
   

 

 

 

Abstract 

Relying on hourly consumption of electricity consumers, this paper examines 
the consumer reaction to dynamic electricity rates in the context of increasing 
renewable generation capacity and carbon price. We estimate power prices using 
a unit commitment model calibrated to France in 2018. We assess the bill savings 
from price responsive consumers under the Real-Time Prices (RTP) and Time-of-
Use (ToU) scheme currently in place. We find that consumers under RTP have 
increasing electricity bill savings linked to the deployment of renewable capacity. 
However, estimated gains are small, with less than 10€ bill savings for the 
residential segment in the central assumption. Our results also suggest that the 
current ToU rates doesn’t provide the right incentives with regards to generation 
scarcity in future power markets. These results call for a revision of the end-use 
rate design, and question the savings estimate used to justify more widespread 
adoption of real-time pricing. 
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1. Introduction 
 
Following the liberalization of power markets, the competition in retail activities has offered 
consumers an increasing choice of suppliers. Yet, unbundling of the market hasn’t translated 
into diversification of billing schemes when it comes to rate design: a majority of consumers 
are still charged a flat tariff based on their energy consumption. This historical choice was 
driven by limited metering capabilities, as the infrastructure deployed only allowed for annual 
or bi-annual readings, and the inexistence of smart appliances.  
 
Both the literature and fields experiment have however demonstrated tangible welfare gain 
from switching to dynamic pricing, by having a direct cost pass-through from wholesale market 
prices to end-users (Allcott, 2011; Faruqui and Sergici, 2010). Consumers were proved in those 
pilot projects to be statistically significantly price elastic, with peak lead reduction achieving 
between 10 and 50% depending on the incentives, contradicting the common assumption of 
inelastic load. There is therefore the opportunity to send price incentives to end-users that 
would better reflect the market situation, and notably enable them to manage their load to 
respond to grid congestion or scarcity on the supply side. If short-term benefits might be low, 
literature has demonstrated long-run welfare gains by delaying or avoiding investments in 
peaking capacity and network expansion that can be important (De Jonghe et al., 2012). 
 
Those benefits are expected to be even more tangible now that most countries are on the 
verge of completing a national rollout of smart meters and that system variability starts to be 
supply-side driven due to the increase of wind and solar generation. The European Commission 
indicates an annual saving of 22-70% of the energy supply component in the annual bill for 
small consumers (European Commission, 2019). Notwithstanding the benefits, concerns exist 
as dynamic pricing results also in a pass-through of risks linked to price volatility towards end-
users, that are less able than retailers to hedge against price volatility. Existing spot-index 
based tariffs in Texas have therefore lead during the 2021 winter to considerable increase in 
consumer bills (Blumsack, 2021). Mitigation options consist of second-best pricing schemes 
such as Time-Of-Use1 or Critical Peak Pricing. However, the European Parliament 
directive  2019/944 (European Parliament, 2019) state that “[All consumers] should therefore 
have the possibility of benefiting from the full deployment of smart metering systems and, 
where such deployment has been negatively assessed, of choosing to have a smart metering 
system and a dynamic electricity price contract. This should allow them to adjust their 
consumption according to real-time price signals that reflect the value and cost of electricity 
or transportation in different time periods, while Member States should ensure the reasonable 
exposure of consumers to wholesale price risk.” Such dynamic offer will be mandatory for 
supplier with more than 200 000 final costumers according to the same directive. There is 
therefore a need to assess to what extent the demand-response will represent an opportunity 
for reactive consumers. 
 
This article contributes to the literature by exploring welfare gains of different time-
differentiated electricity tariffs in the French future power market. With the joint increase of 
near-zero marginal price capacities of renewable power and the rise of the short-run marginal 
cost of remaining thermal units due to increasing price of CO2 allowances, electricity market 
prices are called to face increasing volatility in the near future. Lag in the adoption of new rate 
design could result in short-term welfare loss if current incentives proved to be inefficient. 
 

 
1 Time-Of-Use rates adjust the rate depending on a pre-defined time period. It usually incentivizes the 
electricity consumption at a time of low demand (price), during the night. Critical Peak Pricing defines 
a fixed annual number of days where the rate of electricity is higher. 
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We investigate in a first step how renewables and carbon price affects power price volatility in  
joint assemessment of France, the UK, and Germany. Given our interests, we focus on 
obtaining power prices from a unit commitment model. Then, bill impacts in the form of 
savings are estimated based on generated market prices under two tariff schemes: Time-of-
use (ToU) and Real-time pricing (RTP). When accounting for risk exposure considerations, price 
volatility is an important factor to be considered for adoption of dynamic rate. Therefore, we 
assess the extent to which risk-averse end-users, opting out of RTP, could prevent welfare 
gains of dynamic pricing and if current incentives are aligned with ongoing change in power 
markets. 
 
We find that under the current elasticity hypothesis, the bill impact in 2018 of switching to 
dynamic rate is only marginal, reaching at most 4% savings in the energy supply component of 
the annual electricity bill. Savings can reach as high as 17% considering higher price-elasticity. 
Moreover, we confirm that current incentives under time-of-use rates are efficient, yet limited, 
with savings reaching around 3% of the energy supply component. Those benefits however 
don’t hold with an increasing share of renewable generation, with incentives becoming mis-
aligned with the power prices. The study also demonstrates an increasing value for real-time 
cost rate for end-users, but very limited gain should be expected for all consumer segment. 
 
This paper is structured as follows. Section 2 introduces the methodology and data used in the 
paper. Section 3 describes the results. Section 4 discusses the results and concludes.  

2. Methodology 
 
Different methodologies have been used to assess the welfare gain of switching to real-time 
prices. A first segment of the literature represented by Borenstein and Holland (2003), Joskow 
and Tirole (2007), Léautier (2012), and Schweppe et al. (1985)  analysis flat-tariff inefficiencies 
using a model of competitive wholesale and retail electricity markets. Results demonstrate 
that direct pass-through is optimal in most cases, even if expected gain appears marginal 
compare to the cost of smart meter rollout (Léautier, 2012). Yet, as the rollout is on the verge 
of being completed and as fields experiments (Allcott, 2011; Faruqui and Sergici, 2010) tend to 
demonstrate the effectiveness of dynamic pricing, the potential could easily be triggered. De 
Jonghe et al. (2012), Gambardella and Pahle (2018) and Wolak (2019) developed model-based 
methodologies to assess welfare gains from RTP implementation and underlined the reduction 
of required investment in peaking generation capacity with demand response deployment, 
with only slight change expected in the electricity bills. 

Recent research shows that the underlying of the market power prices might be disregarded 
in some modeling framework. Blume-Werry et al. (2019) underline that most of the price-
setting technologies are heavily linked with foreign markets, even in large countries such as 
Germany. This stressed the importance of considering multiple countries to approximate 
power prices, and lead us to include Germany, United Kingdom, and Austria in this study. Ward 
et al.  (2019) builds on historical data to adjust a market model to better capture variability of 
prices, and acknowledge a widespread shortfall in current methodologies. We believe that 
model simplifications affecting the price formation could lead to undermining the market 
valuation of flexibility alternatives such as price-driven demand response, and include 
suggested methodology in our model framework. 

a. Unit commitment model 

 



 

 

The model consist of a MILP partial equilibrium model of the power market, usually refered as 
a unit commitment (UC) model, based on Quoilin (2015) and Palmintier (2011) formulations to 
estimate market prices. Unit commitment models represent the day-ahead commitment of 
each power plant units based on their short-run marginal costs and technical constraints. The 
demand is considered in this first stage as inelastic and will be assessed in a second stage. Such 
simplification is representative of the current market structure, where consumers on dynamic 
rate received the information based on the day-ahead dispatch. 
Clearing price divergences compared to historical could be explained notably by combined 
heat and power plants (CHP) (sector coupling), lack of unit by unit technical details, or non-
competitive bidding. A price markup per unit has been added based on historical values (Ward 
et al., 2019).  
 
The objective function is to minimize total costs of producing electricity (1):  

 

 

min⁡(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡) = 

∑𝑃𝑟𝑜𝑑𝑡,𝑘,𝑧⁡⁡ ∗ (𝑀𝑎𝑟𝑘𝑢𝑝𝑡,𝑘,𝑧 + ⁡𝑆𝑅𝑀𝐶𝑡,𝑘,𝑧 + 𝐸𝐹𝑘 ∗ 𝐸𝑇𝑆𝑡,𝑘)

𝑡,𝑘,𝑧

+⁡⁡∑ 𝑈𝐶𝑡,𝑘,𝑧 +⁡⁡

𝑡,𝑘,𝑧⁡

∑𝐿𝐿𝑡 ∗ ⁡𝑉𝑜𝐿𝐿𝑡
𝑡,⁡⁡⁡𝑘⁡

  

 

∀k∈κ, 
∀t∈τ,  
∀z ∈ Ζ 

(1) 

𝑃𝑟𝑜𝑑𝑡,𝑘,𝑧⁡ is the hourly production of a given technology cluster of a market area; 

 
𝑀𝑎𝑟𝑘𝑢𝑝𝑡,𝑘,𝑧 is a calculated price mark-up based on historical data; 

 
𝑆𝑅𝑀𝐶𝑡,𝑘,𝑧 is the short-run marginal cost of a unit, composed of fuel price and variable O&M; 
 
𝐸𝐹𝑘 is the emission factor in tCO2(eq) of a given technology cluster.  
 
𝐸𝑇𝑆𝑡,𝑘 is the market price of the carbon emission allowances. We assume a full pass-through 

of the carbon price; 
 
𝑈𝐶𝑡,𝑘,𝑧 are costs related to technical costs. It encompasses startup costs, shutdown costs, 

ramping costs and technical constraint related to minimal uptime (downtime) and maximum 
ramping up (down) capabilities; 
 
𝐿𝐿𝑡,𝑘 is the lost load, which is the energy not served in a market area; 
 
𝑉𝑜𝐿𝐿𝑡 is the value of the lost load, associated with the market price cap in the power market, 
set at 3000€/MWh; 
  
The cost minimization objective function is subject to constraints to capture the specificities of 
each technology cluster. Technology cluster considered consist of a triplet of fuel used, turbine 
installed and vintage class2. Additional constraints are considered for renewables-based 
technology (wind, solar, or hydropower) limiting the availability of the natural resources and 
are based on 2018 historical production. Those are therefore modeled as an hourly availability 

 
2 Fuel considered are coal, lignite, gas, nuclear, and renewables power. Technology is mostly used to 
distinguish between OCGT and CCGT gas power plant. Vintage classes are representative of the 
commissioning year of the power plant, linked to efficiency values considered for SRMC calculation. 
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factor (in %) multiplied by the installed capacities, with the possibility to curtail in case of 
excessive generation, a hypothesis that we might reconsider especially in a highly renewable 
scenario, especially when considering feed-in premium scheme. Thermal units also are 
described with operational constraints reflecting their technical capabilities, as described in 
Palmintier (2011). Those are ramping capabilities constraint, minimum up, and downtime and 
minimum power generation. Hydropower and battery behavior are constrained by their 
operating range, storage capacities, and charging/discharging behavior. 
 
The market price resulting from the UC model is deduced from the marginal value of the supply 
and demand constraint (2). A marginal increase of exogenous parameters, in this case the load, 
would result in an increase of the production variable, therefore of the objective function by 
an amount equal to the short-run marginal cost of the last unit called. Such value can be used 
as a proxy for the outcome of a day-ahead power market under perfect competition, to render 
the dispatch performed by ISO3s (Brent Eldridge et al., 2018).  
  

 

 

∑𝑃𝑟𝑜𝑑𝑡,𝑘,𝑧⁡ + 𝐼𝑚𝑝𝑜𝑟𝑡𝑧,𝑧 = 𝐿𝑜𝑎𝑑⁡𝑡,𝑧 + 𝐸𝑥𝑝𝑜𝑟𝑡𝑧,𝑧 +∑𝐶𝐻𝑡,𝑠,𝑧⁡

𝑡,𝑠,𝑧𝑡,𝑘,𝑧

⁡ 

∀k ∈ κ, 
∀t ∈ τ, 
∀z ∈ Ζ 

(2) 

 
𝐿𝑜𝑎𝑑𝑡,𝑧 is the hourly demand of a market area, considered inelastic; 

𝐼𝑚𝑝𝑜𝑟𝑡𝑧,𝑧 and 𝐸𝑥𝑝𝑜𝑟𝑡𝑧,𝑧 are variables for power exchanges between different market area; 

𝐶𝐻𝑡,𝑠,𝑧⁡ is the variable used to denote the charging/discharging power flows of storage 

technologies; 

ENTSO-E Transparency data (2020) is used for hourly data for load, renewables infeed, and 
power exchange capacities for each European market area. Technical parameters used for the 
Unit Commitment equations come from Schill et al. (2017). The power plant database used for 
the technology clustering comes from the open energy modeling initiative (2020). Table 1 
summarize key power market metrics in terms of consumption for France, the UK, and 
Germany in 2018. Table 2 describes the scenario considered in this study and associated 
names. Increasing deployment of renewables has been considered, together with a 
progressive increase in carbon price. The situation anticipated is that near-zero marginal 
power prices occurrence will increase, linked to the renewable, as the thermal unit will have 
increasing generation prices, linked to the carbon price increase. 
  

 
3 Independent system operator, in charge of the coordination and monitoring of the power system. 
We don’t distinguish with the European terms Transmission System Operator (TSO). 



 

 

b. Demand-side model  

 

To account for how end-users might react to real-time price variations, we used a second stage 
system dynamic model. This framework applies to a market structure where consumers would 
be informed of day-ahead market prices and is similar to existing RTP rates as described by 
Faruqui and Sergici (2010). It is also the current market structure envisaged in France and 
already commercialized4. The demand-response model follows Doostizadeh and Ghasemi 
formulation (Aalami et al., 2010; Doostizadeh and Ghasemi, 2012)  where end-user responds 
to the differences between market prices and their average energy tariff under a flat rate5: 
 

 

 

𝑑𝑐(𝑡) = 𝑑0𝑐(𝑡) ∗ (⁡1 +⁡𝜀𝑐(𝑡) ∗ ⁡
⁡𝑝(𝑡) −⁡𝑝𝑤𝑔(𝑡)

𝑝𝑤𝑔(𝑡)

+⁡ ∑ 𝜀𝑐(𝑡, ℎ) ∗ ⁡
𝑝(ℎ) −⁡𝑝𝑤𝑔(ℎ)

𝑝𝑤𝑔(ℎ)
)

ℎ=𝑡−𝑥...𝑡+𝑥

ℎ≠𝑡

 

 
⁡ 

(3) 

 
 
Where 𝑑0𝑐(𝑡) is the inelastic demand of a consumer considered in the UC, 𝜀𝑐(𝑡) is the self 
elastic of the consumer considered, 𝑝(𝑡) is the day-ahead market prices, 𝑝𝑤𝑔(𝑡) is the flat 

tariff proposed to the consumer, considered as being equal to the demand weighted average 
price of electricity of the consumer. The cross-elasticity6 𝜀𝑐(𝑡, ℎ) has not been considered as 
pilot projects show little evidence of energy shifting (Allcott, 2011; Borenstein, 2005). 
 
Data used for inelastic demand at the consumer level comes from Enedis open data (2020). It 
provides aggregated consumption for load profile by segment (Residential, Professional and 
Industrial) and voltage level at a half-hourly granularity in France, including an average profile 
of sites equipped with smart meters. Consumers on flat rates that don’t receive any price 
incentives have been considered for the inelastic demand, and are still representative of an 
important share of the draw-off points in France (see Table 3, Figures 1 and 2). Consumers 
currently under time-of-use rate have been used, with consumption pattern significantly 
different than consumer under flat rate. A heat-map of the hourly consumption pattern per 
day of the week is provided in Figure 3 for illustration.  It underlines the efficiency of price 
incentives, even though lifestyle of the consumers opting in for time-differentiated tariff is not 
fully representative of their price elasticity. 
 
As a first estimate, we distinguished elasticity per consumer segment according to the value 
provided by Burke and Abayasekara (2018) and presented in Table 4. An evident limitation of 
such values is that the study estimate short-term price elasticities of electricity demand in the 
U.S. Those values are however aligned with estimates used in the literature that consider RTP  
(De Jonghe et al., 2012; Gambardella and Pahle, 2018; Lijesen, 2007). We performed additional 
sensitivities to assess the robustness of the results for higher levels of short-term price 
elasticities. 

 
4 See for reference,  the Tempo tariff in France or new dynamic rate such as barry. 
5 We haven’t considered an incentives or penalties that would have been contractualized beforehand 
with third parties, thus resulting in a simple time-based program. 
6 Cross-elasticity refer to inter-period elasticity of demand. In other words, price-reactive demand will 
consider for each timestep not only the distance to the average electricity price, but also the relative 
distance of the neighbouring hours. 
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The flat rate offered to consumers for this research considers only the supply component of 
the price offered by homogenous retail firms. Retail firms are assumed to buy and sell 
electricity at the wholesale market prices, with zero profit on this component. The flat rate can 
be therefore calculated as being the demand weighted average wholesale price captured by 
end-users. We assume consumers react to variation to this average price that would be offered 
by the retailer, and use the weighted average price as a benchmark to estimate bill rebate from 
switching to a dynamic price scheme. An example of price-reactive consumer load change is 
procured in Figure 4a for a 48-h period. The dashed load profile indicates the impact of demand 
response, and underlines both the valley filling and the peak load reduction potential of price-
reactive consumers.  
 
Overall market impact has been analyzed thanks to the unit commitment model representative 
for the intra-day dispatch, this time considering the short-term load adjustment of reactive 
consumers. Thus, it is representative of the situation where the price takers assumptions 
wouldn’t hold for a high share of price-reactive consumers, resulting in a possible rebound 
effect on the market prices link to demand shifting.  
 

Table 4 – Elasticities considered per consumer segment 
 

 
Static price-elasticity 

of the demand  

Residential -0.11 

Professional -0.05 

Industrial -0.11 

 
 

3. Results  

3.1 Current rate 

 

Results based on the current rate schemes are presented in Table 5. The current Time-of-Use 
rate delivers proper incentives under the current operations across all segments, with an 
average price of electricity around 3% lower than under the flat rate in 2018. Users, therefore, 
consume electricity at a time with less generation scarcity, resulting in an increased consumer 
surplus. This however does not hold with an increasing share of renewables, neither under 
more important carbon price considered as in scenario RES100.3 (see scenario definition in 
Table 2 of appendix) for the consumer segment. The wholesale market prices evolve and 
become less correlated with the load. As a result, off-peak power consumption of the 
residential segment under a Time-of-Use tariff does not benefit from the solar generation, 
therefore are not beneficial from a system perspective (see Figure 3). Indeed, on-peak daytime 
consumption coincide in RES scenario with the increasing solar generation. From a system 
perspective, demand should be encouraged to be shifted toward noon, to benefit from the 
near-zero marginal cost of PV Panels and avoid reverse flow in the distribution grid. As the 
professional and the industrial segment are less subject to important load variability 
throughout the day, and are often already to some extent price reactive in the industrial 
segment, the effect is less pronounced for those consumer segments or appears even to stay 
profitable based on their current profile. 



 

 

Table 5 – Average price of electricity per consumer segment 
 

  
Historic 

Price 
Basecase RES40 RES80 RES100 RES100.3 

Residential 

Flat rate 51.76 48.88 38.37 30.96 27.72 38.46 
ToU  price 

difference (%) 
-3% 0% 0% 1% 2% 2% 

Consumer bill 
impact (€) 

-7.5 -0.9 0.3 1.6 2.4 3.3 

Professional 

Flat rate 52.63 48.62 38.05 30.43 27.07 37.83 

ToU  price 
difference (%) 

-2% -1% -1% -1% -1% -1% 

Consumer bill 
impact (€) 

-11.6 -6.6 -5.3 -4.0 -3.4 -5.0 

Enterprise 

Flat rate 52.81 48.78 38.24 30.64 27.30 38.10 
ToU  price 

difference (%) 
-3% -3% -3% -4% -5% -4% 

Consumer bill 
impact (€) 

-54.6 -47.0 -37.0 -36.9 -39 -45 

 
 

One can observe that the bill savings, assuming similar consumption level, are little between 
the base rate and the time-of-use rate. Households indeed benefit in recent years from 
energy efficiency improvements of most appliances and heating systems. Therefore, the 
benefits of delaying those appliances in off-peak hours (at night) gradually erode as the 
energy efficiency improve, and result in some cases in a net loss for the consumer compared 
to a flat rate. Moreover, one should note that only the energy part of the bill is assessed in 
this framework, which represents only a third of the total bill. We didn’t take into account 
consumer preferences of electricity consumption timing, neither private cost to switch from 
one rate to another, which would likely discard the benefits from switching rate. This cost 
might be non-negligible, as very low switching rates are seen in the current power market 
(less than 3% in 2020) (CRE, 2020). 

3.1 Real-Time prices 

 

Table 6 depicts the comparison between users under the base rate and RTP rate. As excepted, 
it results in an overall price decrease for the consumer, as they tend to under consume at peak 
price and overconsume when prices are low (Figure 4a). Gains are however less important than 
under the Time-of-Use rate in 2018, which might indicate we have under-estimated the 
elasticity of end-users and the possibility to shift a more important part of the consumption 
towards neighboring hours. Yet, and contrary to the current Time-Of-use rate, the savings 
increase with the increase in volatility of prices. As expected, price-reactive consumers react 
more as the prices reach more extreme values, as depicted by the difference between the 
RES100 and RES100.3 scenario. It is also important to note that the resulting annual load 
consumption level for each segment does not vary significantly. As the user reacts to its flat 
tariff, calculated as the demand weighted average price of the wholesale market for each 
customer segment, differences in annual consumption level are below 0.2% in all cases. 
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Table 6  – Average price of electricity per consumer segment 

 

  
Historic 

Price 
Basecase RES40 RES80 RES100 RES100.3 

Residential 

Flat rate 51.76 48.88 38.37 30.96 27.72 38.46 
RTP price difference 

(%) 
-1.4% -0.9% -2.1% -3.0% -3.5% -4.2% 

Non isoelastic RTP 
price difference (%) 

-1.5% -1.0% -2.1% -3.0% -3.5% -4.2% 

Consumer bill 
impact (€) 

-3.75 -2.28 -3.87 -4.48 -4.63 -7.86 

Professional 

Flat rate 52.63 48.62 38.05 30.43 27.07 37.83 

RTP  price difference 
(%) 

-0.7% -0.4% -0.9% -1.3% -1.6% -1.8% 

Consumer bill 
impact (€) 

-3.78 -2.33 -3.75 -4.45 -4.70 -7.69 

Enterprise 

Flat rate 52.81 48.78 38.24 30.64 27.30 38.10 
RTP  price difference 

(%) 
-1.4% -0.9% -2.0% -3.0% -3.5% -4.2% 

Consumer bill 
impact (€) 

-8.09 -4.99 -8.29 -9.81 -10.29 -17.10 

 
 

We also investigate the case when residential have a time-differentiated elasticity (Figure 5), 
but results don’t yield sensible differences. In the historical case, as the elasticity is higher 
when price peaks, it tends to slightly overperform the isoelastic case. Yet, as the prices 
decorrelated to the load, the differences are only marginal for the remaining scenarios. 
 

To estimate the required price-elasticity of demand required to reach significant bill savings, 
we performed additional sensitivities on the price elasticity of demand. Results for the 
Historic and RES100.3 scenario are depicted in Table 7. As a reminder, The European 
Commission indicates an annual saving of 22-70% of the energy supply. Our results don’t 
achieve such level of annual savings in the considered range of elasticity. Yet, the considered 
range for the residential and industrial segments is already quite large, with load variation 
between +58% and -50%. In other words, consumers would be in measure to half or twice 
their energy consumption given the price signals. We believe such results depict a situation 
where consumers are equipped with smart devices, that would automatically adjust their 
consumption pattern based on the price signals received. Indeed, the consumption pattern is 
heavily distorted compared to lower values of price-elasticity (see Figure 4b). Such demand-
management smart operation is already considered by electric-intensive firms (Google, 
2020). Yet, we believe the opportunities are lower for the residential segment, and would 
mostly rely on smart charging of EVs or personal home storage. It also to be noted that that 
framework for this research does not lead to significant energy savings, as the total 
consumption from the residential segment increase by 3.85% at most in RES100.3. 
Consumers have more opportunities to increase their consumption during a period of low 
prices (mostly linked to renewable or nuclear). This could be assimilated to a rebound effect 
linked to the prevalence of low prices in the day-ahead market.  
  



 

 

 
Table 7  – Average price of electricity per consumer segment for different price elasticity for Historic 

and RES100.3 scenario 
 

 

  
Historic 

Price 
ε1  

1.5 * ε1  2 * ε1 3 * ε1 4 * ε1 

Residential 

Flat rate  (€/MWh) 51.76     
RTP price difference 

(%) 
-1.4% -3% -3.9% -5.8% -7.7% 

Consumer bill 
impact (€) 

-3.75 -8.2 -10.8 -15.8 -21 

Professional 

Flat rate (€/MWh) 52.63     

RTP price difference 
(%) 

-0.7% -1.4% -1.8% -2.7% -3.6% 

Consumer bill 
impact (€) 

-3.78 -7.56 -9.72 -14.62 -19.35 

 
 

  
RES100.3 

ε1  
1.5 * ε1  2 * ε1 3 * ε1 4 * ε1 

Residential 

Flat rate (€/MWh) 38.46     
RTP price difference 

(%) 
-4.2% -6.3% -8.4% -12.4% -16.4% 

Consumer bill 
impact (€) 

-7.86 -11.8 -15.72 -23.2 -30.7 

Professional 

Flat rate (€/MWh) 37.83     

RTP price difference 
(%) 

-1.8% -2.7% -3.6% -5.4% -7.2% 

Consumer bill 
impact (€) 

-7.69 -11.5 -15.38 -23.1 -30.8 

 

3.1 Market impact 

We finally assess the overall impact of having price-reactive consumers from a system 
perspective. Table 8 present the case where all consumers currently under flat tariff would 
opt-in to RTP. The peak load reduction level found around -1% is far from pilot projects value 
found, as we only consider a share of the consumers would be price responsive, undermining 
the potential at the system level.  Testing higher share of real-time prices will likely increase 
the peak load reduction potential. However we believe the gain will stay marginal, and has 
little chance to materialize considering the low switching rate in the retail power market. We 
also believe that this indicates that the peak load won’t necessarily benefit from providing day-
ahead prices to end-users. Indeed, as prices are less and less correlated with the load, this 
event won’t necessarily coincide with the peak prices faced by consumers. The result when 
considering the maximum load reduction observed throughout the year reach 2.9GW, and 
therefore corresponds to a total load decrease of 3%, more significant than the one observed 
at peak load. Moreover, for each consumer segment, load reduction reaches between -9% and 
-18% compared to the inelastic case, well-aligned with pilot projects and other studies (Faruqui 
and Sergici, 2010; Gambardella and Pahle, 2018).  The fact that peak load hour and peak prices 
are to be more and more disconnected with increasing renewables might lead to grid 
congestion issues, and time dynamic rates under zonal pricing would have a very limited 
contribution to alleaviate this issue   



 

11 

 

 
 
 

Table 8 – Price-reactive impact on wholesale market and load 
 

 RES100 RES100.3 

Range of maximum load 
reduction  (%) -8%-18% -9%/-18% 

Market price difference (%) -3% -1% 

Peak Load reduction (%) -0.8% -1.0% 

Peak Load reduction (GW)  -0.80 GW -0.96 GW 

Max Load reduction (GW) -1.6 GW -2.9 GW 

 
 

4. Conclusion 

 

Our study suggests that gains from dynamic pricing are overestimated. When comparing the 
results to the bill reduction envisaged by the European Commission (2019) for RTP schemes of 
22-70% of the energy supply component in the annual bill, the demand response would need 
to deliver more than six times the savings found. Indeed, we find that the yearly average price 
difference compared to inelastic load never exceeds 5%. Additionally, we performed 
sensitivities on the short-term price elasticity, with cases where consumers can curtail 50% of 
their energy consumption. In those cases, yearly results doesn’t depict a situation where 
consumers bill would be reduced by more than 17%. The result of the European Commission 
would therefore likely go along with a net decrease of electricity consumption for the end-
users. The utility function associated with electricity consumption is however not evaluated in 
pilot projects. Indeed, reducing load consumption level comes with comfort loss linked to 
reduced heating level for example. Considering the stability of the yearly consumption found 
under our demand-side response hypothesis, we believe that results would hold true when 
considering hourly cross-elasticities or load shifting potential that are already captured, even 
if not constraint explicitely. Changing the willingness to pay of a consumer to lower values 
would however allow capturing more benefit and would likely result in a lower annual energy 
consumption. This could be the subject of further research. 
 
The gap found could come from the low estimate used for the  price elasticity of demand, 
despite evidence that it triggers a reasonable amount of load reduction at peak prices (9-18%) 
compared to the literature. Yet, it has also been demonstrated that the real-time price rate 
envisaged (RTP) scarcely triggers the most significant price response. More targeted price 
signals like the ones envisaged in Critical Peak Pricing schemes usually perform better for peak 
shaving. RTP is however the most straightforward pass-through of wholesale market prices, 
and results demonstrate that this tariff gain interest with increasing price volatility. This would 
however require to increase price-elasticity, which we believe is likely given the current 
electrification policies (EV, Storage). On the contrary, evidence that a Time-Of-Use is well-
suited in a context of high renewable generation and a high carbon price is not demonstrated 
in our research. It is likely that fixed timed tariff results in wrong price incentives. Fixed ToU  
are indeed unable to counter balance the weather-dependent variability of the net load and 
therefore lessen the interest of such rates.  



 

 

 
The integration of demand-side response also results in a decrease of the system peak load. 
An interesting finding of the study is that the maximum load reduction resulting from end-
users won’t necessarily coincide with the system peak load. This could notably result in 
increasing risks in grid congestion, a dimension which scarcity is not currently priced in current 
markets. We believe that further research is required to understand to what extent grid and 
generation scarcity would require different signals to be conveyed to the end-users, and might 
conflict with each user. This issue relates to the TSO-DSO coordination research stream, where 
country-wide signals resulting from the wholesale market might go against local grid 
congestion flexibility requirements. 
 
Finally, it is important to note that our study has some limitations. Market prices generated for 
different levels of renewable capacity and carbon price don’t capture the full volatility of price 
bids, notably effects of strategic bidding and feed-in tariff, that would distort the merit order. 
This could result in stronger incentives for the end-users, and would likely results in more 
important bill savings. We however don’t find significant change when using historical market 
prices. Then, the price elasticity of end-users is a highly debated measure, difficult to estimate, 
and depends highly on households. Also, the approximation that consumers react relatively to 
the flat rate that would have been offered to them is subject to discussion, as the consumer 
won’t necessarily have access to this information.  Finally, considered consumption patterns 
are representative of only a fraction of the end-users, especially for the residential side. 
Different consumption patterns would result in different captured prices. 
 
However, we believe that the trends depicted in our study for the relevance of the Time-of-
use tariff and the low profits resulting from real-time pricing would still hold. This question the 
policy pursued, as there is little evidence of significant incentives for the consumers. Moreover, 
consumers have little possibility to hedge against prices in a period of sustained high power 
prices, contrary to a retailer that could secure power price contracts. We believe this would be 
another important issue to address if RTP would be generalized.  
 
Finally, as next steps, we believe that the rapid cost decrease of batteries and the adoption of 
Electric Vehicles might result in more important benefits of RTP, an element that will be the 
be the subject of further research. 
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5. Appendix 

 

 
Table 1 - Summary statistics of French, UK, Germany electricity consumption in 2018 

 

Country France United Kingdom Germany Austria 

Annual electricity demand (TWh) 305.05 475.70 498.90 70.98 

Average hourly consumption (GW) 34.82 54.30 56.95 8.10 

Standard Deviation (GW) 7.42 12.30 9.86 1.55 

Minimum consumption (GW) 12.56 30.45 35.18 4.73 

Maximum consumption (GW) 54.52 96.33 76.79 11.92 

 
 
 

Table 2 – Scenario considered in this study 
 

Category Description Key figures7 

Historical 2018 historical market 
prices 

23.6 GW 
16€/tCO2(eq) 

Basecase 2018 Model prices 23.6 GW 

RES20 +20% RES in France 28.3 GW 

RES40 +40% RES in France 33 GW 

RES80 +80% RES in France 42.5 GW 

RES100 +100% RES in France 47.2 GW 

RES100.3 
+100% RES in France 

Carbon price x3 
47.2 GW 

47 €/tCO2(eq) 

 

 

  

 
7 Aggregated numbers of Wind and Solar PV installed capacities considered in the scenario. 



 

 

 

Table 3 – Consumer segment dictionary (Enedis, 2020) 
 

Category Segment Description 

RES1 Residential 
Résidentiel Base ≤ 6 

kVA 

RES11 Residential Résidentiel Base + WE 

RES2 Residential Résidentiel HP / HC - 

PRO1 Professional Professionnel Base 

PRO2 Professional Professionnel HP / HC 

ENT1 Enterprise 
Entreprise1 Basse 

Tension – avec Cadran 

ENT2 Enterprise 
Entreprise2 Basse 

Tension – avec Période 
Mobile 
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Figure 1 – Annual consumption in 2018 per consumer segment 

 

 
 
 
 

Figure 2 – Average consumption in 2018 per draw-off point per consumer segment 
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Figure 3 - Average load profile for the residential base rate and time-of-use rate in 2018 
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Figure 4a – Load reduction for a residental consumer with short-term elasticity of -0.11 in 
RES100.3 scenario 

 

 
 

Figure 4b – Load reduction for a residental consumer with short-term elasticity of -0.44 in 
RES100.3 scenario 
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Figure 5 – Nonconstant price elasticity of electricity demand (Knaut and Paulus, 2016) 
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