expenditure
of higher-income households only falls marginally, low-income households re-
duce their expenditure significantly and persistently. These households are more
hardly affected in two ways. First, they spend a larger share of their dispos-
able income on energy and thus the higher energy bill leaves significantly less
resources for other expenditures. Second, they also experience the largest fall in
income, as they tend to work in sectors that are more exposed to carbon pricing.
In contrast, the fall in earnings for high-income households gets partially offset
by an increase in their financial income.

These findings suggest that targeted fiscal policies could be an effective way
to reduce the economic costs of carbon pricing. To the extent that energy demand
is inelastic, which turns out to be the case especially for poorer households, this
should not compromise the reductions in emissions. I also show that carbon pric-
ing leads to a significant fall in the support of climate-related policies among
lower income households. Thus, such targeted compensations may also help to
increase the public support of climate policy.

A comprehensive series of sensitivity checks indicate that the results are ro-
bust along a number of other dimensions including the selection of event dates,
the estimation technique, the model specification, and the sample period. Im-
portantly, the results are also robust to accounting for confounding news over the
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event window. Controlling for such background noise using an heteroskedasticity-
based estimator produces very similar results, even though the responses are less
precisely estimated.

Related literature and contribution. This paper is related to a growing litera-
ture studying the effects of climate policy and carbon pricing in particular. While
there is mounting evidence on the effectiveness of such policies for emission re-
ductions (Lin and Li, 2011; Martin, De Preux, and Wagner, 2014; Andersson, 2019;
Pretis, 2019), less is known about the economic effects. A number of studies have
analyzed the macroeconomic effects of the British Columbia carbon tax, finding
no significant impacts on GDP (Metcalf, 2019; Bernard, Kichian, and Islam, 2018).
Metcalf and Stock (2020a,b) study the macroeconomic impacts of carbon taxes in
European countries. They find no robust evidence of a negative effect of the tax
on employment or GDP growth.1 Finally, some studies investigated the impact
of the EU ETS on economic performance at the firm level, finding no significant
negative impact on regulated firms (Dechezleprêtre, Nachtigall, and Venmans,
2018; Marin, Marino, and Pellegrin, 2018; Martin, Muûls, and Wagner, 2016). By
way of summary, the empirical evidence on the economic effects of carbon pric-
ing is still scarce and inconclusive. I contribute to this literature by providing new
estimates for the macroeconomic impact based on the EU ETS, the largest carbon
market in the world.

A large literature has studied the macroeconomic effects of discretionary tax
changes more generally. To address the endogeneity of tax changes, the litera-
ture has used SVAR techniques (Blanchard and Perotti, 2002) and narrative meth-
ods (Romer and Romer, 2010). The narrative approach in particular points to
large macroeconomic effects of tax changes; a tax increase leads to a significant
and persistent decline of output and its components (see also Mertens and Ravn,
2013; Cloyne, 2013). However, it is unclear how much we can learn from these
estimates with respect to carbon pricing, which is enacted to correct a clear exter-
nality and not because of past decisions or ideology. While the motivation behind
carbon pricing is arguably long-term and thus more likely unrelated to the cur-
rent state of the economy – similar to the tax changes considered in Romer and
Romer (2010) – it is still perceivable that regulatory decisions also take economic
conditions into account.

To address this potential endogeneity in carbon pricing, I propose a novel
identification strategy exploiting high-frequency variation. From a methodologi-

1Contrary to this paper, Metcalf and Stock (2020a,b) do not study the effects of the EU ETS but
national carbon taxes, which are present in many European countries and cover sectors that are
not included in the EU ETS.
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cal viewpoint, my approach is closely related to the literature on high-frequency
identification, which has been developed in the monetary policy setting (Kuttner,
2001; Gürkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015; Nakamura
and Steinsson, 2018, among others) and more recently employed in the global
oil market context (Känzig, 2021). In this literature, policy surprises are identi-
fied using high-frequency asset price movements around policy events, such as
FOMC or OPEC announcements. The idea is to isolate the impact of policy news
by measuring the change in asset prices in a tight window around the policy
announcements. I contribute to this literature by extending the high-frequency
identification approach to climate policy, exploiting institutional features of the
European carbon market.

This paper is not the first to study regulatory news in the European carbon
market. A number of studies have used event study techniques to analyze the
effects of regulatory news on carbon, energy and stock prices (Mansanet-Bataller
and Pardo, 2009; Fan et al., 2017; Bushnell, Chong, and Mansur, 2013, among
others). To the best of my knowledge, however, this paper is the first to exploit
these regulatory updates to analyze the economic effects of carbon pricing. The
approach is very general and could also be employed to evaluate the performance
of other cap and trade systems.

Equipped with this novel identification strategy, I provide new direct evi-
dence not only on the aggregate but also on the distributive consequences of
carbon pricing. In this sense, I also contribute to a growing literature studying
the distributional impact of carbon pricing. While the available empirical evi-
dence on carbon pricing is sill rather limited given the relatively short history of
such policies (see Ohlendorf et al., 2021 for a meta-analysis of the existing ev-
idence), a large literature has studied the distributional effects of energy taxes,
with ambiguous results. The incidence of energy taxes appears to depend on the
targeted fuels and pollutants, the characteristics of taxed populations and their
communities, the measurement of household income, and, importantly, how tax
revenues are used (see Pizer and Sexton, 2019 for a review). My findings sug-
gest that carbon pricing in the EU has been regressive, burdening lower-income
households more than richer ones, and that this heterogeneity also matters for
the transmission of carbon policy to the macroeconomy.

Roadmap. The paper proceeds as follows. In the next section, I provide some
background information on the European carbon market and detail relevant reg-
ulatory events in this market. In Section 3, I discuss the high-frequency identi-
fication strategy and perform some diagnostic checks on the carbon policy sur-
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prise series. Section 4 discusses the econometric approach and introduces the
external and internal instrument models. Section 5 presents the results on the
aggregate effects of carbon pricing. I start by analyzing the instrument strength
before studying the effects on emissions and the macroeconomy, the historical
importance and potential propagation channels. Section 6 looks into the hetero-
geneous effects of carbon pricing, using detailed household-level data on income
and expenditure. In Section 7, I perform a number of robustness checks. Section
8 concludes.

2. The European carbon market

The European emissions trading system is the cornerstone of the EU’s policy to
combat climate change. It is the largest carbon market in the world and also has
one of the longest implementation histories. Established in 2005, it covers more
than 11,000 heavy energy-using installations and airlines, accounting for around
40 percent of the EU’s greenhouse gas emissions.

The market operates under the cap and trade principle. Different from a car-
bon tax, a cap is set on the total amount of certain greenhouse gases that can be
emitted by installations covered by the system. The cap is reduced over time
so that total emissions fall. Within the cap, emission allowances are then auc-
tioned off or allocated for free among the companies in the system, and can sub-
sequently be traded. Alternatively, companies can also use limited amounts of
international credits from emission-saving projects around the world. Regulated
companies must monitor and report their emissions. Each year, the companies
must surrender enough allowances to cover all their emissions. This is enforced
with heavy fines. If a company reduces its emissions, it can keep the spare al-
lowances to cover its future needs or sell them to another company that is short
of allowances. A binding limit on the total number of allowances available in the
system guarantees a positive price on carbon (see European Comission, 2020a, for
more information).

There exist several organized markets where EU emission allowances (EUAs)
can be traded. An EUA is defined as the right to emit one ton of carbon diox-
ide equivalent gas and is traded in spot markets such as Bluenext (Paris), EEX
(Leipzig) or Nord Pool (Oslo). Furthermore, there exist also liquid futures mar-
kets on EUAs, such as the EEX and ICE (London). In 2018, the cumulative trad-
ing volume in the relevant futures and spot markets was about 10 billion EUA
(DEHSt, 2019).
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2.1. A brief history of the EU ETS

The development of the EU ETS has been divided into different phases. The evo-
lution of the carbon price over the phases of the system is depicted in Figure 1.
The first phase lasted three years, from 2005 to 2007. This period was a pilot
phase to prepare for phase two, where the system had to run efficiently to help
the EU meet its Kyoto targets. In this initial phase, almost all allowances were
freely allocated at the national level. In absence of reliable emissions data, phase
one caps were set on the basis of estimates. In 2007, the carbon price fell signifi-
cantly as it became apparent that the total amount of allowances issued exceeded
total emissions significantly, and eventually converged to zero as phase one al-
lowances could not be transferred to phase two.

Figure 1: The carbon price in the EU

Notes: The EUA price, as measured by the price of the first EUA futures contract
over the three different phases of the EU ETS. The unit of trading is 1,000 EUA,
each being an entitlement to emit one tonne of carbon dioxide equivalent gas.

The second phase ran from 2008 until 2012, coinciding with the first commit-
ment period of the Kyoto Protocol where the countries in the EU ETS had con-
crete emission targets to meet. Because verified annual emissions data from the
pilot phase was now available, the cap on allowances was reduced in phase two,
based on actual emissions. The proportion of free allocation fell slightly, several
countries started to hold auctions, and businesses were allowed to buy a limited
amount of international credits. The commission also started to extend the sys-
tem to cover more gases and sectors; in 2012 the aviation sector was included,
even though this only applies for flights within the European Economic Area.
Despite these changes, EU carbon prices remained at moderate levels. This was
mainly because the 2008 economic crisis led to emissions reductions that were
greater than expected, which in turn led to a large surplus of allowances and
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credits weighing down prices.
The subsequent third phase began in 2013 and ran until the end of 2020.

Learning from the lessons of the previous phases, the system was changed sig-
nificantly in a number of key respects. In particular, the new system relies on a
single, EU-wide cap on emissions in place of the previous national caps, auction-
ing became the default method for allocating allowances instead of the previous
free allocation and harmonized allocation rules apply to the allowances still allo-
cated for free, and the system covers more sectors and gases, in particular nitrous
oxide and perfluorocarbons in addition to carbon dioxide. In 2014, the Commis-
sion postponed the auctioning of 900 million allowances to address the surplus of
emission allowances that has built up since the Great Recession (‘back-loading’).
Later, the Commission introduced a market stability reserve, which started oper-
ating in January 2019. This reserve has the aim to reduce the current surplus of
allowances and improve the system’s resilience to major shocks by adjusting the
supply of allowances to be auctioned. To this end, the back-loaded allowances
were transferred to the reserve rather than auctioned in the last years of phase
three and unallocated allowances were transferred to the reserve as well.

The current, fourth phase spans the period from 2021 to 2030. The legislative
framework for this trading period was revised in early 2018. In order to achieve
the EU’s 2030 emission reduction targets, the pace of annual reductions in to-
tal allowances is increased to 2.2 percent from the previous 1.74 percent and the
market stability reserve is reinforced to improve the EU ETS’s resilience to future
shocks. More recently, the Commission has proposed to further revise and pos-
sibly expand the scope of the EU ETS, with the aim to achieve a climate-neutral
EU by 2050 (see European Comission, 2020a).

2.2. Regulatory events

Given its pioneering role, the establishment of the European carbon market has
followed a learning-by-doing process. As illustrated above, since the start in 2005,
the system has been expanded considerably and its institutions and rules have
been continuously updated to address issues encountered in the market, improve
market efficiency, and reduce information asymmetry and market distortions.

Building on the event study literature, I collected a comprehensive list of reg-
ulatory events in the EU ETS. These regulatory update events can take the form
of a decision of the European Commission, a vote of the European Parliament or
a judgement of an European court, for instance. Of primary interest in this paper
are regulatory news regarding the supply of emission allowances. Thus, I focus on
news concerning the overall cap in the EU ETS, the free allocation of allowances,
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the auctioning of allowances as well as the use of international credits. Going
through the official journal of the European Union as well as the European Com-
mission Climate Action news archive, I could identify 113 such events during the
period between 2005 and 2018. The events as well as the sources are detailed in
Table A.1 in the Appendix. In the first two phases, the key events concern de-
cisions on the national allocation plans (NAP) of the individual member states,
e.g. the commission approving or rejecting allocation plans or a court ruling in
case of legal conflicts about the free allocation of allowances. With the move to
auctioning as the default way of allocating allowances, decisions on the timing
and quantities of emission allowances to be auctioned became the most impor-
tant regulatory news in phase three. After the pilot phase of the system, there
were also a number of important events related to the use and entitlement of in-
ternational credits. Finally, there are a few events on the setting of the overall cap
in the system.

The selection of events is a crucial factor in event studies. As the baseline, I
use all of the identified events, however, in Section 7, I study the sensitivity of the
results with respect to different event types in detail.

3. High-frequency identification

Since policies to fight climate change are long-term in nature, they are likely
less subject to endogeneity concerns than other fiscal polices (Romer and Romer,
2010). However, to properly address the concern that regulatory decisions in the
carbon market may take economic conditions into account, I implement a high-
frequency identification approach.

The institutional framework of the European carbon market provides an ideal
setting in this respect. First, as discussed above, there are frequent regulatory
updates in the market that can have significant effects on the price of emission
allowances. Second, there exist very liquid futures markets for trading emission
allowances. This motivates the idea to construct a series of carbon policy sur-
prises by looking at how carbon prices change around regulatory events in the
carbon market. By measuring the price change within a sufficiently tight window
around the regulatory news, it is possible to isolate the impact of the regulatory
decision. Reverse causality of the state of the economy can be plausibly ruled
out because it is known and priced prior to the decision and unlikely to change
within the tight window.

To fix ideas, the carbon policy surprise series is computed by measuring the
percentage change in the EUA futures price on the day of the regulatory event to
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the last trading day before the event:

CPSurpriset,d = Ft,d − Ft,d−1, (1)

where d and t indicate the day and the month of the event, respectively, and Ft,d

is the (log) settlement price of the EUA futures contract in month t on day d.
Assuming that risk premia do not change over the narrow event window, we can
interpret the resulting surprise as a revision in carbon price expectations caused
by the regulatory news. While futures prices are in general subject to risk premia,
there is evidence that these premia vary primarily at lower frequencies (Piazzesi
and Swanson, 2008; Hamilton, 2009; Nakamura and Steinsson, 2018). Thus, high-
frequency changes in EUA futures are likely to be valid measures of changes in
carbon price expectations since risk premia are differenced out.

EUA futures are traded at different maturities. I focus here on the front con-
tract, which is the most liquid and has the longest coverage. Importantly, near-
dated contracts also tend to be less sensitive to risk premia than contracts with
longer maturities (Baumeister and Kilian, 2017; Nakamura and Steinsson, 2018).
Thus, focusing on the front contract helps to further mitigate concerns about time-
varying risk premia. Interestingly, however, the results turn out to be quite robust
to using different contracts, indicating that risk premium effects are not driving
the empirical results.2

The daily surprises, CPSurpriset,d, are then aggregated to a monthly series,
CPSurpriset, by summing over the daily surprises in a given month. In months
without any regulatory events, the series takes zero value.

The resulting carbon policy surprise series is shown in Figure 2. We can see
that regulatory news can have a substantial impact on carbon prices, with some
news moving prices in excess of 20 percent. In April 2007, for instance, when the
Commission approved the NAPs of Austria and Hungary, carbon prices fell by
around 30 percent. Later in November, when the general court ruled on ex-post
adjustments of Germany’s NAP, the carbon price rose by over 30 percent, even
though prices were already at very low levels with the end of the pilot phase in
sight. Throughout the second phase, the regulatory surprises were a bit smaller,
especially at the beginning. Towards the end, there were some larger surprises,
for instance in November 2011 when a new regulation determining the volume
of allowances to be auctioned prior to 2013 came into force. Some very large
surprises occurred at the beginning of the third phase. On April 16, 2013 the Eu-

2See Figure B.33 in the Appendix for a comparison of the results based on different contracts.
While using different contracts produces comparable results, the first stage becomes weaker when
using contracts further out.
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Figure 2: The carbon policy surprise series

Notes: This figure shows the carbon policy surprise series, constructed by mea-
suring the percentage change of the EUA futures price around regulatory events
in the European carbon market.

ropean Parliament voted against the Commission’s back-loading proposal, which
led to a massive price fall of 43 percent. In September 2013, the Commission fi-
nalized the free allocation to the industrial sector in phase three, which led to a
price increase of 10 percent. And in March 2014, the Commission approved two
batches of international credit entitlement tables, sending prices down by almost
20 percent, just to name a few.

A crucial choice in high-frequency identification concerns the size of the event
window. There is a trade-off between capturing the entire response to the an-
nouncement and the threat of other news confounding the response, so-called
background noise (cf. Nakamura and Steinsson, 2018). Because the release times
of the regulatory news detailed in Table A.1 are mostly unavailable, it is practi-
cally infeasible to use an intraday window. However, to mitigate concerns about
background noise when using a daily window, I will also present results from a
heteroskedasticity-based approach that allows for background noise in the sur-
prise series.

Finally, to be able to interpret the resulting series as a carbon policy surprise
series, it is crucial that the events do not contain other information such as news
about the demand of emission allowances or economic activity in the EU more
generally. To address these concerns, I put great care in selecting regulatory up-
date events that were about very specific changes to the supply of emission al-
lowances in the European carbon market and do not include broader events such
as outcomes of Conference of the Parties (COP) meetings or other international
conferences. Furthermore, I show that excluding the events regarding the overall
cap, which are generally broader in scope, leads to very similar results. Likewise,
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excluding events that overlap with broader news about the carbon market does
not change the results materially (see Section 7 for more details). Lastly, the focus
on the supply of allowances is also confirmed by looking how some of the major
events are received in the press.3

Diagnostics. To further assess the validity of the carbon policy surprise series, I
perform a number of diagnostic checks. Desirable properties of a surprise series
are that it should not be autocorrelated, forecastable nor correlated with other
structural shocks (see Ramey, 2016, for a detailed discussion).

Inspecting the autocorrelation function, I find little evidence for serial corre-
lation. The p-value for the Q-statistic that all autocorrelations are zero is 0.92. I
also find no evidence that macroeconomic or financial variables have any power
in forecasting the surprise series. For all variables considered, the p-values for
the Granger causality test are far above conventional significance levels, with the
joint test having a p-value of 0.99. I also show that the surprise series is uncor-
related with other structural shock measures from the literature, including oil,
uncertainty, financial, fiscal and monetary policy shocks. The corresponding fig-
ures and tables can be found in Appendix B.1. Overall, this evidence supports
the validity of the carbon policy surprise series.

4. Econometric approach

As illustrated above, the carbon policy surprise series has many desirable prop-
erties. Nonetheless, it is only a partial measure of the shock of interest because
it may not capture all relevant instances of regulatory news in the carbon mar-
ket and could be measured with error (see Stock and Watson, 2018, for a detailed
discussion of this point).

Thus, I will not use it as a direct shock measure but as an instrument. Provided
that the surprise series is correlated with the carbon policy shock but uncorre-
lated with all other shocks, we can use it to estimate the dynamic causal effects
of a carbon policy shock. Because of the short sample at hand, I will rely on VAR
techniques for estimation. For identification, I use both an external instrument
(Stock, 2008; Stock and Watson, 2012; Mertens and Ravn, 2013) and an internal
instrument approach (Ramey, 2011; Plagborg-Møller and Wolf, 2019). In the ex-
ternal instrument approach, the surprise series is used as an instrument external
to the VAR model. While this approach tends to be very efficient, it will provide
biased estimates if the VAR is not invertible. In contrast, the internal instrument

3See e.g. https://www.bbc.com/news/science-environment-22167675.
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approach, which includes the instrument as the first variable in a recursive VAR,
is robust to problems of non-invertibility.

An alternative approach would be to estimate the dynamic causal effects us-
ing local projections (see Jordà, Schularick, and Taylor, 2015; Ramey and Zubairy,
2018). However, this approach is quite demanding given the short sample, as it
involves a distinct IV regression for each impulse horizon. Importantly, Plagborg-
Møller and Wolf (2019) show that the internal instrument VAR and the LP-IV rely
on the same invertibility-robust identifying restrictions and identify, in popula-
tion, the same relative impulse responses. In Appendix B.2, I compare the LP-IV
to the internal instrument VAR responses in the sample at hand. Reassuringly, the
responses turn out to be similar, even though the LP responses are more jagged
and much less precisely estimated.

4.1. Framework

Consider the standard VAR model

yt = b + B1yt−1 + · · ·+ Bpyt−p + ut, (2)

where p is the lag order, yt is a n× 1 vector of endogenous variables, ut is a n× 1
vector of reduced-form innovations with covariance matrix Var(ut) = Σ, b is a
n× 1 vector of constants, and B1, . . . , Bp are n× n coefficient matrices.

Under the assumption that the VAR is invertible, we can write the innovations
ut as linear combinations of the structural shocks εt:

ut = Sεt. (3)

By definition, the structural shocks are mutually uncorrelated, i.e. Var(εt) = Ω is
diagonal. From the invertibility assumption (3), we get the standard covariance
restrictions Σ = SΩS′.

We are interested in characterizing the causal impact of a single shock. With-
out loss of generality, let us denote the carbon policy shock as the first shock in
the VAR, ε1,t. Our aim is to identify the structural impact vector s1, which corre-
sponds to the first column of S.

External instrument approach. Identification using external instruments works
as follows. Suppose there is an external instrument available, zt. In the applica-
tion at hand, zt is the carbon policy surprise series. For zt to be a valid instrument,
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we need

E[ztε1,t] = α 6= 0 (4)

E[ztε2:n,t] = 0, (5)

where ε1,t is the carbon policy shock and ε2:n,t is a (n− 1)× 1 vector consisting
of the other structural shocks. Assumption (4) is the relevance requirement and
assumption (5) is the exogeneity condition. These assumptions, in combination
with the invertibility requirement (3), identify s1 up to sign and scale:

s1 ∝
E[ztut]

E[ztu1,t]
, (6)

provided that E[ztu1,t] 6= 0.4 To facilitate interpretation, we scale the structural
impact vector such that a unit positive value of ε1,t has a unit positive effect on
y1,t, i.e. s1,1 = 1. I implement the estimator with a 2SLS procedure and estimate
the coefficients above by regressing ût on û1,t using zt as the instrument. To con-
duct inference, I employ a residual-based moving block bootstrap, as proposed
by Jentsch and Lunsford (2019), and use Hall’s percentile interval to compute the
bands.

Internal instrument approach. To assess potential problems of non-invertibility,
I also employ an internal instrument approach. For identification, we have to as-
sume in addition to (4)-(5) that the instrument is orthogonal to leads and lags of
the structural shocks:

E[ztεt+j] = 0, for j 6= 0. (7)

In return, we can dispense of the invertibility assumption underlying equation
(3).

Under these assumptions, we can estimate the dynamic causal effects by
augmenting the VAR with the instrument ordered first, ȳt = (zt, y′t)

′, and
computing the impulse responses to the first orthogonalized innovation, s̄1 =

[chol(Σ̄)]·,1/[chol(Σ̄)]1,1. As Plagborg-Møller and Wolf (2019) show, this ap-
proach consistently estimates the relative impulse responses even if the instru-
ment is contaminated with measurement error or if the shock is non-invertible.
To conduct inference, I rely again on a residual-based moving block bootstrap.

4To be more precise, the VAR does not have to be fully invertible for identification with external
instruments. As Miranda-Agrippino and Ricco (2018) show, it suffices if the shock of interest is
invertible in combination with a limited lead-lag exogeneity condition.
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4.2. Empirical specification

Studying the macroeconomic impact of carbon policy requires modeling the Eu-
ropean economy and the carbon market jointly. The baseline specification con-
sists of eight variables. For the carbon block, I use the energy component of the
HICP as well as total GHG emissions.5 For the macroeconomic block, I include
the headline HICP, industrial production, the unemployment rate, the policy rate,
a stock market index, as well as the real effective exchange rate (REER).6 More in-
formation on the data and its sources can be found in Appendix A.2.

The sample spans the period from January 1999, when the euro was intro-
duced, to December 2018. Recall, that the carbon policy surprise series is only
available from 2005 when the carbon market was established. To deal with this
discrepancy, the missing values in the surprise series are censored to zero (see
Noh, 2019, for a theoretical justification of this approach). The motivation for
using a longer sample is to increase the precision of the estimates. However, re-
stricting the sample to 2005-2018 produces very similar results.7

Following Sims, Stock, and Watson (1990), I estimate the VARs in levels. Apart
from the unemployment and the policy rate, all variables enter in log-levels. As
controls I use six lags of all variables and in terms of deterministics only a con-
stant term is included. However, the results turn out the be robust with respect
to all of these choices.

5. The aggregate effects of carbon pricing

5.1. First stage

The main identifying assumption behind the external instrument approach is that
the instrument is correlated with the structural shock of interest but uncorrelated
with all other structural shocks. However, to be able to conduct standard infer-
ence, the instrument has to be sufficiently strong. To analyze whether this is the
case, I perform the weak instruments test by Montiel Olea and Pflueger (2013).

5Unfortunately, GHG emissions are only available at the annual frequency. Therefore, I con-
struct a monthly measure of emissions using the Chow-Lin temporal disaggregation method with
indicators from Quilis’s (2020) code suite. As the relevant monthly indicators, I include the HICP
energy and industrial production. The results are robust to extending the list of indicators used.

6A delicate choice concerns the monetary policy indicator. As the baseline, I use the 3-month
Euribor. Using the shadow rate or longer-term government bond yields produces similar results.

7Note that while the carbon market was only established in 2005, the EU agreed to the Kyoto
protocol in 1997 and started planning on how to meet its emission targets shortly after. The
directive for establishing the EU ETS came into force in October 2003 (Directive 2003/87/EC).
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The heteroskedasticity-robust F-statistic in the first stage of the external in-
strument VAR is 20.95. Assuming a worst-case bias of 20 percent with a size
of 5 percent, the corresponding critical value is 15.06. As the test statistic lies
clearly above the critical value, we conclude that the instrument appears to be
sufficiently strong to conduct standard inference.

5.2. The impact on emissions and the macroeconomy

Having established that the carbon policy surprise series is a strong instrument,
I present now the results from the baseline models. Figure 3 shows the impulse
responses to the identified carbon policy shock, normalized to increase the HICP
energy component by one percent on impact. Panel A depicts the responses from
the external instrument VAR and Panel B presents the responses from the internal
instrument model. I start by discussing the results from the external instrument
approach.

A restrictive carbon policy shock leads to a strong, immediate increase in the
energy component of the HICP and a significant and persistent fall in GHG emis-
sions. Thus, carbon pricing appears to be successful in reducing emissions. Turn-
ing to the macroeconomic variables, we can see that the persistent fall in emis-
sions does not come without cost. Consumer prices, as measured by the HICP, in-
crease, industrial production falls, and the unemployment rate rises significantly.
The labor market response turns out to be particularly pronounced, which is con-
sistent with reallocation frictions in the economy. However, the fall in activity
and industrial production in particular appears to be less persistent than the fall
in emissions. Stock prices fall significantly on impact but recover quite quickly
and even turn positive after two years. Finally, the real exchange rate depreciates
significantly.

The internal instrument responses turn out to be very similar to the external
instrument ones. The signs are all consistent and the responses also have simi-
lar shape. The main difference lies in the response of energy prices, which turns
out to be stronger and more persistent in the internal instrument VAR. Conse-
quently, the magnitudes for emissions and the economic variables also turn out
to be larger. It should be noted, however, that the responses are also less precisely
estimated. Overall these results suggest that the results are robust to relaxing the
assumption of invertibility.
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Panel A: External instrument approach Panel B: Internal instrument approach

Figure 3: Impulse responses to carbon policy shock

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP energy by 1 percent on impact. The solid line is the point
estimate and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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By way of summary, these findings clearly illustrate the policy trade-off be-
tween reducing emissions and thus the future costs of climate change and the
current economic costs associated with climate change mitigation policies. My
results also point to a strong pass-trough of carbon to energy prices, as can be
seen from the significant energy price response. From the first stage of the ex-
ternal instrument VAR, we get an elasticity of energy to carbon prices of about
0.05 percent. Figure 4 shows the elasticity obtained from the internal instrument
VAR. On impact, the elasticity is very close to the one obtained from the external
instrument VAR. Subsequently, the elasticity increases and reaches its peak after
about a year at close to 0.12 percent.8

Figure 4: Carbon and energy prices
Notes: Impulse responses of the carbon policy surprise and the HICP energy, normalized
to increase the surprise series by 1 percent on impact.

5.3. Historical importance

In the previous section, we have established that carbon policy shocks can have
significant effects on emissions, macroeconomic and financial variables. An
equally important question, however, is how much of the historical variation in
these variables can carbon policy account for? To answer this question, I per-
form a variance decomposition exercise. I do so both under the invertibility as-
sumption maintained in the external instrument VAR as well as under weaker
assumptions in the context of a general SVMA model, as proposed by Plagborg-
Møller and Wolf (2020). In particular, I perform a standard forecast error variance
decomposition in the SVAR and compute forecast variance ratios for the SVMA.

8Alternatively, we can also obtain the elasticity from a model augmented by the carbon price.
Recall, the baseline model does not include the carbon price as information on prices are only
available from 2005 when the carbon market was established. The results from a VAR on the
shorter sample, augmented by carbon prices point to similar elasticities, see Appendix B.2.
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The forecast variance ratio for variable i at horizon h is given by

FVRi,h = 1− Var(yi,t+h|{yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+h|{yτ}−∞<τ≤t)
, (8)

and measures the reduction in the econometrician’s forecast variance that would
arise from being told the entire path of future realizations of the shock of interest.
Plagborg-Møller and Wolf (2020) show that this statistic is interval-identified un-
der the assumption that a valid instrument is available. Under the assumption of
recoverablity, the ratio is point-identified and given by the upper bound.

The results are shown in Table 1. We can see that carbon policy shocks have
contributed meaningfully to historical variations in the variables of interest. Un-
der the invertibility assumption (Panel A), they account for about 40 percent of
the variations in energy prices and around 10 percent of the short-run variations
in emissions, which goes up to almost 40 percent at the 5 year horizon. Turning
to the macroeconomic variables, we can see that they explain a substantial part
of the HICP, especially at shorter horizons, and a significant fraction of the vari-
ations in industrial production and the unemployment rate at longer horizons.
The contributions to variations in the policy rate, stock prices and the REER are
lower but still non-negligible.

Table 1: Variance decomposition

h HICP energy Emissions HICP IP Policy rate Unemp. rate Stock prices REER

Panel A: Forecast variance decomposition (assuming invertibility)
6 0.42 0.12 0.49 0.02 0.00 0.07 0.13 0.00

[0.20, 0.83] [0.02, 0.41] [0.26, 0.87] [0.00, 0.08] [0.00, 0.01] [0.01, 0.56] [0.03, 0.65] [0.00, 0.01]
12 0.34 0.25 0.35 0.15 0.03 0.23 0.15 0.00

[0.14, 0.73] [0.07, 0.70] [0.14, 0.69] [0.04, 0.48] [0.01, 0.18] [0.06, 0.84] [0.04, 0.66] [0.00, 0.01]
24 0.36 0.32 0.25 0.27 0.13 0.37 0.11 0.09

[0.15, 0.70] [0.11, 0.74] [0.08, 0.56] [0.09, 0.65] [0.03, 0.53] [0.12, 0.90] [0.03, 0.48] [0.03, 0.27]
60 0.38 0.39 0.17 0.22 0.11 0.38 0.12 0.25

[0.18, 0.71] [0.16, 0.72] [0.05, 0.45] [0.08, 0.55] [0.03, 0.41] [0.13, 0.82] [0.03, 0.45] [0.08, 0.56]

Panel B: Forecast variance ratio (robust to non-invertibility)
6 0.04, 0.31 0.02, 0.18 0.07, 0.49 0.02, 0.14 0.00, 0.02 0.05, 0.35 0.00, 0.03 0.00, 0.00

[0.02, 0.54] [0.01, 0.41] [0.04, 0.74] [0.01, 0.34] [0.00, 0.05] [0.02, 0.59] [0.00, 0.08] [0.00, 0.02]
12 0.05, 0.33 0.03, 0.18 0.07, 0.50 0.02, 0.16 0.00, 0.02 0.05, 0.36 0.01, 0.04 0.00, 0.01

[0.03, 0.53] [0.01, 0.36] [0.04, 0.73] [0.01, 0.33] [0.00, 0.05] [0.03, 0.60] [0.00, 0.08] [0.00, 0.02]
24 0.05, 0.32 0.03, 0.19 0.07, 0.50 0.02, 0.18 0.01, 0.08 0.08, 0.55 0.01, 0.04 0.00, 0.01

[0.02, 0.52] [0.01, 0.36] [0.04, 0.72] [0.01, 0.35] [0.01, 0.19] [0.04, 0.78] [0.00, 0.09] [0.00, 0.02]
60 0.05, 0.32 0.03, 0.19 0.07, 0.50 0.02, 0.18 0.01, 0.08 0.09, 0.55 0.01, 0.04 0.00, 0.01

[0.02, 0.52] [0.01, 0.35] [0.04, 0.72] [0.01, 0.35] [0.00, 0.18] [0.04, 0.78] [0.00, 0.09] [0.00, 0.02]

Notes: The table shows variance decomposition at horizons ranging from 6 months to
5 years. Panel A includes the forecast error variance decomposition from the external
instrument VAR with the point estimates and the 90% confidence interval in brackets.
Panel B shows the identified set for the forecast variance ratio together with the 90%
confidence interval in brackets.

The forecast variance ratios in Panel B, which dispense from the assumption

19



of invertibility, paint a slightly more nuanced picture. In many cases, the point
estimates from the external instrument VAR lie within the estimated intervals.
The largest differences arise for the contributions to stock prices and the REER
which are estimated to be significantly lower when allowing for non-invertibility.
However, overall the two approaches produce comparable results.

The variance decomposition is informative about the average contribution of
carbon policy shocks over the sample of interest. However, it is potentially even
more interesting to see how carbon policy shocks have contributed in specific
historical episodes. To this end I perform a historical decomposition of HICP
energy inflation and GHG emissions growth based on the baseline VAR.

Panel A: HICP energy inflation

Panel B: GHG emissions growth

Figure 5: Historical decomposition of inflation and emissions growth

Notes: The figure shows the cumulative historical contribution of carbon policy shocks
over the estimation sample for a selection of variables against the actual evolution of
these variables. Panel A shocks the historical contribution to HICP energy inflation, Panel
B presents the contribution to GHG emissions growth. The solid line is the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

Figure 5 shows the results. We can see that carbon policy shocks have con-
tributed meaningfully to variations in energy prices and GHG emissions in many
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episodes. For energy price inflation, the contribution is particularly stark in the
third phase of the EU ETS. Importantly, we can also see that the significant fall
in emissions in the aftermath of the global financial crisis was not driven by car-
bon policy shocks. This result is reassuring that the high-frequency identification
strategy is working as the fall in emissions during the Great Recession was clearly
driven by lower demand and not supply-side factors.

5.4. Propagation channels

Having established that carbon policy shocks are an important driver of the econ-
omy, we now analyze in more detail the underlying transmission channels.

The role of energy prices. The above results are suggestive that energy prices
play a crucial role in the transmission of carbon policy shocks. Power producers
seem to pass through the emission costs to energy prices to a significant extent,
which is in line with previous empirical evidence on the sectoral effects of the
EU ETS (see e.g. Veith, Werner, and Zimmermann, 2009; Bushnell, Chong, and
Mansur, 2013). To further corroborate this channel, I perform an event study
using daily stock market data. More specifically, I map out the effects of carbon
policy surprises on carbon futures and stock prices by running the following set
of local projections:

qi,d+h − qi,d−1 = βi
0 + ψi

hCPSurprised + βi
h,1∆qi,d−1 + . . . + βi

h,p∆qi,d−p + ξi,d,h,

(9)

where qi,d+h is the (log) price of asset i after h days following the event d,
CPSurprised is the carbon policy surprise on event day. ψi

h measures the effect on
asset price i at horizon h. For inference, I follow the lag-augmentation approach
proposed by Montiel Olea and Plagborg-Møller (2020).

The results are shown in Figure 6. We can see that the carbon policy surprises
lead to a significant increase in carbon futures prices. The front contract increases
significantly for about three weeks. The effect on carbon prices turns out to be
quite persistent as the price of the second contract, which expires in December
the following year, also increases significantly. Turning to the stock market, we
can see that the market does not seem to move immediately following carbon
surprises. Only after about two weeks, the index starts to fall significantly. This
may reflect the fact that the EU ETS is a relatively new market and thus stock
market participants need some time to process the regulatory news. I have also

21



Figure 6: Carbon price and stock market indices
Notes: Responses of the carbon price and stock indices for the market and the utility
sector to a carbon policy surprise. The sample spans the period from April 22, 2005 to
December 31, 2018. As controls, I use 15 lags and the confidence bands are constructed
using heteroskedasticity-robust standard errors.

looked at the stock price response of different sectors. Among the 11 GICS sectors,
utilities is the only sector that displays a response that is significantly different
from the market response: after a couple of weeks, the price starts to increase
significantly.

These results suggest that the European utility sector is able to profit, at least
in the short run, from a more stringent carbon pricing regime. The utility sec-
tor is segmented due to the structure of existing transmission networks, which
substantially limits import penetration from countries without a carbon price.
Thus, utility companies are able to increase their product prices without losing
market share. At the same time, utilities can decarbonize at relatively low cost,
for instance by switching from coal to gas-fired electricity, and sell the excess
allowances at a profit. In contrast, for industrial emitters competing in interna-
tional product markets, passing through the cost of carbon could lead to signifi-
cant losses in market share, and decarbonizing tends to be more costly.

The transmission to the macroeconomy. To better understand how carbon pric-
ing and the associated increase in energy prices affect the economy, I study the
responses of a selection of financial and macroeconomic variables. To be able to
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estimate the dynamic causal effects on these variables, I extract the carbon pol-
icy shock from the monthly VAR as CPShockt = s′1Σ−1ut (for a derivation, see
Stock and Watson, 2018) and estimate the dynamic causal effects using simple
local projections:

yi,t+h = βi
0 + ψi

hCPShockt + βi
h,1yi,t−1 + . . . + βi

h,pyi,t−p + ξi,t,h, (10)

where ψi
h is the effect on variable i at horizon h. Importantly, we can also use this

approach to estimate the effects on variables that are only available at the quar-
terly or even annual frequency. In this case, we aggregate the shock CPShockt by
summing over the respective months before running the local projections. Using
the shock series directly in the local projections as opposed to the high-frequency
surprises increases the statistical power of these regressions, as the shock series
is consistently observed and spans the entire sample. Note, however, that this
comes at the cost of assuming invertibility.9 Throughout the paper, I normalize
the shock to increase the HICP energy component by one percent on impact.

Increases in energy prices can have significant effects on the macroeconomy
(see e.g. Hamilton, 2008; Edelstein and Kilian, 2009). They directly affect house-
holds and firms by reducing their disposable income. Given that energy de-
mand is considered to be quite inelastic, consumers and firms have less money to
spend and invest after paying their energy bills (and financing their emission al-
lowances). Note, however, that the magnitude of this discretionary income effect
is bounded by the energy share in expenditure. In addition, increased uncertainty
about future energy prices may lead to a further fall in spending and investment
because of precautionary motives.

Energy prices also affect the economy indirectly through the general equilib-
rium responses of prices and wages and hence of income and employment. After
a carbon policy shock increasing energy prices, the direct decrease in household
expenditure and firms’ investment will lead to lower output and exert downward
pressure on employment and wages. The additional fall in aggregate demand in-
duced by lower employment and wages lies at the core of the indirect effect.

To shed light on the different transmission channels at work, I study the re-
sponses of GDP and its components in Figure 7. We can see that the shock leads
to a significant fall in real GDP. The response looks quite similar to the response of
industrial production, both in terms of shape and magnitude. Looking at the dif-
ferent components, we can see that the shock leads to a significant and persistent

9Reassuringly, the comparison of the internal and external instrument models as well as the
robustness checks in Section 7 did not point to any problems of non-invertibilty.
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Figure 7: Effect on GDP and components

Notes: Impulse responses of real GDP, consumption, investment and net exports ex-
pressed as a share of GDP.

fall in consumption. Investment, as measured by gross fixed capital formation,
also falls significantly but the response turns out to be somewhat less persistent.
Finally, net exports, expressed as a share of GDP, increase significantly, in line
with the real depreciation of the euro. Inspecting the responses of exports and
imports separately reveals that both exports and imports fall but imports fall by
much more causing the significant increase in net exports.

Importantly, the magnitudes of the effects are by an order of magnitude larger
than what could be expected from the direct discretionary income effect. There-
fore, indirect effects likely play a crucial role in the transmission of the shock. In
Section 6, I will shed more light on the role of different transmission channels
using detailed household micro data.

The above results support the notion that higher energy prices are a dominant
transmission channel of carbon pricing. However, apart from the effects through
energy prices, carbon pricing may also affect the economy through other chan-
nels, for instance by affecting financing conditions or increased market uncer-
tainty. It turns out, however, that these variables respond to carbon policy shocks
only with a lag, similar to stock prices, and the responses do not turn out to be
very significant (see Figure B.4 in the Appendix). Thus, these alternative channels
are unlikely to play a dominant role in the transmission of carbon policy shocks.
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The effect on innovation. The above results illustrate that carbon pricing is suc-
cessful in reducing emissions but this comes at an economic cost, at least in the
short term. However, there could also be positive effects in the longer term, for
instance by driving innovation in low-carbon technologies. In fact, part of the
vision for the EU ETS is to promote investment in clean, low-carbon technologies
(European Comission, 2020a).

To analyze this channel in more detail, I study how the patenting activity in
climate change mitigation technologies is affected by the carbon policy shock.
The European Patent Office (EPO) has developed specific classification tags for
climate change mitigation technologies (CCMT).

Figure 8: Patenting in climate change mitigation technologies

Notes: Impulse responses of patenting activity in climate change mitigation technologies.
Depicted is the response of the number of CCMT patent filings, in absolute terms (left
panel) and as a share of all patents filed at the EPO (right panel).

The results are shown in Figure 8. We can see that the shock leads to a signif-
icant increase in low-carbon patenting, both in absolute terms and also relative
to the overall patenting activity. Thus, carbon pricing appears to be successful
in stimulating innovation in CCMT. These results are in line with the findings
of Calel and Dechezleprêtre (2016), who employ a quasi-experimental design ex-
ploiting inclusion criteria at the installations level to estimate the ETS system’s
causal impact on firms’ patenting, and also chime well with the previously doc-
umented stock market response, which rebounds and even turns positive in the
longer-run.

6. The heterogeneous effects of carbon pricing

So far we have studied the effects of carbon pricing at the aggregate level. In this
section, we look into the heterogeneous effects of carbon pricing with a particular
focus on households. The motivation for doing so is twofold. First, looking into
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potential heterogeneities in the consumption response can help to better under-
stand the transmission channels at work. Second, studying the heterogeneous
effects on households is interesting per se, as it sheds light on the distributive
impacts of carbon pricing policies.

There is reason to believe that there are important heterogeneities at play.
First, the direct, discretionary income effect discussed above crucially depends
on the energy expenditure share, which is highly heterogeneous across house-
holds. Second, the indirect effects will also be heterogeneous to the extent that
individual incomes respond differently to the change in aggregate expenditure,
for instance because of differences in their income composition or the sector of
employment.

6.1. Household survey data

To be able to analyze the heterogeneous effects of carbon policy shocks on house-
holds, we need detailed micro data on consumption expenditures and income at
a regular frequency for a sample spanning the last two decades. Unfortunately,
such data does not exist for most European countries let alone at the EU level.
Therefore, I focus here on the UK which is one of the few countries that has such
data as part of the Living Costs and Food Survey (LCFS).10

The LCFS is the most significant survey on household spending in the UK and
provides high-quality, detailed information on expenditure, income, and house-
hold characteristics. The survey is fielded in annual waves with interviews being
conducted throughout the year and across the whole of the UK. I compile a re-
peated cross-section based on the last 20 waves, spanning the period 1999 to 2018.
Each wave contains around 6,000 households, generating over 120,000 observa-
tions in total. To compute measures of income and expenditure, I first express the
variables in per capita terms by dividing by the number of household members.
In a next step, I deflate the variables by the (harmonized) consumer price index
to express them in real terms. For more information, see Appendix A.3.

Ideally, we would like to observe how individual consumption expenditure
and income evolve over time. Unfortunately, the LCFS being a repeated cross-
section has no such panel dimension. To construct a pseudo-panel, it is common
to use a grouping estimator in the spirit of Browning, Deaton, and Irish (1985).

A natural dimension for grouping households is their income. However, as

10The UK was part of the EU ETS until the end of 2020. Over the sample of interest, the ag-
gregate effects in the UK are comparable to the ones documented at the EU level, see Figure B.5
in the Appendix. To further mitigate concerns about external validity, I show that the results for
other European countries such as Denmark and Spain are very similar, see Figure B.24.
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the income may endogenously respond to the shock of interest, we cannot use the
current household income as the grouping variable. Luckily, the LCFS does not
only collect information about current household income but also about normal
household income, which should by construction not be affected by temporary
shocks.11 Thus, I use the normal disposable household income to group house-
holds into three pseudo-cohorts: low-income, middle-income, and high-income
households.12 Following Cloyne and Surico (2017), I assign each household to a
quarter based on the date of the interview, and create the group status as the bot-
tom 25 percent of the normal disposable income distribution for low-income, the
middle 50 percent for middle-income, and the top 25 percent for high-income in
every quarter of a given year. The individual variables are then aggregated using
survey weights to ensure representativeness of the British population.

Table 2 presents some descriptive statistics, unconditional for all households
as well as by conditioning on the three income groups. We can see that weekly
total expenditure (excl. housing) and housing expenditure are both increasing in
income. While low-income households spend a large part of their budget on non-
durables, richer households spend more on services and durables. Importantly,
poorer households spend a significantly higher share of their expenditure on en-
ergy, as the (average) energy share stands at close to 9.5 percent for low-income,
just above 7 percent for middle income, and around 5 percent for high-income
households. Thus, to the extent that energy demand is inelastic, poorer house-
holds are more exposed to increases in energy prices.

The different income groups turn out to be comparable in terms of their age.
This can be seen from the median age which is around 50 for all groups and also
from Figure B.7 in the Appendix, which shows that the empirical age distribution
is similar across all three income groups. As expected, high-income households
tend to be more educated, as can be seen by the larger share of households that
have completed post-compulsory education. Finally, higher-income households
tend to be homeowners, either by mortgage or outright, while among the low-
income there is a large share of social renters. Importantly, all these variables
are rather slow-moving and unlikely to confound potential heterogenities in the
household responses to carbon policy shocks, which exploit variation at a much

11While it may still be affected by permanent shocks, this should not be too much of a concern
for our grouping strategy as the normal income variable is very slow moving. I have also verified
that normal income does not respond significantly to the carbon policy shock. In contrast, current
income falls significantly and persistently, as shown in Figure B.9 in the Appendix.

12In Appendix B.2, I alternatively use a selection of other proxies for the income level, including
earnings, expenditure, and an estimate for permanent income obtained from a Mincerian-type
regression. The results turn out to be robust to using these alternative measures of income for
grouping.
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higher frequency (see Figure B.8 in the Appendix).

Table 2: Descriptive statistics on households in the LCFS

Overall By income group

Low-income Middle-income High-income

Income and expenditure
Normal disposable income 236.3 112.6 236.3 466.6
Total expenditure (excl. housing) 157.3 91.6 155.4 269.6

Energy share 7.2 9.4 7.1 5.1
Non-durables (excl. energy) share 49.6 55.0 49.7 44.1
Services share 31.9 26.7 31.9 37.2
Durables share 11.3 8.9 11.3 13.6

Housing 32.0 18.8 31.1 58.0

Household characteristics
Age 51 46 54 49
Education (share with post-comp.) 33.5 25.0 29.1 51.0
Housing tenure

Social renters 20.9 47.1 17.4 3.7
Mortgagors 42.6 25.5 41.6 60.4
Outright owners 36.6 27.4 41.0 36.0

Notes: The table shows some descriptive statistics on weekly per capita income and ex-
penditure (in 2015 pounds), the breakdown of expenditure into energy, non-durables
excl. energy, services and durables (as a share of total expenditure) as well as a selection
of household characteristics, both over all households and by income group. For vari-
ables in levels such as income, expenditure and age the median is shown while the shares
are computed based on the mean of the corresponding variable. Note that the expendi-
ture shares are expressed as a share of total expenditure excl. housing and thus services
do not include housing either, and semi-durables are subsumed under the non-durable
category. Age corresponds to the age of the household reference person and education is
proxied by whether a member of a household has completed a post-compulsory educa-
tion.

6.2. Median effect and inequality responses

We are now in a position to study how households’ expenditure and income
respond to carbon policy shocks. As a validating exercise, we first look at the
median household expenditure response and compare it to the consumption re-
sponse based on national statistics.13 As can be seen from the left panel of Figure

13In the LCFS, households interviewed at time t are typically asked to report expenditure over
the previous three months (with the exception of non-durable consumption which refers to the
previous two weeks). To eliminate some of the noise inherent in survey data, I smooth the ex-
penditure and income measures with a backward-looking (current and previous three quarters)
moving average, as in Cloyne, Ferreira, and Surico (2020). Similar results are obtained when us-
ing the raw series instead (even though the responses become more jagged and imprecise) or by
using smooth local projections as proposed by Barnichon and Brownlees (2019), see Figure B.13
in the Appendix.
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9, the median response aligns very well with the response from national statistics,
both in terms of shape and magnitude (see Figure 7).

Figure 9: Response of household consumption expenditure

Notes: Impulse responses of total expenditure excluding housing. The left panel shows
the median response and the right panel shows the response of consumption inequality,
as measured by the Gini coefficient.

To investigate into potential heterogeneities, we also look at the Gini index for
household expenditure. The response is shown in the right panel of Figure 9. We
can see that the shock leads to a significant increase in inequality, especially at
longer horizons. While this result is interesting in itself, it does not tell us which
groups are more hardly affected than others.

6.3. Heterogeneity by household income

Having analyzed the aggregate effects as well as the effects on inequality, we
now look into the underlying heterogeneity by income group. Figure 10 shows
the responses of household expenditure and current income for the three income
groups we consider.

We can see that there is pervasive heterogeneity in the expenditure response
between income groups. Low-income households reduce their expenditure sig-
nificantly and persistently. In contrast, the expenditure response of higher-
income households is rather short-lived and only barely statistically significant.
Interestingly, the income responses turn out to be somewhat more homogeneous.
While low-income households experience the largest drop in income, higher-
income households also experience a non-negligible income decline, even though
it turns out to be a bit less persistent.14 The finding that expenditure of high-
income households does nevertheless not respond significantly points to the fact

14While the income decline of the low- and middle-income households appears to be driven by
a fall in earnings, high-income households also experience a fall in their financial income, which
then however reverses and turns significantly positive – in line with the stock market response,
see Figure B.14 in the Appendix.
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Figure 10: Household expenditure and income responses by income groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for low-income (bottom 25 percent), middle-income (middle
50 percent) and high-income households (top 25 percent). The households are grouped
by total normal disposable income and the responses are computed based on the median
of the respective group.

30



that these households have more savings and liquid assets to smooth the tempo-
rary fall in their income. In contrast, the low-income households are hit twofold.
First, they spend a larger share of their budget on energy and are thus, as energy
expenditure is highly inelastic, adversely affected by the higher energy bill.15 Sec-
ond, they experience the largest fall in income, as they are more likely to work in
sectors that are most hardly affected by the carbon policy shock.16 At the same
time, they are more likely to be financially constrained and less able to cope with
the adverse effects on their income and budget.

While the expenditure responses are, as expected, more pronounced the
higher the energy share, the magnitudes are much larger than can be accounted
for by the discretionary income effect alone. Assuming that energy demand is
completely inelastic, the direct effect is bounded by the energy share of the re-
spective group. However, the peak response of low-income households is around
one percent – close to ten times the energy share of that group. This suggests that
indirect, general equilibrium effects via income account for a large part of the
overall effect on household expenditure.

To better understand the different channels at play, we decompose total ex-
penditure into its non-durable, services and durable components. The responses
are shown in Figures B.18-B.19 in the Appendix. We can see that all expenditure
groups fall significantly. However, while the fall in services and durable expendi-
ture is more temporary, the response of non-durable expenditure turns out to be
very persistent. There is also substantial heterogeneity by income group, in par-
ticular for non-durable goods and services. While low-income households expe-
rience a significant and persistent fall, the responses of higher income households
are much less pronounced and non-durable goods expenditure even tends to in-
crease at shorter horizons. For durables, low-income households also show the
strongest response, however, overall the responses tend to be a bit more homo-
geneous across income groups. This result supports the notion that there may be
other direct channels at play such as the postponement of durable goods pur-
chases because of increased uncertainty or a shift in expenditure on durables
that are complementary in use with energy – channels that tend to be more pro-

15Energy expenditure does indeed turn out to be pretty inelastic. Figures B.15-B.16 in the Ap-
pendix show the response of energy expenditure as well as the share of energy in total expendi-
ture. The response is close to zero in the short run and then tends to increase slightly even though
the response is not statistically significant. Higher-income households display a somewhat higher
price elasticity, especially in the short run.

16Unfortunately, the LCFS does not include any information on the job sector. However, data
from the UK Labour Force Survey (LFS) corroborates this explanation. Lower-income households
tend to work disproportionally in sectors such as construction, wholesale and retail trade, hospi-
tality, and entertainment and recreation. These are also the sectors that display the strongest fall
in the median net pay after a carbon policy shock, see Table B.3 and Figure B.17 in the Appendix.
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nounced for high-income households given their higher share of durables in total
expenditure (see also Edelstein and Kilian, 2009). These channels may help ex-
plain the short-lived fall in total expenditure of high-income households, which
is absent from non-durable expenditure. However, given the relatively low share
of durables in total expenditure, these other direct channels do likely not play a
dominant role in terms of the overall effect on expenditure.

At this stage, it is worth discussing a potential concern about grouping house-
holds concerning selection. The assignments into the income groups are not
random and some other characteristics may, potentially, be responsible for the
heterogeneous responses I document. To mitigate these concerns, I group the
households by a selection of other grouping variables, including age, education
and housing tenure. The results are shown in Figures B.20-B.22 in the Appendix.
While there is not much heterogeneity by age, less educated households tend
to respond more than better educated ones and social renters tend to respond
more than homeowners. However, none of the alternative grouping variables
can account for the patterns uncovered for income, suggesting that we are not
spuriously picking up differences in other household characteristics.

6.4. The role of the energy share

A key difference between high- and low-income households concerns their en-
ergy share. However, as we have argued, heterogeneity in the energy share alone
cannot account for the heterogeneous expenditure responses. To make the role
of the energy share in the transmission of carbon pricing more explicit, I alter-
natively group households by their energy share, i.e. households with a high
energy share, households with a normal energy share, and households with a
low energy share. Descriptive statistics on these groups can be found in Table B.4
in the Appendix. Note that the heterogeneity in the energy share is now much
starker: close to 16 percent in the high-share group against only around 2 percent
for low-share households. We can also see that the high-share group tends to be
poorer as reflected by lower levels of income and expenditure.

Figure 11 shows the corresponding expenditure and income responses. We
can see that the magnitude of the expenditure response is clearly increasing in
the energy share: while the expenditure of households with a high energy share
falls significantly and persistently, households with a low energy share barely al-
ter their expenditure. However, there is also again significant heterogeneity in
the income responses, with the high energy share households experiencing the
strongest fall in their income. An explanation for this finding is that high en-
ergy share households also tend to be poorer and thus have more cyclical income
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Figure 11: Household expenditure and income responses by energy share

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for households with a high energy share (top 25 percent), a
typical energy share (middle 50 percent) and low energy share (bottom 25 percent). The
energy share is measured as expenditure on fuel, light and power, as a share of total ex-
penditure excluding housing and the responses are computed based on the median of
the respective group.
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for reasons dicussed above. This makes it difficult to disentangle the direct ef-
fects that operate through the energy share from indirect effects. Importantly, the
magnitudes of the expenditure responses are again much larger than what can be
accounted for by the discretionary income effect alone.

To better understand the roles of the energy share and the income level, I
group households along these two dimensions. In particular, I look at the re-
sponses of low- and higher-income households conditioning on the most exposed
high-energy share households and households with a lower energy share. The re-
sponses are shown in Figure B.23 in the Appendix. A few observations emerge
from this exercise. First, we can see that low-income households with a high
energy share display a much stronger fall in their expenditure than households
with a lower energy share in the same income group. Not only are these house-
holds more exposed to carbon pricing because of their higher energy share but
they also experience a sharper decline in their incomes. The role of these indirect
effects via the decrease in household income can also be nicely seen by compar-
ing the responses of low-income and higher-income households conditional on
a high energy share. Despite having a comparable energy share, higher-income
households lower their expenditure by much less, consistent with the fact that the
experience a smaller fall in their incomes. Interestingly, there is less heterogeneity
in the expenditure response across income groups conditional on a lower energy
share, consistent with the fact that the income responses in this case are also more
similar. Overall, these results further illustrate the importance of indirect effects
working through wages and labor income.

Discussion. We have documented substantial heterogeneity in the response of
households to carbon policy shocks. The findings illustrate that the economic
costs of carbon pricing are not borne equally across society. It is the poor and
middle income households that are the most hardly affected, having to reduce
their expenditures the most, and who are driving the aggregate response. In fact,
the overall pound change in expenditure over the five-year period following a
carbon policy shock is −£316.4 for low-income, −£175.9 for middle-income, and
−£155.6 for high-income households.17 These heterogeneities are striking against
the backdrop that low-income households have much lower levels of expenditure
to start with, see Table 2. Put differently, low-income households account for
about 40 percent of the aggregate effect of carbon pricing on consumption, despite
the fact that they only represent 25 percent of the population.

17To compute the overall pound change over the impulse horizon, I compute the present dis-
counted value of the impulse response, using the average real interest rate over the sample of in-
terest, and multiplying this value by the median quarterly expenditure for each group.
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The results also highlight the importance of energy prices in the transmission
of carbon policy shocks through direct and indirect effects that disproportionally
affect lower-income households, who also tend to be the households that are fi-
nancially constrained and have a higher marginal propensity to consume. My
findings suggest that fiscal policies targeted to the households that are most af-
fected by carbon pricing can reduce the economic costs of climate change mitiga-
tion policies and ameliorate the trade-off between reducing emissions and main-
taining economic activity. To the extent that energy demand is inelastic, which
turns out to be particularly the case for low-income households, this should not
compromise the reductions in emissions.

Such a policy could be implemented for instance by recycling some of the rev-
enues generated from auctioning allowances. While in the first two phases of the
ETS, the majority of allowances were freely allocated, auctioning became the de-
fault method in the third phase, generating substantial auction revenues. For the
period from 2012 to June 2020, the total revenues generated by the member states
of the EU ETS exceeded 57 billion euros (European Comission, 2020b). In the ETS
directive from 2008, the member states agreed that at least half of the auction
revenues should be used for climate and energy related purposes, both domes-
tic and internationally. Indeed, over the period 2013-2019, close to 80 percent of
auction revenues were spent for such purposes, with many countries using all of
the revenues for such climate actions. While this should help to further propel
emission reductions and increase energy efficiency, my results indicate that by
redistributing part of the auction revenues to the most hardly affected groups in
society, it is possible to offset the distributional effects and reduce the economic
costs of climate change mitigation policies – increasing the public support of such
policies.

6.5. Effect on attitude towards climate policy

As we have seen, carbon pricing leads to higher energy prices, a consequence
that tends to be highly unpopular (see e.g. Knittel, 2014). Public opposition can
be an impediment for climate policy as the yellow vest movement in France,
which started as a demonstration against higher fuel taxes, has shown for in-
stance. Thus, it is interesting to see how carbon pricing affects the public attitude
towards climate policy. To analyze this question, I use data from the British social
attitudes (BSA) survey. The BSA is an annual survey that asks about the attitudes
of the British population towards a wide selection of topics, ranging from wel-
fare to genomic science. The BSA is used to inform the development of public
policy and is an important barometer of public attitudes. Some of the questions
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in the BSA are repeated over time ant thus, it is possible to analyze how certain
attitudes have changed over time.

Figure 12: Effect on attitude towards climate policy by income group

Notes: Impulse responses of public attitude towards climate policy by income group.
The public attitude towards climate policy is proxied by the share of households in the
British social attitudes survey that agree to the following statement: “For the sake of the
environment, car users should pay higher taxes”. Low-income correspond to the bottom
25 percent, middle-income to the middle 50 percent, and high-income households to the
top 25 percent of the income distribution.

To proxy the public attitude towards climate policy, I rely on a question from
the transportation module of the survey, which asks about the attitude towards
fuel taxes. In particular, the question asks whether the respondent agrees with
the following statement: “For the sake of the environment, car users should pay
higher taxes”. The BSA also includes information about the income of the respon-
dent, thus it is possible to analyze how the attitudes of different income groups
have evolved. Figure B.25 in the Appendix shows how the attitude towards fuel
taxes has changed among low-, middle- and high-income households. The sup-
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port tends to be higher among richer households and has increased significantly
in the last decade. In contrast, the support is lower among poorer households
and has stayed at rather low levels, even in recent years.

Figure 12 shows how the attitude towards fuel taxes among income groups
changes after a restrictive carbon policy shock. We can see that carbon pricing
leads to a fall in the approval rate of environmentally-motivated tax policies. The
effect is particularly significant for lower income households, which are also the
households that are most hardly affected by carbon pricing in economic terms. In
contrast, the response of the high-income group is much less precisely estimated
and even turns positive in the longer run.

These results suggest that compensating households that are most exposed to
carbon pricing may indeed help to increase the public support of climate change
mitigation policies. This is in line with recent evidence by Anderson, Marinescu,
and Shor (2019), who show that resistance to higher energy prices played an im-
portant role in two failed carbon tax initiatives in Washington State, US.

7. Sensitivity analysis

In this section, I perform a number of robustness checks on the identification
strategy and the model specification used to isolate the carbon policy shock. The
main results of these checks are summarized below. More information as well as
the corresponding figures and tables can be found in Appendix B.3.18

Selection of relevant events. A crucial choice in the high-frequency event study
approach concerns the selection of relevant events. For the exclusion restriction
to be satisfied, the events should only release information about the supply of
emission allowances and not about other factors such as economic activity. To
this end, I have not included broader events such as the Paris agreement or other
COP meetings but limited the analysis to specific events in the European carbon
market. The most obvious candidates are events about the free allocation and
auctioning of emission allowances. I have also included events on the overall cap
in the carbon market as well as events about international credits.

Because the events concerning the cap tend to be broader in nature, I exclude
these events as a robustness check. As shown in Figure B.26, the results turn out
to be robust. I have also tried to exclude the events about international credits,
which affect the supply of allowances only indirectly, by changing the number of

18I focus here on the external instrument VAR for the robustness checks. The results for the
internal instrument approach are available upon request.
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credits from international projects that can be exchanged for allowances. From
Figure B.27, we can see that the results turn out to be very similar. As an addi-
tional check, I only include the core events on free allocation and auctions, see
Figure B.28. The results are again very similar to the baseline case. By going
through all events in detail, I could also identify some events that are poten-
tially confounded, either because some other event happened on the same day
(more on this below) or because they could potentially also contain some infor-
mation about demand in the carbon market. Reassuringly, however, excluding
these events does not change the results materially (see Figure B.29). Finally, I
have verified that the identification strategy does not hinge upon extreme events.
Excluding the largest surprises (price change in excess of 30 percent) does not
change the results materially, even though the responses are slightly less precisely
estimated (see Figure B.30).

Confounding news. Another important choice in high-frequency identification
concerns the size of the event window. As discussed in Section 3, there is a trade-
off between capturing the entire response to the policy news and background
noise, i.e. the threat of other news confounding the response. Common window
choices range from 30-minutes to multiple days. Unfortunately, the exact release
times are unavailable for the majority of the policy events considered, making it
infeasible to use an intraday window. Therefore, I use a daily window to compute
the policy surprises.

To mitigate concerns about other news confounding the carbon policy sur-
prise series, I employ an alternative identification strategy exploiting the het-
eroskedasticity in the data (Rigobon, 2003; Nakamura and Steinsson, 2018). The
idea is to clean out the background noise in the surprise series by compar-
ing movements in carbon prices during policy event windows to other equally
long and otherwise similar event windows that do not contain a regulatory up-
date event. In particular, I use the changes in carbon futures prices on the
same weekday and week in the months prior a given regulatory event. An
overview of announcement and control dates can be found in Table B.5 in the
Appendix. More details on the underlying assumptions and how to implement
the heteroskedasticity-based approach are provided in Appendix C.

Figure B.31 shows the carbon policy surprise series together with the control
series. We can see that the policy surprise series is over six times more volatile
than the control series. It is exactly this shift in variance that can be exploited for
identification, assuming that the shift is driven by the carbon policy shock. Fig-
ure B.32 shows the impulse responses estimated from this alternative approach.
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The results turn out to be consistent with the baseline results from the external in-
strument approach, even though the responses turn out to be a bit less precisely
estimated. These results suggest that the bias induced by background noise is
likely negligible in the present application.

Sample and specification choices. An important robustness check concerns the
estimation sample. Recall, that the baseline sample goes back to 1999, which is
longer than the instrument sample which only starts in 2005. The main moti-
vation for using the longer sample is to increase the precision of the estimates.
As a robustness check, I restrict the overall sample to the 2005-2018 period. The
responses are shown in Figure B.34. Overall, the results are very similar to the
ones using the longer sample. However, some responses turn out to be a bit less
stable, which could point to difficulties in estimating the model dynamics on the
relatively short sample.

Another interesting check concerns the sample for the carbon policy surprises.
Recall that the EU ETS was established in phases and the first phase was a pilot
phase. As a robustness test, I exclude the regulatory news from this first phase.
From Figure B.35, we can see that the point estimates turn out to be quite similar.
However, as probably had to be expected the responses are much less imprecisely
estimated. This illustrates nicely how the identification strategy leverages the fact
that establishing the carbon market was a learning-by-doing process where the
rules have been continuously updated.

I also perform a number of sensitivity checks on the specification of the model.
The baseline VAR includes 8 variables, which is relatively large, especially against
the backdrop of the short sample. As a robustness test, I thus present the results
from a 6 variable model, excluding stock prices and the real exchange rate. As
can be seen from Figure B.36, the results from this smaller model turn out to be
very similar to the larger baseline model. The results also turn out to be robust
to the lag order (Figures B.38-B.39 show the responses using 3 or 9 lags) and
the choice of deterministics (Figure B.37 includes a linear trend). Finally, I also
present results from a Bayesian VAR model with 12 lags and using shrinkage
priors.19 The results turn out to be again very similar to the baseline VAR (see
Figure B.40).

19In particular, I use a Minnesota prior with a tightness of 0.1 and a decay of 1.
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8. Conclusion

Fighting climate change is one of the greatest challenges of our time. While it has
proved to be very difficult to make progress at the global level, several national
carbon pricing policies have been put in place. However, still little is known
about the effects of these policies on emissions and the economy. This paper
provides new evidence on the effects of carbon pricing, exploiting institutional
features of the European carbon market and high-frequency data. I show that
tightening the carbon pricing regime leads to a persistent fall in emissions and
a significant increase in energy prices. The fall in emissions comes at the cost of
temporarily lower economic activity. The results point to a strong transmission
mechanism working through energy prices leading to lower consumption and in-
vestment. Importantly, these economic costs are not borne equally across society.
Lower-income households lower their consumption significantly and are driving
the aggregate response while richer households are hardly affected. Thus, re-
distributing some of the auction revenues to the most affected groups in society
may be an effective way to reduce the economic costs of carbon pricing while at
the same time increasing public support of climate policy.
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A. Data

A.1. Details on regulatory events

In this Appendix, I provide a detailed list of all the regulatory events used in the
paper. To collect the events, I relied on a number of different sources. After 2010,
most of the relevant news can be found on the European Commission Climate Ac-
tion news archive: https://ec.europa.eu/clima/news/news_archives_en. Be-
fore that, I used information from the official journal of the European Union:
https://eur-lex.europa.eu/homepage.html. Finally, the decisions on the NAPs
in the first two phases are taken from Mansanet-Bataller and Pardo (2009). Table
A.1 lists all the events.

Table A.1: Regulatory update events

Date Event description Type

1 25/05/2005 Italian phase I NAP approved Free alloc.
2 20/06/2005 Greek phase I NAP approved Free alloc.
3 23/11/2005 Court judgement on proposed amendment to NAP, UK vs Commission Free alloc.
4 22/12/2005 Further guidance on allocation plans for the 2008–2012 trading period Cap
5 22/02/2006 Final UK Phase I NAP approved Free alloc.
6 23/10/2006 Stavros Dimas delivered the signal to tighten the cap of phase II Cap
7 13/11/2006 Decision avoiding double counting of emission reductions for projects under the Kyoto Protocol Intl. credits
8 29/11/2006 Commission decision on the NAP of several member states Free alloc.
9 14/12/2006 Decision determining the respective emission levels of the community and each member state Cap
10 16/01/2007 Phase II NAPs of Belgium and the Netherlands approved Free alloc.
11 05/02/2007 Slovenia phase II NAP approved Free alloc.
12 26/02/2007 Spain phase II NAP approved Free alloc.
13 26/03/2007 Phase II NAPs of Poland, France and Czech Republic approved Free alloc.
14 02/04/2007 Austrian phase II NAP approved Free alloc.
15 16/04/2007 Hungarian phase II NAP approved Free alloc.
16 30/04/2007 Court order on German NAP, EnBW AG vs Commission Free alloc.
17 04/05/2007 Estonian phase II NAP approved Free alloc.
18 15/05/2007 Italian phase II NAP approved Free alloc.
19 07/11/2007 Court judgement on German NAP, Germany vs Commission Free alloc.
20 08/04/2008 Court order on German NAP, Saint-Gobain Glass GmbH vs Commission Free alloc.
21 23/04/2009 Directive 2009/29/EC amending Directive 2003/87/EC to improve and extend the EU ETS Cap
22 23/09/2009 Court judgement on NAP, Poland vs Commission Free alloc.
23 24/12/2009 Decision determining sectors and subsectors which have a significant risk of carbon leakage Free alloc.
24 19/04/2010 Commission accepts Polish NAP for 2008-2012 Free alloc.
25 09/07/2010 Commission takes first step toward determining cap on emission allowances for 2013 Cap
26 14/07/2010 Member states back Commission proposed rules for auctioning of allowances Auction
27 22/10/2010 Cap on emission allowances for 2013 adopted Cap
28 12/11/2010 Commission formally adopted the regulation on auctioning Auction
29 25/11/2010 Commission presents a proposal to restrict the use of credits from industrial gas projects Intl. credits
30 15/12/2010 Climate Change Committee supported the proposal on how to allocate emissions rights Free alloc.
31 21/01/2011 Member states voted to support the ban on the use of certain industrial gas credits Intl. credits
32 15/03/2011 Commission proposed that 120 million allowances to be auctioned in 2012 Auction
33 22/03/2011 Court judgement on NAP, Latvia vs Commission Free alloc.
34 29/03/2011 Decision on transitional free allocation of allowances to the power sector Free alloc.
35 27/04/2011 Decision 2011/278/EU on transitional Union-wide rules for harmonized free allocation of allowances Free alloc.
36 29/04/2011 Commission rejects Estonia’s revised NAP for 2008-2012 Free alloc.
37 07/06/2011 Commission adopts ban on the use of industrial gas credits Intl. credits
38 13/07/2011 Member states agree to auction 120 million phase III allowances in 2012 Auction
39 26/09/2011 Commission sets the rules for allocation of free emissions allowances to airlines Free alloc.
40 14/11/2011 Clarification on the use of international credits in the third trading phase Intl. credits
41 23/11/2011 Regulation 1210/2011 determining the volume of allowances to be auctioned prior to 2013 Auction
42 25/11/2011 Update on preparatory steps for auctioning of phase 3 allowances Auction
43 05/12/2011 Commission decision on revised Estonian NAP for 2008-2012 Free alloc.
44 29/03/2012 Court judgments on NAPs for Estonia and Poland Free alloc.
45 02/05/2012 Commission publishes guidelines for review of GHG inventories in view of setting national limits for 2013-20 Cap
46 23/05/2012 Commission clears temporary free allowances for power plants in Cyprus, Estonia and Lithuania Free alloc.
47 05/06/2012 Commission publishes guidelines on State aid measures in the context of the post-2012 trading scheme Free alloc.
48 06/07/2012 Commission clears temporary free allowances for power plants in Bulgaria, Czech Republic and Romania Free alloc.
49 13/07/2012 Commission rules on temporary free allowances for power plants in Poland Free alloc.
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Date Event description Type

50 25/07/2012 Commission proposed to backload certain allowances from 2013-2015 to the end of phase III Auction
51 12/11/2012 Commission submits amendment to back-load 900 million allowances to the years 2019-2020 Auction
52 14/11/2012 Commission presents options to reform the ETS to address growing supply-demand imbalance Cap
53 16/11/2012 Auctions for 2012 aviation allowances put on hold Auction
54 30/11/2012 Commission rules on temporary free allowances for power plants in Hungary Free alloc.
55 25/01/2013 Update on free allocation of allowances in 2013 Free alloc.
56 28/02/2013 Free allocation of 2013 aviation allowances postponed Free alloc.
57 25/03/2013 Auctions of aviation allowances not to resume before June Auction
58 16/04/2013 The European Parliament voted against the Commission’s back-loading proposal Auction
59 05/06/2013 Commission submits proposal for international credit entitlements for 2013 to 2020 Intl. credits
60 03/07/2013 The European Parliament voted for the carbon market back-loading proposal Auction
61 10/07/2013 Member states approve addition of sectors to the carbon leakage list for 2014 Free alloc.
62 30/07/2013 Update on industrial free allocation for phase III Free alloc.
63 05/09/2013 Commission finalized decision on industrial free allocation for phase three Free alloc.
64 26/09/2013 Update on number of aviation allowances to be auctioned in 2012 Auction
65 08/11/2013 Member states endorsed negotiations on the back-loading proposal Auction
66 21/11/2013 Commission submitted non-paper on back-loading to the EU Climate Change Committee Auction
67 10/12/2013 European Parliament voted for the back-loading proposal Auction
68 11/12/2013 Climate Change Committee makes progress on implementation of the back-loading propsal Auction
69 18/12/2013 Commission gives green light for a first set of member states to allocate allowances for calendar year 2013 Free alloc.
70 08/01/2014 Climate Change Committee agrees back-loading Auction
71 22/01/2014 Commission proposed to establish a market stability reserve for phase V Cap
72 26/02/2014 Commission gives green light for free allocation by all member states Free alloc.
73 27/02/2014 Back-loading: 2014 auction volume reduced by 400 million allowances Auction
74 13/03/2014 Commission approves first batch of international credit entitlement tables Intl. credits
75 28/03/2014 Commission approves second batch of international credit entitlement tables Intl. credits
76 04/04/2014 Update on approval of international credit entitlement tables Intl. credits
77 11/04/2014 Commission approves four more international credit entitlement tables Intl. credits
78 23/04/2014 Commission approves final international credit entitlement tables Intl. credits
79 02/05/2014 Commission published the number of international credits exchanged Intl. credits
80 05/05/2014 Commission submits proposed carbon leakage list for 2015-2019 Free alloc.
81 04/06/2014 Auctioning of aviation allowances to restart in September Auction
82 04/07/2014 Commission published the first update on the allocation of allowances from the New Entrants’ Reserve Free alloc.
83 09/07/2014 Climate Change Committee agrees proposed carbon leakage list for the period 2015-2019 Free alloc.
84 27/10/2014 Commission adopts the carbon leakage list for the period 2015-2019 Free alloc.
85 04/11/2014 Updated information on exchange and international credit use Intl. credits
86 04/05/2015 Updated information on exchange and international credit use Intl. credits
87 15/07/2015 Proposal to revise the EU emissions trading system for the period after 2020 Cap
88 23/07/2015 Commission publishes status update for New Entrants’ Reserve and allocation reductions Free alloc.
89 04/11/2015 Updated information on exchange and international credit use Intl. credits
90 15/01/2016 Commission publishes status update for New Entrants’ Reserve Free alloc.
91 28/04/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
92 02/05/2016 Updated information on exchange and international credit use Intl. credits
93 23/06/2016 Following court judgement, commission to modify cross-sectoral correction factor for 2018-2020 Free alloc.
94 15/07/2016 Commission published a status update on the allocation of allowances from the New Entrants’ Reserve 2013-2020 Free alloc.
95 08/09/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
96 04/11/2016 Updated information on exchange and international credit use Intl. credits
97 16/01/2017 Commission publishes status update for New Entrants’ Reserve Free alloc.
98 24/01/2017 Commission adopts Decision to implement Court ruling on the cross-sectoral correction factor Free alloc.
99 15/02/2017 European Parliament voted in support of the revision of the ETS Directive for the period after 2021 Cap
100 27/04/2017 Climate Change Committee approves technical changes to auction rules Auction
101 02/05/2017 Updated information on exchange and international credit use Intl. credits
102 12/05/2017 Commission publishes first surplus indicator for ETS Market Stability Reserve Auction
103 17/07/2017 Commission publishes status update for New Entrants’ Reserve Free alloc.
104 26/07/2017 Court judgment again confirms benchmarks for free allocation of ETS allowances for 2013-2020 Free alloc.
105 06/11/2017 Updated information on exchange and international credit use Intl. credits
106 15/01/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
107 04/05/2018 Updated information on exchange and international credit use Intl. credits
108 08/05/2018 Commission Notice on the preliminary carbon leakage list for phase IV (2021-2030) Free alloc.
109 15/05/2018 ETS Market Stability Reserve will start by reducing auction volume by almost 265 million allowances Auction
110 16/07/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
111 30/10/2018 Commission adopts amendment to ETS auctioning regulation Auction
112 06/11/2018 Updated information on exchange and international credit use Intl. credits
113 05/12/2018 Poland’s 2019 auctions to include some allowances not used for power sector modernization Auction

A.2. Macro data

In this Appendix, I provide details on the macroeconomic data used in the paper,
including information on the data source and coverage.
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Table A.2: Data description, sources, and coverage

Variable Description Source Sample

Instrument

LEXC.01 (PS) EUA futures front contract (settlement price) Datastream 22/04/2005-
31/12/2018

Baseline variables

EKESCPENF HICP energy (EA-19) Datastream 1999M1-2018M12
GHGTOTAL Total GHG emissions excluding LULUCF and includ-

ing international aviation (EU)
Eurostat/own cal-
culations

1999M1-2018M12

EKCPHARMF HICP all items (EA-19) Datastream 1999M1-2018M12
EKIPTOT.G Industrial production excl. construction (EA-19) Datastream 1999M1-2018M12
EMINTER3 3-month Euribor Datastream 1999M1-2018M12
EKESUNEMO Unemployment rate (EA-19) Datastream 1999M1-2018M12
DJSTO50 Euro STOXX 50 Datastream 1999M1-2018M12
RBXMBIS Broad REER (EA) FRED 1999M1-2018M12

Additional variables

Other carbon futures LEXC.0h (PS), for h in (2, 3, 4) Datastream 22/04/2005-
31/12/2018

Sectoral stock prices Market [DJSTOXX], Utilities [S1ESU1E] Datastream 22/04/2005-
31/12/2018

BAMLHE00EHYIOAS ICE BofA euro high yield index option-adj. spread FRED 1999M1-2018M12
VSTOXX Euro STOXX 50 volatility stoxx.com 1999M1-2018M12
EKGDP...D Real GDP (EA-19) Datastream 1999M1-2018M12
EKESENMZD Final consumption expenditure (EA-19) Datastream 1999M1-2018M12
EKGFCF..D Gross fixed capital formation (EA-19) Datastream 1999M1-2018M12
EKNX Net exports [EKEXNGS.D-EKIMNGS.D] as a share of

GDP [EKGDP...D] (EA-19)
Datastream/own
calculations

1999M1-2018M12

CCPATENTS Share of climate change mitigation technologies
(CCMT) patents filed at EPO

Google Patents Pub-
lic Data/own calcu-
lations

2005Q1-2018Q4

The transformed series used in the baseline VAR are depicted in Figure A.1.
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Figure A.1: Transformed data series

A.3. Micro data

In this Appendix, I provide detailed information on the micro data used in Sec-
tion 6 of the paper. I use data from a selection of different surveys, which are
discussed in detail below.

A.3.1. LCFS

The living costs and food survey (LCFS) data can be obtained from the UK Data
Service. I use the waves from 1999-2001 of the Family Expenditure Survey, the
2001-2007 waves from the Expenditure and Food Survey and the 2008-2019 waves
from the LCFS, which superseded the previous two surveys. Note that within
this sample, the reporting frequency changed two times first from financial year
to calendar year and then back again to the financial year format. The waves are
adjusted to consistently reflect the calendar year prior to creating the pooled-cross
section. All variables, except the age at which full-time education was completed,
are available in the derived household datasets. The age at which fulltime edu-
cation was completed, as well as current wages, is aggregated from the personal
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derived datasets by using the maximum age at which one of the household mem-
bers completed a full-time education.

As the main measure of expenditure, I use total expenditure excluding hous-
ing (p550tp-p536tp). For current income, I use current total disposable income,
calculated by subtracting income taxes and NI contributions from the gross in-
come (p352p-p392p-p388p-p029hp). I group the households by their normal dis-
posable income (p389p). For earnings, I use wages net of taxes (aggregate p004p
to the household level, subtract current taxes and add back taxes on financial in-
come p068h). For financial income, I use p324p, which includes interest income,
dividends and rents. For age, I use the age of the household reference person,
p396p. Education is proxied by the highest age a person in the household has
completed a full-time education (a010 aggregated to the household level). The
housing tenure status is recorded in variable a121.

For energy expenditure, I use expenditure on fuel, light and power (p537t).
Constructing measures of non-durable, services and durable expenditure is not
trivial in the LCFS data, as the broader variables that are available do not allow
a clean split between these categories, e.g. personal goods and services (p544t)
is a mix of non-durable goods and services while household goods (p542t) in-
cludes both non-durable and durable goods. To construct clean measures of non-
durables, services and durables expenditure, I split these broader subcategories
into non-durable, services and durable parts by grouping the items in a particu-
lar subcategory accordingly, following closely the COICOP guidelines. A further
challenge in doing so is that the code names for disaggregated expenditure items
changed when the FES became the EFS in 2001. In Table A.3, I detail how the non-
durable, services and durable expenditure measures are constructed. At the item
level, I provide both, the relevant codes in the FES and the EFS/LCFS. Note that
semi-durables are subsumed under non-durables, and serviced do not include
housing.

Table A.3: Expenditure classification in LCFS

Category Subcategories Items

Non-durables Fuel, light power (p537t)
Food, alcoholic drinks, tobacco
(p538t, p539t, p540t)
Clothing and footwear (p541t)
Non-durable household goods
(subset of p542t)

LCFS codes: c52111t, c52112t, c53311t, c55214t, c56111t,
c56112t, c56121t, c56123t, c93114t, c93313t, c93411t, c95311t,
c95411t, cc1311t
FES codes: d070104t, d070105t, d070211t, d070209t, d070401t,
d070402t, d070302t, d070601t, d120304t, d070501t
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Category Subcategories Items

Non-durable personal goods
(subset of p544t)

LCFS codes: c61112t, c61211t, c61311t, c61313t, cc1312t,
cc1313t, cc1314t, cc1315t, cc1316t, cc1317t, cc3211t, cc3222t,
cc3223t, cc3224t
FES codes: d090402t, d090102t, d090501t, d090101t, d090103t,
d090104t, d090105t, d090301t, d090202t, d090302t, d090303t

Non-durable motoring expenditure
(subset of p545t)

LCFS codes: c72114t, c72211t, c72212t, c72213t
FES codes: d100405t, d100301t, d100302t, d100303t

Non-durable leisure goods
(subset of p547t)

LCFS codes: c91126t, c91411t, c91412t, c91413t, c91414t,
c93111t, c93113t, c93311t, c95111t, c95211t, c95212t
FES codes: d120114t, d120108t, d120110t, d120109t, d120401t,
d120113t, d070703t, d120303t, d120301t, d120302t

Miscellaneous non-durable goods
(subset of p549t)

LCFS codes: ck5511c, cc3221t
FES codes: d070801t, d140601c, d090701t

Services Household services (p543t)
Fares and other travel costs (p546t)
Leisure services (p548t)
Service part of household goods
(subset of p542t)

LCFS codes: c53312t, c53313t, c53314t, c93511t, cc5213t
FES codes: d070212t, d070213t

Personal services
(subset of p544t)

LCFS codes: c61111t, c61312t, c62111t, c62112t, c62113t,
c62114t, c62211t, c62212t, c62311t, c62321t, c62322t, c62331t,
c63111t, cc1111t
FES codes: d090401t, d090502t, d090403t, d090404t, d090601t

Service part of motoring expendi-
ture (subset of p545t)

LCFS codes: b187-b179, b188, b249, b250, b252, c72313t,
c72314t, c72411t, c72412t, c72413t, ck3112t, c72311c, c72312c,
cc5411c
FES codes: b187-b179, b188, b249, b250, b252, d100403t,
d100406t, d100407t, d100404t, d100408t, d100201c, d100204c,
d100401c

Leisure services
(subset of p547t)

LCFS codes: c91511t, c93112t, c94238t, c94239t, c94246t
FES codes: d120111t, d120112t

Miscellaneous services
(subset of p549t)

LCFS codes: b237, b238, ck5315c, ck5213t, ck5214t
FES codes: b237, b238, d140402, d140406c

Durables Durable household goods
(subset of p542t)

LCFS codes: b270, b271, c51111c, c51211c, c51212t, c51113t,
c51114t, c53111t, c53121t, c53122t, c53131t, c53132t, c53133t,
c53141t, c53151t, c53161t, c53171t, c53211t, c54111t, c54121t,
c54131t, c54132t, c55111t, c55112t, c55213t, c56122t, c93212t,
c93312t, c93412t, cc1211t
FES codes: b270, b271, d070101c, d070102c, d070103t,
d070304t, d070704t, d070203t, d070202t, d070204t, d070207t,
d070208t, d070201t, d070206t, d070303t, d070301t, d070205t,
d070701t, d070305t, d070306t, d070702t, d070602t

Durable personal goods
(subset of p544t)

LCFS codes: cc3111t
FES codes: d090201t

Durable motoring expenditure
(subset of p544t)

LCFS codes: b244, b2441, b245, b2451, b247, c31315t, c71112t,
c71122t, c71212t, c92114t, c92116t, c71111c, c71121c, c71211c,
c92113c, c92115c, c72111t, c72112t, c72113t, c91112t
FES codes: b244, b245, b247, d100105t, d100106t, d100107t,
d100101c, d100102c, d100104c, d100203t, d100202t, d100205t
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Category Subcategories Items

Durable leisure goods
(subset of p547t)

LCFS codes: c91124t, c82111t, c82112t, c82113t, c91111t,
c91113t, c91121t, c91122t, c91123t, c91125t, c91211t, c91311t,
c92211t, c92221t, c93211t
FES codes: d120104t, d080202t, d080205t, d080207t, d120105t,
d120101t, d120102t, d120103t, d120115t, d120402t, d120106t,
d120107t, d120201t

Regarding the sample, I apply the following restrictions. I drop households
that have a household reference person younger than 18 or older than 90 years.
Furthermore, I drop households with a negative normal disposable income. To
account for some (unrealistically) high or low values of consumption, for each
quarter and income group, I drop the top and bottom 1% of observations for total
expenditure.

A.3.2. LFS

To get information on the sector of employment, I use data from the UK Labour
Force Survey (LFS). The LFS studies the employment circumstances of the UK
population. It is the largest household study in the UK and provides the official
measures of employment and unemployment. Apart from detailed information
on employment, it also contains a wide range of related topics such as occupation,
training, hours of work and personal characteristics of household members aged
16 years and over. The data can be obtained from the UK Data Service. I use
the quarterly waves from 1999-2018 to construct a pooled cross-section. For the
employment sector, I use the variable indsect, which describes the industry sector
in the main job based on the SIC 2003 classification. To proxy income, I use the
net pay from the main and second job (netwk and netwk2).

A.3.3. BSA

To proxy public attitudes towards climate policy, I use data from the British social
attitudes (BSA) survey. The data can be obtained from the UK Data Service. I use
the waves from 1999-2018 to construct a pooled cross-section. To construct the
income groups, I use the income quartiles that are provided from 2010 onwards
(hhincq). For the years before, I use the household income variable (hhincome)
to construct the quartiles. The survey contains many questions on the attitudes
towards climate change, the environment and climate/environmental policy, but
unfortunately most variables are not part of the main set of questions that are
asked in every year. One exception concerns a question about taxes for car owners
(cartaxhi), in particular it asks whether you agree with the following statement:
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“For the sake of the environment, car users should pay higher taxes”, which was
fielded for all years up to 2017. Thus, I use the proportion of households agreeing
with this statement as a proxy for the public attitude towards climate policy.

B. Charts, tables and additional sensitivity checks

In this Appendix, I present additional tables and figures, and sensitivity checks
that are not featured in the main body of the paper.

B.1. Diagnostics of the surprise series

As discussed in the paper, I perform a number of additional validity checks on the
surprise series. In particular, I investigate the autocorrelation and forecastability
of the surprise series as well as the relation to other shocks from the literature.

Figure B.1: The autocorrelation function of the carbon policy surprise series

Figure B.1 depicts the autocorrelation function. We can see that there is lit-
tle evidence that the series is serially correlated. I also perform a number of
Granger causality tests. Table B.1 shows that the series is not forecastable by
past macroeconomic or financial variables. The only variables that have some
power in forecasting the carbon policy surprises are proxies for the perception of
the importance of climate change, such as Google Trends data for climate change
search queries or newspaper-based indices for climate news, supporting the in-
terpretation of the surprise series. Finally, I look how the series correlates with
other shock series from the literature and find that it is not correlated with other
structural shock measures from the literature, including oil, uncertainty, financial,
fiscal and monetary policy shocks (see Table B.2).
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Table B.1: Granger causality tests

Variable p-value

Instrument 0.9066
EUA price 0.7575
HICP energy 0.7551
GHG emissions 0.7993
HICP 0.8125
Industrial production 0.7540
Policy rate 0.9414
Unemployment rate 0.9310
Stock prices 0.9718
REER 0.9075
Joint 0.9997

Notes: The table shows the p-values of a series of Granger causality tests of the carbon
policy surprise series using a selection of macroeconomic and financial variables.

Table B.2: Correlation with other shock measures

Shock Source ρ p-value n Sample

Monthly measures
Global oil market
Oil supply Kilian (2008) (extended) -0.05 0.61 104 2005M05-2013M12

Kilian (2009) (updated) -0.02 0.76 164 2005M05-2018M12
Caldara, Cavallo, and Iacoviello (2019) -0.05 0.57 128 2005M05-2015M12
Baumeister and Hamilton (2019) -0.11 0.17 164 2005M05-2018M12
Känzig (2021) (updated) 0.02 0.83 164 2005M05-2018M12

Global demand Kilian (2009) (updated) 0.01 0.93 164 2005M05-2018M12
Baumeister and Hamilton (2019) -0.03 0.69 164 2005M05-2018M12

Oil-specific demand Kilian (2009) (updated) 0.05 0.55 164 2005M05-2018M12
Consumption demand Baumeister and Hamilton (2019) 0.05 0.51 164 2005M05-2018M12
Inventory demand Baumeister and Hamilton (2019) -0.03 0.68 164 2005M05-2018M12

Monetary policy
Monetary policy shock Jarociński and Karadi (2020) 0.02 0.80 140 2005M05-2016M12
Central bank info Jarociński and Karadi (2020) 0.03 0.75 140 2005M05-2016M12

Financial & uncertainty
Financial conditions BBB spread residual 0.06 0.43 164 2005M05-2018M12
Financial uncertainty VIX residual (Bloom, 2009) 0.10 0.22 164 2005M05-2018M12

VSTOXX residual 0.05 0.50 164 2005M05-2018M12
Policy uncertainty Global EPU (Baker, Bloom, and Davis, 2016) 0.03 0.71 164 2005M05-2018M12

Quarterly measures
Fiscal policy Euro area (Alloza, Burriel, and Pérez, 2019) 0.12 0.44 43 2005Q2-2015Q4

Germany 0.22 0.15 43 2005Q2-2015Q4
France -0.06 0.69 43 2005Q2-2015Q4
Italy 0.28 0.07 43 2005Q2-2015Q4
Spain 0.10 0.52 43 2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide
range of different shock measures from the literature, including global oil market shocks,
monetary policy, financial and uncertainty shocks. ρ is the Pearson correlation coefficient,
the p-value corresponds to the test whether the correlation is different from zero and n is
the sample size.
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B.2. Additional results

B.2.1. Aggregate effects

In this Appendix, I present some additional results pertaining to the analysis in
Section 5 in the paper. As discussed in the main text, I rely on VAR techniques
for estimation because the sample is relatively short and VARs provide a parsi-
monious characterization of the data. However, as a robustness check, I have
also tried to estimate the impulse responses using local projections instrumental
variable (LP-IV) approach à la Jordà, Schularick, and Taylor (2015); Ramey and
Zubairy (2018). To fix ideas, the dynamic causal effects, ψi

h, can be estimated from
the following set of regressions:

yi,t+h − yi,t−1 = βi
0 + ψi

h∆y1,t + βi′
hxt−1 + ξi,t,h, (1)

using zt as an instrument for ∆y1,t. Here, yi,t+h is the outcome variable of interest,
∆y1,t is the endogenous regressor, xt−1 is a vector of controls, ξi,t,h is a poten-
tially serially correlated error term, and h is the impulse response horizon. For
inference, I follow the lag-augmentation approach proposed by Montiel Olea and
Plagborg-Møller (2020). In particular, I augment the controls by an additional lag
and use heteroskedasticity-robust standard errors.

As the impacts of carbon policy are potentially very persistent, we want to
look at the dynamic causal effects relatively far out. Given the short sample, this
is challenging in the LP-IV framework, which does not use the parametric VAR
restriction but estimates the effect by a distinct IV regression at each horizon h.
Consequently, the number of observations available for estimation decreases with
the impulse horizon. Against this background, I restrict the impulse horizon in
the LP-IV regressions to 20 months.

Figure B.2 compares the responses obtained from the LP-IV approach to the
ones from the internal instrument VAR. Recall that both approaches rely on the
same same invertibility-robust identifying restrictions but use different estima-
tion techniques. We can see that the two approaches produce consistent results,
especially at horizons up to one year.1 At longer horizons the differences tend to
be larger, however, the responses are also much less precisely estimated.

Recall, the baseline model does not include the carbon price as information
on prices are only available from 2005 when the carbon market was established.
As a robustness check, I estimate a model including the carbon price in lieu of
GHG emissions on the shorter sample starting from 2005. The results are de-

1Note that this is despite the fact that we only control for 6 lags in both models.
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Figure B.2: Robustness with respect to estimation strategy

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid dark and red lines are the point estimates for
the internal instrument VAR and the LP-IV, respectively, and the shaded areas / dashed
lines are 68 and 90 percent confidence bands.
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picted in Figure B.3. We can see that the shock leads to a significant increase in
the carbon price, in line with the interpretation of a shock tightening the carbon
pricing regime. Interestingly, however, the carbon price response turns out to be
less persistent than the energy price response.

Figure B.3: Model including carbon spot price

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

To better understand how the shock transmits to the economy, I have also
looked at the responses of indicators for financing conditions and financial uncer-
tainty, see Figure B.4. However, these variables do not appear to play a dominant
role in the transmission of the carbon policy shock.
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Figure B.4: Financial and uncertainty indicators
Notes: Impulse responses of financial conditions, as proxied by the BBB bond spread,
and the VSTOXX index as a measure of financial uncertainty.

Because of data availability, the household-level analysis is carried out for the
UK. For better comparison, I have verified that the aggregate effects on the UK,
as measured by real GDP, consumption and investment, are comparable to the
EU level responses, see Figure B.5.

Figure B.5: Effect on UK GDP and components

Notes: Impulse responses of UK real GDP, consumption, investment and net exports
expressed as a share of GDP.

Finally, I have also estimated the baseline model using UK data for macroeco-
nomic block. The results are depicted in Figure B.6. We can see that the results
are comparable to the model with the EU block, even though the first stage turns
out to be weaker and the responses are less precisely estimated.
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Figure B.6: Model with block for UK economy

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively. I keep the carbon
block of the model at the EU level and replace the macro block with the corresponding
variables for the UK.

B.2.2. Heterogeneous effects

In this Appendix, I present some additional results pertaining to Section 6 on the
heterogeneous effects of carbon pricing in the paper.

Figure B.7 compares the empirical distribution of age and total expenditure
for the three income groups. We can see that the groups are comparable in terms
of their age distribution. As expected, higher income groups tend to have higher
expenditure but there is also more within group variation.
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Figure B.7: Empirical distribution of age and total expenditure in the LCFS

Notes: The figure shows the empirical probability distribution of age and total expendi-
ture (excl. housing) for all three income groups. The distributions are estimated using an
Epanechnikov kernel.

Figure B.8 depicts the evolution of different households characteristics, in-
cluding age, education and housing tenure, over time. We can see that there are
some trends in these variables, however, they are rather slow-moving and thus
unlikely to confound potential heterogenities in the household responses to car-
bon policy shocks, which exploit variation at a much higher frequency.

Figure B.8: Evolution of household characteristics by income group

Notes: The figure shows the evolution of age, education, and housing tenure status over
time by income group.
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To mitigate concerns about endogenous changes in the grouping variable, I
look at the responses of current and normal disposable income in Figure B.9. We
can see that both variables are rather slow moving. Current income starts to fall
significantly after about a year. In contrast, the response of normal disposable
income is insignificant, at least at the 10 percent level, supporting its validity as a
grouping variable.

Figure B.9: Responses of current and normal income

Notes: Impulse responses of current disposable income and normal disposable income.

As a robustness check, I use a selection of other proxies for the income level,
including earnings, expenditure, and an estimate for permanent income obtained
from a Mincerian-type regression. For the latter, I use age, education, ethnicity,
sex, martial status, occupation, the source of the main household income, as well
as interactions between age and education, and between age and sex as predic-
tors, as in Alves et al. (2020). From Figures B.10-B.12, we can see that the results
turn out to be robust.
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Figure B.10: Household expenditure and income responses by earnings groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by earnings (incl. benefits) groups (bottom 25 percent, middle
50 percent, top 25 percent).
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Figure B.11: Household expenditure and income responses by expenditure
groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by groups of total expenditure as a proxy for permanent in-
come (bottom 25 percent, middle 50 percent, top 25 percent).
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Figure B.12: Household expenditure and income responses by permanent income

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by permanent income, estimated using a Mincerian-type re-
gression using age, education, ethnicity, sex, martial status, occupation, the source of the
main household income, as well as interactions between age and education, and between
age and sex (bottom 25 percent, middle 50 percent, top 25 percent).

In the LCFS, households interviewed at time t are typically asked to report
expenditure over the previous three months (with the exception of non-durable
consumption which refers to the previous two weeks). To eliminate some of the
noise inherent in survey data, I smooth the expenditure and income measures
with a backward-looking (current and previous three quarters) moving average,
as in Cloyne, Ferreira, and Surico (2020). However, as shown in Figure B.13, the
results are very similar when using the raw series instead, even though the re-
sponses become more jagged and imprecise, or by using smooth local projections
as proposed by Barnichon and Brownlees (2019).

20



Figure B.13: Sensitivity with respect to smoothing of responses

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by income group, computed using simple backward-looking
moving average (baseline), smooth local projections (red dotted line), and unsmoothed
(blue dashed line).

To better understand how the current income of households in different in-
come groups responds, I study the responses of labor earnings and financial in-
come. We can see that the earnings of low-income households fall more promptly
and significantly than for higher-income households. On the other hand, the fi-
nancial income of low- and middle-income households barely shows a response,
reflecting the fact that these households own very little financial assets. In con-
trast, high-income households experience a significant fall in their financial in-
come in the short-run, which however subsequently reverts (consistent with the
stock market response).
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Figure B.14: Responses of earnings and financial income

Notes: Impulse responses of labor income (wages from main occupation) and financial
income (interest, dividend, rents) by income group (bottom 25 percent, middle 50 per-
cent, top 25 percent).

To further analyze the role of the energy share, I look at the responses of en-
ergy expenditure – in absolute terms and as a share of total expenditure. From
Figure B.15, we can see that energy expenditure falls slightly on impact but then
tends to increase. However, the response is barely significant. This is also re-
flected in the response of the energy share, which also has a tendency to increase,
even though the response is insignificant at the 10 percent level. Figure B.16 fur-
ther presents the energy expenditure responses by income group. From this, we
can see that energy expenditure turn out to be more elastic for high-income than
for low-income households.
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Figure B.15: Responses of energy expenditure and the energy share

Notes: Impulse responses of energy expenditure (expenditure on fuel, light and power)
and the budget share of energy (expenditure on fuel, light and power as a share of total
expenditure).

Figure B.16: Energy expenditure and energy share by income group

Notes: Impulse responses of energy expenditure and the budget share of energy by in-
come group (bottom 25 percent, middle 50 percent, top 25 percent).
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Unfortunately, the LCFS does not feature information on the sector of employ-
ment. However, the LFS does have both, detailed information on employment
sector and income. As we can see from Table B.3, low-income households work
disproportionally in sectors such as construction, wholesale and retail trade, hos-
pitality, and entertainment and recreation. While these are not the sectors with
the highest energy intensity (in relation to their gross value added), energy is an
important cost driver. Furthermore, these sectors are very concentrated in lower-
skilled occupations.

Table B.3: Descriptive statistics on households in the LFS

Sectors Overall By income group

Low-income Middle-income High-income

High-energy intensity 21.7 9.7 25.7 25.8
Middle-energy intensity 30.5 49.0 27.2 18.0
Low-energy intensity 47.7 41.2 47.0 56.1

Notes: The table depicts the sectoral distribution of workers in the LFS, both overall and
by income group (where income is proxied by net pay in the main and second job). For
the sectors, I use the SIC 2003 sections, and group them according to their energy inten-
sity (using data from the ONS for 1999-2018). The first group contains sectors with a very
high energy intensity, namely agriculture & fishing, utilites, transportation, and manufac-
turing. The second group consists of sectors with a middle energy intensity such as con-
struction, wholesale and retail trade, hospitality, and entertainment and recreation. The
last group are financial services, public administration and education & health, which
have a low energy intensity.

Interestingly, these sectors are also the ones for which we observe the larges
fall in net pay after a carbon policy shock, see Figure B.17. This helps explain why
low-income households in the LCFS display the strongest and most significant
fall in income.

24



Figure B.17: Income response by sector of employment

Notes: Impulse responses of net pay (pay after deductions from main and second job)
in sectors with a high-, middle- and low-energy intensity from the LFS. The response is
computed based on the median pay in the respective group of sectors. The sector groups
are described in detail in Figure B.3.
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To be able to better understand the overall expenditure response, I look at the
responses of the non-durable, services and durable goods expenditure, first in
the aggregate and then by income group. From Figure B.18, we can see that all
components fall in response to a carbon policy shock. There are also some inter-
esting heterogeneities by income group. While the response of non-durable and
services expenditure is very strong for low-income and more muted for higher-
income households, the responses of durables are somewhat more homogeneous.
Also note that the magnitude of the durable response is larger, in line with the fact
that durable expenditure tends to be more volatile.

Figure B.18: Responses of non-durable, services, and durable expenditure

Notes: Impulse responses of the non-durable, services and durable components of to-
tal expenditure (excluding housing). Non-durable expenditure includes fuel, light and
power, food, alcoholic drinks, tobacco, clothing and footwear, and the non-durable parts
of household goods, personal goods and services, motoring expenditure, leisure goods
and miscellaneous expenditure. Services expenditure includes household services, fares
and other travel, leisure services, as well as the services part of personal goods and ser-
vices and miscellaneous expenditure. Durable expenditure includes the durable part of
household goods, personal goods and services, motoring expenditure and leisure goods.
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To mitigate concerns about selection, I use a selection of different grouping
variables, including age, education and housing tenure. From Figures B.20-B.22,
we can see that none of these alternative grouping variables can account for the
patterns uncovered for income, suggesting that we are not spuriously picking
up differences in other household characteristics. Similarly, the uncovered het-
erogeneity can also not be accounted for by occupation, sex and region. These
results are available from the author upon request.

Figure B.20: Household expenditure and income responses by age groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for young (bottom 33 percent), middle-aged and older house-
holds (top 33 percent), based on the age of the household head.
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Figure B.21: Household expenditure and income responses by education status

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for less educated, normally educated and well educated
households. Education status is proxied by the highest age a household member has
completed full-time education and the three groups are below 16 years, between 17 and
18 years (compulsory education), and 19 years or above (post-compulsory).
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Figure B.22: Household expenditure and income responses by housing tenure

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for social renters, mortgagors and outright owners.

To further investigate the role of the energy share, I alternatively group house-
holds by their energy share. Table B.4 provides descriptive statistics on income,
expenditure and households characteristics by energy share. While the differ-
ences in energy share are now (by construction) more pronounced), the high-,
middle- and low-energy share groups are comparable to the low-, middle- and
high-income groups along many other dimensions. In particular, the levels of ex-
penditure and income turn out to be decreasing in the energy share. The largest
differences are that high-energy share households tend to be older and more
likely to be homeowners than households in the low-income group.
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Table B.4: Descriptive statistics on households in the LCFS

Overall By energy share

High-share Middle-share Low-share

Income and expenditure
Normal disposable income 236.3 180.5 245.2 288.5
Total expenditure (excl. housing) 157.3 95.8 165.4 244.4

Energy share 7.2 15.9 5.5 1.8
Non-durables (excl. energy) share 49.6 51.9 50.7 45.2
Services share 31.9 27.0 32.2 36.2
Durables share 11.3 5.2 11.6 16.8

Housing 32.0 26.3 32.5 38.2

Household characteristics
Age 51 62 50 45
Education (share with post-comp.) 33.5 17.8 35.3 45.7
Housing tenure

Social renters 20.9 34.2 15.9 17.7
Mortgagors 42.6 20.6 47.5 55.0
Outright owners 36.6 45.3 36.6 27.3

Notes: The table shows some descriptive statistics on weekly per capita income and ex-
penditure (in pounds), the breakdown of expenditure into energy, non-durables excl. en-
ergy, services and durables as well as a selection of household characteristics, both over
all households and by energy share group. For variables in levels such as income, expen-
diture and age the median is shown while the shares are computed based on the mean
of the corresponding variable. Note that the expenditure shares are expressed as a share
of total expenditure excl. housing and thus services do not include housing either, and
semi-durables are subsumed under the non-durable category. Age corresponds to the
age of the household reference person and education is proxied by whether a member of
a household has completed a post-compulsory education.

To better understand the role of the energy share across income groups, I
look at the responses of low- and higher-income households conditioning on the
most exposed high-energy share households and households with a lower energy
share. Note that these groups vary in size, as we condition on households in a
particular income group that also display a particular energy share. The results
are shown in Figure B.23.
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Panel A: Expenditure responses

Panel B: Income responses

Figure B.23: Responses by income and energy share groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by income group, conditioning on households with a high or
lower energy share.

To mitigate concerns regarding external validity, I confirm the main results
on the heterogeneity in household expenditure by income group using data for
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Denmark and Spain. As can be seen from Figure B.24, the expenditure response
turns out to be much more pronounced for low-income households.

Figure B.24: Expenditure by income groups for other European countries

Notes: Impulse responses of total expenditure for low-income, middle-income and high-
income households in Denmark and Spain. The Danish data are from the Danish house-
hold budget survey (HBS) available for 1999-2018, accessed via the StatBank Denmark
database, and expenditure is grouped by total annual income (under 250K DKK, 250-
999K DKK, 1000K DKK or over). The Spanish data are from the Spanish HBS available
for 2006-2018, accessed via the INE website, and expenditure is grouped by regular net
monthly household income (under 1000 euros, 1000-2499 euros, 2500 euros or over).
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Finally, Figure B.25 displays the evolution of the public attitude towards cli-
mate policy, as proxied by the positive answers to a question from the BPA, see
Figure B.25. We can see that the support of climate policy has remained relatively
stable at moderate levels for a large part of the sample. In the early to middle
2010s, the support started increasing, especially for high- and middle-income
households. In contrast, the support of low-income households has remained
stable at lower levels until the end of the sample.

Figure B.25: Public support for climate policy by income group

Notes: The figure shows the evolution of the attitude towards climate policy by income
group, as proxied by the share of households in the British social attitudes survey that
agree to the following statement: “For the sake of the environment, car users should pay
higher taxes”.

B.3. Robustness

In this Appendix, I present the Figures and Tables corresponding to the robust-
ness analyses described in Section 7 of the paper.

B.3.1. Selection of events

The first check concerns the selection of the relevant events used for identifica-
tion. As the baseline, I have included all identified events that concern the sup-
ply of emission allowances. Figures B.26-B.29 present the results under varying
assumptions and show that the results turn out to be very robust to the selection
of events. Figure B.30 also shows that the identification strategy does not depend
on very large events, even though these events turn out to be important for the
precision of the estimates.
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Figure B.26: Excluding events regarding cap

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

35



Figure B.27: Excluding events regarding international credits

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.28: Only using events on free allocation and auctioning

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.29: Excluding potentially confounded events

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.30: Excluding extreme events (price change in excess of 30 percent)

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

B.3.2. Confounding news

An important robustness check concerns the treatment of background noise, i.e.
other news occuring on the event day that potentially confound the carbon policy
surprise series. Under the external and internal instrument approaches, I assume
that this background noise is not large enough to confound my results.

This assumption is supported by the observation that the variance of the sur-
prise series is much larger on event days than on a sample of controls days, which
are comparable to event days along many dimensions but do not include a car-
bon policy event (Table B.5 lists the event and control days used in the analysis.
For the controls days, I use days that are on the same weekday and in the same
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week in months prior a given regulatory event.).

Table B.5: Policy and control events

Month Policy Control Month Policy Control

2005M05 25/05/2005 2012M03 29/03/2012
2005M06 20/06/2005 2012M04 04/04/2012

25/04/2012
2005M07 27/07/2005 2012M05 02/05/2012

23/05/2012
2005M08 24/08/2005 2012M06 05/06/2012
2005M09 21/09/2005 2012M07 06/07/2012

13/07/2012
25/07/2012

2005M10 26/10/2005 2012M08 13/08/2012
15/08/2012
17/08/2012
31/08/2012

2005M11 23/11/2005 2012M09 10/09/2012
12/09/2012
14/09/2012
28/09/2012

2005M12 22/12/2005 2012M10 08/10/2012
10/10/2012
12/10/2012
26/10/2012

2006M01 25/01/2006 2012M11 12/11/2012
14/11/2012
16/11/2012
30/11/2012

2006M02 22/02/2006 2012M12 28/12/2012
2006M03 20/03/2006 2013M01 25/01/2013
2006M04 24/04/2006 2013M02 28/02/2013
2006M05 22/05/2006 2013M03 25/03/2013
2006M06 26/06/2006 2013M04 16/04/2013
2006M07 24/07/2006 2013M05 08/05/2013
2006M08 21/08/2006 2013M06 05/06/2013
2006M09 25/09/2006 2013M07 03/07/2013

10/07/2013
30/07/2013

2006M10 23/10/2006 2013M08 08/08/2013
29/08/2013

2006M11 13/11/2006
29/11/2006

2013M09 05/09/2013
26/09/2013

2006M12 14/12/2006 2013M10 11/10/2013
2007M01 16/01/2007 2013M11 08/11/2013

21/11/2013
2007M02 05/02/2007

26/02/2007
2013M12 10/12/2013

11/12/2013
18/12/2013

2007M03 26/03/2007 2014M01 08/01/2014
22/01/2014

2007M04 02/04/2007
16/04/2007
30/04/2007

2014M02 26/02/2014
27/02/2014

2007M05 04/05/2007
15/05/2007

2014M03 13/03/2014
28/03/2014
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Month Policy Control Month Policy Control

2007M06 06/06/2007 2014M04 04/04/2014
11/04/2014
23/04/2014

2007M07 11/07/2007 2014M05 02/05/2014
05/05/2014

2007M08 08/08/2007 2014M06 04/06/2014
2007M09 05/09/2007 2014M07 04/07/2014

09/07/2014
2007M10 10/10/2007 2014M08 25/08/2014
2007M11 07/11/2007 2014M09 29/09/2014
2007M12 11/12/2007 2014M10 27/10/2014
2008M01 08/01/2008 2014M11 04/11/2014
2008M02 05/02/2008 2014M12 01/12/2014
2008M03 11/03/2008 2015M01 05/01/2015
2008M04 08/04/2008 2015M02 02/02/2015
2008M05 22/05/2008 2015M03 02/03/2015
2008M06 26/06/2008 2015M04 06/04/2015
2008M07 24/07/2008 2015M05 04/05/2015
2008M08 21/08/2008 2015M06 17/06/2015

25/06/2015
2008M09 25/09/2008 2015M07 15/07/2015

23/07/2015
2008M10 23/10/2008 2015M08 05/08/2015
2008M11 20/11/2008 2015M09 02/09/2015
2008M12 25/12/2008 2015M10 07/10/2015
2009M01 22/01/2009 2015M11 04/11/2015
2009M02 19/02/2009 2015M12 18/12/2015
2009M03 26/03/2009 2016M01 15/01/2016
2009M04 23/04/2009 2016M02 25/02/2016
2009M05 20/05/2009 2016M03 31/03/2016
2009M06 24/06/2009 2016M04 28/04/2016
2009M07 22/07/2009 2016M05 02/05/2016
2009M08 26/08/2009 2016M06 23/06/2016
2009M09 23/09/2009 2016M07 15/07/2016
2009M10 22/10/2009 2016M08 11/08/2016
2009M11 26/11/2009 2016M09 08/09/2016
2009M12 24/12/2009 2016M10 07/10/2016
2010M01 18/01/2010 2016M11 04/11/2016
2010M02 15/02/2010 2016M12 19/12/2016

27/12/2016
2010M03 22/03/2010 2017M01 16/01/2017

24/01/2017
2010M04 19/04/2010 2017M02 15/02/2017
2010M05 14/05/2010

19/05/2010
2017M03 30/03/2017

2010M06 11/06/2010
16/06/2010

2017M04 27/04/2017

2010M07 09/07/2010
14/07/2010

2017M05 02/05/2017
12/05/2017

2010M08 20/08/2010 2017M06 19/06/2017
28/06/2017

2010M09 24/09/2010 2017M07 17/07/2017
26/07/2017

2010M10 22/10/2010 2017M08 07/08/2017
2010M11 12/11/2010

25/11/2010
2017M09 04/09/2017

41



Month Policy Control Month Policy Control

2010M12 15/12/2010 2017M10 09/10/2017
2011M01 21/01/2011 2017M11 06/11/2017
2011M02 15/02/2011

22/02/2011
28/02/2011

2017M12 18/12/2017

2011M03 15/03/2011
22/03/2011
29/03/2011

2018M01 15/01/2018

2011M04 27/04/2011
29/04/2011

2018M02 02/02/2018
06/02/2018
13/02/2018

2011M05 10/05/2011 2018M03 02/03/2018
06/03/2018
13/03/2018

2011M06 07/06/2011 2018M04 06/04/2018
10/04/2018
17/04/2018

2011M07 13/07/2011 2018M05 04/05/2018
08/05/2018
15/05/2018

2011M08 29/08/2011 2018M06 18/06/2018
2011M09 26/09/2011 2018M07 16/07/2018
2011M10 17/10/2011

26/10/2011
28/10/2011

2018M08 28/08/2018

2011M11 14/11/2011
23/11/2011
25/11/2011

2018M09 25/09/2018

2011M12 05/12/2011 2018M10 30/10/2018
2012M01 26/01/2012 2018M11 06/11/2018
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Figure B.31: The carbon policy and the control series

Notes: This figure shows the carbon policy surprise series together with the sur-
prise series constructed on a selection of control days that do not contain a regu-
latory announcement but are otherwise similar.

Figure B.31 displays the carbon policy surprise series together with the control
series over the sample of interest. We can see that the carbon policy surprise
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series is significantly more volatile than the control series and a Brown-Forsythe
test for the equality of group variances confirms that this difference is statistically
significant.

Figure B.32: Heteroskedasticity-based identification

Notes: Impulse responses to a carbon policy shock identified using the
heteroskedasticity-based approach, normalized to increase the HICP energy by 1
percent on impact. The solid line is the point estimate and the dark and light shaded
areas are 68 and 90 percent confidence bands, respectively.

It is exactly this shift in variance that can be exploited for identification using a
heteroskedasticity-based approach in the spirit of Rigobon (2003), assuming that
the shift is driven by the carbon policy shock. Figure B.32 shows the results from
this alternative approach. The responses turn out to be very similar, both in terms
of shape and magnitudes, but turn out to be much less precisely estimated. These
results suggest that the bias induced by background noise is likely negligible in
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the present application. However, part of the statistical strength under the exter-
nal/internal instrument approach appears to come from the stronger identifying
assumptions.

B.3.3. Futures contracts

Figure B.33: Using different futures contracts for the instrument

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. Depicted are the point estimates using different futures
contracts to construct the instrument.

EUA futures are traded at different maturities. The main contracts are annual,
with expiry date in December and are traded up to seven years.2 As a baseline,

2There exist now also several quarterly and even monthly contracts, however, these have
shorter coverage. Thus, I restrict the analysis on the annual contracts.
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I focus here on the front contract, which expires in December of the current year
and is the most liquid and has the longest coverage. Figure B.33 presents the
results based on contracts with longer maturities. The responses based on the
second to the fourth contract are all very similar. The largest difference emerge
compared to the front contract, however, most responses are qualitatively very
similar. These results support the focus on the front contract, to mitigate concerns
about risk premia.

B.3.4. Sample and specification choices

Finally, I perform a number of sensitivity checks concerning the sample and
model specification. Figure B.34 shows the results based on the shorter sample
running from 2005, when the ETS was established, to 2018. The results turn out
to be very similar to the baseline case.
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Figure B.34: Results using 2005-2018 sample

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

Figure B.35 excludes events in phase one (2005-2007) in the construction of the
instruments. While the point estimates are similar, the responses are much less
precisely estimated, illustrating how the identification strategy leverages the fact
that establishing the carbon market was a learning-by-doing process where the
rules have been continuously updated.
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Figure B.35: Excluding phase one events

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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The baseline model includes 8 variables and 6 lags, which is relatively large for
a comparably short sample. Therefore, Figures B.36-B.40 analyze the robustness
with respect to the variables included and number of lags used. Alternatively, I
estimate the model using shrinkage priors. The results turn out to be robust along
all these dimensions.

Figure B.36: Responses from smaller VAR

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.37: VAR including linear trend

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.38: VAR with 3 lags

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.39: VAR with 9 lags

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.40: Bayesian VAR with shrinkage priors

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the posterior median and the dark and
light shaded areas are 68 and 90 percent HPD bands, respectively.
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C. Heteroskedasticity-based identification

As discussed in Section 7, we can also identify the structural impact vector under
weaker assumptions, allowing for the presence of other shocks contaminating the
instrument over the daily event window. Suppose that movements in the EUA
futures zt we observe in the data are governed by both carbon policy and other
shocks:

zt = ε1,t + ∑
j 6=1

ε j,t + vt,

where ε j,t are other shocks affecting carbon futures and vt ∼ iidN(0, σ2
v ) captures

measurement error such as microstructure noise. Because zt is also affected by
other shocks, it is no longer a valid external instrument. However, we can still
identify the structural impact vector by exploiting the heteroskedasticity in the
data.

The identifying assumption is that the variance of carbon policy shocks in-
creases at the time of regulatory update events while the variance of all other
shocks is unchanged. Define R1 as a sample of regulatory events in the EU ETS
and R2 as a sample of trading days that do not contain an regulatory event but
are comparable on other dimensions. R1 can be thought of as the treatment and
R2 as the control sample (see Appendix B.3 for more information and some de-
scriptive statistics of the instrument in the treatment and the control sample). The
identifying assumptions can then be written as follows

σ2
ε1,R1 > σ2

ε1,R2

σ2
ε j,R1 = σ2

ε j,R2, for j = 2, . . . , n. (2)

σ2
v,R1 = σ2

v,R2.

Under these assumptions, the structural impact vector is given by

s1 =
ER1[ztut]−ER2[ztut]

ER1[z2
t ]−ER2[z2

t ]
. (3)

As shown by Rigobon and Sack (2004), we can also obtain this estimator through
an IV approach, using z̃ = (z′R1, −z′R2)

′ as an instrument in a regression of the
reduced-form innovations on z = (z′R1, z′R2)

′.
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