
 

Overview 

As the share of power generation from intermittent wind and solar plants is projected to grow in the coming decades, 

there is increasing recognition among industry participants that a variety of low-carbon power storage resources will 

also grow to manage this intermittency. There remain, however, ongoing discussions about the profitability of these 

storage resources and at what point market conditions will support widespread investment in utility-scale storage 

applications. In most restructured wholesale power markets, the profitability of a storage resource will depend on its 

ability to arbitrage intraday price differences by purchasing power at low prices and selling it at higher prices.  

In this paper, we propose an optimal strategy for a utility scale storage operator to maximize arbitrage profits in a nodal 

market with intraday price variation. We use this approach to compute the expected profit and profit distribution for a 

representative set of generation pricing nodes in the wholesale electric power market operated by the Midcontinent 

Independent System Operator (MISO). We draw several useful insights by weighing the geographical distribution of 

arbitrage profit potential against the underlying variables contributing to the price volatility in the Midcontinent ISO. 

Finally, we examine the sensitivity of the arbitrage profit potential to the two defining operational specifications of the 

storage facility: capacity and round trip efficiency.     

Arbitrage Potential 

In the United States, nearly 60 percent of electric power is bought and sold in markets managed by Independent System 

Operators (ISO) using marginal pricing principles. The ISOs continuously match load by dispatching generation 

resources in the merit order subject to transmission and reliability constraints. The prices, known as locational marginal 

prices (LMPs) or nodal prices, are set by the ISO at select locations or nodes using marginal pricing principles. The 

pricing mechanism ensures that the nodal prices generally track the offer curve with high prices during periods of high 

demand such as early mornings and late evenings and low prices during periods of low and intermediate demand, 

which span most of the night time, late mornings, and afternoons. The markets have also evolved over time. In addition 

to reflecting the marginal cost of incremental demand, most nodal prices in wholesale power markets today also include 

various penalties imposed by the ISOs to incentivize a reliable operation of the grid. In some locations, the penalties 

largely contribute to price spikes that range from 10 to 40 times the average nodal price.  The increased penetration of 

intermittent resources has also contributed to the intraday price variation and expensive backup generation needed to 

balance the load during a rapid decrease in wind or solar generation also contributes to higher prices. Lastly, a variety 

of market pricing rules such as those designed to manage the congestion with neighboring markets or balancing 

authorities also contribute to the frequency and magnitude of the intra-day price variation. These varying intraday 

prices create arbitrage opportunities for storage operators. A storage operator would profit by buying power from the 

grid when the prices are low and selling power back to the grid when the prices are high. Without perfect foresight, 

however, a storage operator’s challenge is to devise an optimal strategy to arbitrage uncertain intraday prices.   

Literature Review 

Using storage resources to arbitrage intraday prices in wholesale electricity markets has been suggested since the 

beginning of the restructuring era that paved the way to the adoption of locational marginal pricing. Walawalkar et al. 

[2007] proposed a simple strategy (charging during off peak hours and discharging during peak hours) to profit from 
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energy price arbitrage and frequency regulation in the New York area. Similar approaches were used by Sioshansi et 

al. [2009], Zafirakis et al. [2016] and Byrne and Silva [2012]. Paatero and Lund [2005], Kim and Powell [2011] and 

Barnhart et al. [2013] all examined pairing intermittent resources with storage resources. Krishnamurthy et al. [2017], 

Jiang and Powell [2016] introduced optimal bidding strategies in the day-ahead market to maximize a storage 

resource’s arbitrage profits. 

Mathematical Formulation 

We propose an optimal arbitrage strategy for a storage resource offering directly in the real time market with ex-ante 

pricing. Our approach assumes that the storage resource would offer in the real time market directly. In most nodal 

markets, the intraday price variation in the real time markets (and therefore profit potential) is substantially higher than 

the intraday price variation in the day-ahead market. In addition, in most restructured nodal electric power markets, 

the real time market prices are ex-ante, meaning that the prices paid to the generators are known at the beginning of 

the settlement interval. This allows the storage operator to react to prices in real time. A storage operator with a fast 

response time could begin to discharge if the real time price spikes.  

We assume that at the beginning of every settlement interval, the storage operator’s choices are: charge, discharge, or 

remain idle for the interval. In markets with ex-ante settlement prices, the nodal price for the settlement interval is 

revealed to the storage operator. We assume that the revealed price also signals the future price trajectory for the 

remaining decision time horizon. We further assume that the prices are Markov: future prices are conditioned only on 

the revealed price of the most recent settlement interval.  

 

Figure 1 Example of a Price Trajectory 

 



Figure 1 shows an example price distribution faced by the storage operator. The price at the beginning of the settlement 

interval 𝑡1 ($𝑃0 per MWh) is known to the storage operator. Hence 𝑝0 is trivially equal to 1. The distribution of price 

for the next settlement interval 𝑡2 ($𝑃1 per MWh with 𝑝1 probability and $𝑃2 per MWh with 𝑝2 probability,  𝑝1 +  𝑝2 =

1) is conditioned on the price of the settlement interval 𝑡1. The distribution of price for the settlement interval 𝑡3 is 

conditioned on the price of the settlement interval 𝑡2. For every settlement interval, the unconditional probabilities 

follows as: 𝜙1 = 𝑝0 ∗ 𝑝1 , 𝜙2 = 𝑝0 ∗ 𝑝2, 𝜙3 = 𝑝0 ∗ 𝑝1 ∗ 𝑝2, 𝜙4 = 𝑝0 ∗ 𝑝1 ∗ 𝑝4, 𝜙5 = 𝑝0 ∗ 𝑝1 ∗ 𝑝5 and 𝜙6 = 𝑝0 ∗ 𝑝2 ∗

𝑝6. 

The goal of the storage operator is to maximize the arbitrage profit given the conditional price distribution subject to 

capacity constraint and round trip efficiency of the storage resource.  

Let 𝑖 for 𝑖 ∈ 𝐼 represent the decision space for the storage operator. In the simple illustrative example shown in Figure 

1, 𝐼 = {0,1,2,3,4,5,6}. For convenience, we define a mapping function ℘(𝑖) to represent the prior decision point for a 

given decision point 𝑖. In the simple illustrative example shown in Figure 1, ℘(1) = 0, ℘(5) = 2. 

For each 𝑖, 𝑃𝑖  is the price to buy or sell electric power and 𝜙𝑖 is the unconditional probability of realizing 𝑃𝑖 . We 

define, 𝑐𝑖 , 𝑐𝑖 ∈ {0,1}, as a binary variable to represent the decision to charge and 𝑑𝑖 , 𝑑𝑖 ∈ {0,1}, as another binary 

variable to represent the decision to discharge. To simplify, we further define 𝑥𝑖 , 𝑥𝑖 = 𝑑𝑖 − 𝑐𝑖, 𝑥𝑖 ∈ {−1,0,1}, as an 

integer variable representing the decision to discharge (𝑥𝑖 = 1), charge (𝑥𝑖 = −1)  and stay idle (𝑥𝑖 = 0 ). Lastly, we 

define 𝑞𝑖 , 𝑞𝑖 ≥ 1, to represent the total charge available in the reservoir. Hence, the total charge is net of all charge and 

discharge decisions made at prior decision points leading to the decision point 𝑖. In the simple illustrative example 

shown in Figure 1, 𝑞3 = 𝑥0 + 𝑥1 + 𝑥3.  

For a storage resource with loss factor 𝑙𝑓, minimum operating capacity 𝑞𝑚𝑖𝑛 , maximum operating capacity 𝑞𝑚𝑎𝑥 , and 

initial level of charge in the reservoir 𝑆, we formulate the operators problem of maximizing the expected arbitrage 

profit 𝜋 in a market with ex-ante pricing as follows.1 

  

𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ (𝑑𝑖 − 𝑙𝑓 ∗ 𝑐𝑖)

𝑖

 (1)  

Subject to 

𝑞0 = 𝑆 (2)  

 

∀ 𝑖, 𝑞𝑖 = 𝑞℘(𝑖) + 𝑥𝑖  (3)  

 

∀ 𝑖, 𝑞𝑚𝑖𝑛 ≤  𝑞𝑖 ≤ 𝑞𝑚𝑎𝑥  
 

(4)  

 

The equation 2 ensures the available charge in the reservoir for the first decision point is equal to the initial level of 

the charge in the reservoir. The equation 3 ensures that the total charge in the reservoir at every decision point is equal 

                                                      
1  Loss Factor is defined as 1+ (1-Efficiency Factor). For example, the loss factor for a storage resource with a 

round trip efficiency of 80 percent is 1.2. 



to the net of all prior charge and discharge decisions. The equation 4 ensures that the total charge in the reservoir at 

every decision point does not fall outside of the specified capacity bounds of the storage resource.  

The expected arbitrage profit from the solving the storage operator’s charge-discharge-stay-idle mixed-integer problem 

follows. 

𝐸(𝜋∗) =  ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ (𝑑𝑖
∗ − 𝑙𝑓 ∗ 𝑐𝑖

∗)

𝑖

 (5)  

The distribution of arbitrage profits could also be derived from solving the storage operator’s charge-discharge-stay-

idle problem. Let 𝑗 for 𝑗 ∈ 𝐽; 𝐽 ⊂ 𝐼 represent the terminal decision points in the decision space for the storage operator. 

In the simple illustrative example shown in Figure 1, 𝐽 =  {3,4,5,6}. Let 𝜋𝑗
∗ represent the optimal arbitrage profit for 

the storage operator following the decision path that terminates at 𝑗. In the simple illustrative example shown in Figure 

1, the decision path through 0, 1 and 4 terminates at 4. The arbitrage profit 𝜋𝑗
∗ is the sum total of profits earned at every 

decision point in the path leading to the terminal decision point 𝑗. 

𝜋𝑗
∗ =  𝑃𝑗 ∗ (𝑑𝑗

∗ − 𝑙𝑓 ∗ 𝑐𝑗
∗) + 𝑃℘(𝑗) ⋅ (𝑑℘(𝑗)

∗ − 𝑙𝑓 ∗ 𝑐℘(𝑗)
∗ ) + 𝑃℘(℘(𝑗)) ∗ (𝑑℘(℘(𝑗))

∗ − 𝑙𝑓 ∗ 𝑐℘(℘(𝑗))
∗ ) + 

…. 

(6)  

 

The probability of realizing 𝜋𝑗
∗ is same as the probability of following the decision path that terminates at the decision 

point 𝑗. 

𝑃𝑟𝑜𝑏(𝜋∗ =  𝜋𝑗
∗) =  𝜙𝑗 ∗ 𝜙℘(𝑗) ∗  𝜙℘(℘(𝑗)) ∗ …. (7)  

 

Computational Complexity 

The storage operator’s charge-discharge-stay-idle problem presents a formidable computational challenge. The number 

of decision points increase exponentially with the number of price states. For instance, there are 2.2x1021 decision 

points in a 24 hour problem involving seven discrete price states. We propose an alternative approach. We break down 

the storage operator’s problem into multiple sub-problems using Bellman equations and solve recursively to obtain the 

optimal sequence of charge, discharge and stay-idle decisions (see Bellman [1957]). A formal proof is provided in the 

appendix A.  

Empirical Analysis 

The Midcontinent Independent System Operator 

To empirically test our model, we chose to use real world market data from the Midcontinent Independent System 

Operator (MISO), which serves large swaths of the American Midwest and Central South regions. Figure 2, which was 

taken directly from an official MISO market report, depicts the MISO market footprint.  

 

 

 

 

 



Figure 2. The MISO Market Footprint 

 

https://cdn.misoenergy.org/2018-19%20PRA%20Results173180.pdf 

The MISO is subdivided into ten Load Resource Zones (LRZs) that roughly correspond to state borders, but deviate 

from these borders to more closely match service territories of transmission owners (TOs), also called Local 

Balancing Authorities (LBAs). Figure 2 also lists the LBAs whose service territories are contained within each LRZ.    

Data Acquisition 

From the MISO website, we downloaded hourly real time prices for all 1,586 generation pricing nodes in the MISO 

during the time period beginning January 1st, 2017 and ending December 31st, 2020. This yielded approximately 48.0 

million observations of hourly real time price observations. 

In order to account for cyclical daily and seasonal load patterns, we then sorted prices for each node into two different 

categories: weekdays and weekends/NERC holidays. NERC holidays are major federal holidays in the US where the 

demand for power is typically lower than a normal working day during the week. We then further subdivided both the 

weekday and weekend categories into four groups; Quarter 1 (Q1), which spans January through March; Quarter 2 

(Q2), which spans April through June; Quarter 3 (Q3), which spans July through September; Quarter 4 (Q4), which 

spans October through December. As a result of this sorting, we end up with eight groups of hourly real time prices: 

Q1 weekdays, Q1 weekends, Q2 weekdays, Q2 weekends, and so on.  

Calculating Seven Price States 

To perform our empirical analysis, we create seven distinct price states from the raw hourly real time prices. To capture 

the leptokurtic nature of real time power prices, we choose five states to comprise the middle 96 percent of the price 

distribution and two additional states that replicate the lower and upper bounds or “spikes” of the price distribution. 

To do this, we first calculated price quantiles at each individual node quantile increments of 0.05. We then calculated 

the 0.0, 0.005, 0.01, 0.15, and 0.02 quantile values of the price distribution at each node and calculate the mean of this 

interval to capture the “fat tail” price at the low end of the distribution. We take the mean of the 0.98, 0.985, 0.99, 

0.995, and 1.0 quantiles to calculate the high price spikes at the high end of the distribution. We calculated the mean 

values between 0.02 and 0.2, 0.2 and 0.4, 0.4 and 0.6, 0.6 and 0.8, and 0.08 and 0.98 to create the price levels in 

between the high and low values. Then, depending upon in which quantile interval it falls, we assign each observed 

hourly price at each node one of the seven calculated price state values.  

As a simple example, assume the price at a node was $20/MWh at 12:00 on a given day, the price was $22/MWh at 

13:00, and the price was $100/MWh at 14:00. Assume prices at 12:00 and 13:00 both fall within the 0.2-to-0.4 quantile 

https://cdn.misoenergy.org/2018-19%20PRA%20Results173180.pdf


price interval and the price at 14:00 falls into the 0.98-to-1.0 interval. Then both the prices at 12:00 and 13:00 are 

assigned the same price value ($22.13/MWh as an example) and the price at 14:00 will take on the value of the top 2 

percentile ($87.45/MWh as an example). Thus, each of the observed prices is assigned one of seven calculated values 

that correspond to the approximate quantile of the original price. For each pricing node, we create seven price states 

for each of the eight time periods. For instance, we create seven price states for all nodes for Q1 weekdays, seven price 

states for Q3 weekends, and so on. This gives us a total of fifty-six price states for each node.  

Filtering Out Time-Deficient and Duplicate Nodes 

To ensure that we can compare the results from our analysis, we first filter out nodes with an insufficient number of 

observations. We choose to filter out nodes that have less than 50 percent of the possible hourly observations or are 

missing observations in one of the eight seasonal/weekday subgroups. This brings the number of nodes for our 

empirical analysis down to 1,350.  

It is common practice for ISOs to assign multiple pricing nodes to the same generating facility. For example, if a gas 

fired combustion turbine consists of three separate combustion turbine units, the ISO may assign three pricing nodes 

to the same generator, one for each unit. The ISO does this in case one unit is unoperational but in reality, the nodal 

prices co-located at one generator will be identical. In addition, sometimes multiple entities own partial shares of the 

same generating unit and the ISO will again assign duplicate nodes to the same generator. To reduce the time spent 

computing profitability across nodes and time periods, we grouped together all nodes with less than a $0.01/MWh 

difference across all fifty-six price states and chose one representative node per group. This filtration reduces the 1,350 

price nodes left from the first round of filtering down to a total of 856 “unique” nodes. We are therefore left with 

approximately 29.8 million hourly price observations for our empirical analysis.  

Optimization Model Runs 

For all 856 unique MISO price nodes, we compute the optimal profit and profit distribution using the optimization 

mode developed earlier. All ISOs use five minute settlements to manage real time markets. The hourly price is not 

fully revealed to the storage operator until the beginning of the last five minute settlement period. We assume that the 

hourly transition matrix is an unbiased approximation to the more granular five minute transition matrix. There are 23 

transitions within an operating day. We assume that are transition probabilities are not independent of the time of the 

hour in the day. The transition probability from second price state to the third price state in the hour ending four is not 

necessarily same as the transition probability from second price state to the third price state in the hour ending six. 

For each of the 856 unique MISO price nodes, we estimated transition probability matrices for the eight representative 

days in a year. In other words, we separately estimated the transition probability matrix for each quarterly weekday 

and weekend separately. For each representative day, we estimated the unconditional probabilities for the first hour 

and conditional (transition) probabilities for the remaining subsequent 23 hours. We assume that the inter-day transition 

probabilities, i.e., from the last hour of the prior day to the first hour of the next day, is negligible.  

Given the estimated probability matrix and prices, we optimized the storage operators, charge, discharge or stay-idle 

decision for each representative day using the optimization formulation described above. The mixed integer 

optimization is divided into multiple sub-problems and solved recursively using Bellman equations. We obtained the 

expected profit and probability distribution of the profit for every selected pricing node for each representative day. 

Monte Carlo Simulations - Yearly Profit Distribution 

We also derived the yearly profit distributions for the storage operator for all selected pricing nodes from their 

respective eight representative day profit distributions using Monte Carlo simulation. For every day, a random profit 

is drawn from the corresponding representative day’s profit distribution. The total profit for the year is obtained by 



adding the daily profits. We simulated 5,000 iterations to derive the yearly profit distribution for every selected pricing 

node. 

Results  

Profitability and Statistical Properties of Nodal Prices 

After collecting the results of our empirical analysis, we first investigate if there exist any patterns between node 

profitability and a series of statistical measurements of the nodal prices. For each of the eight representative days used 

in our analysis, we calculated the mean, median, standard deviation, skewness, kurtosis, and range of prices at all 856 

nodes used in the analysis. We then graph the relationships between expected storage resource profitability and the 

statistical measurements of prices at the corresponding node.  

These graphs reveal several patterns. First, there are strong, positive--sloping linear patterns between the standard 

deviation of prices at a node and the expected profitability. This relationship holds across all eight representative days. 

We fit simple OLS trend lines to measure the relationship between these two variables and see R-squared values 

ranging from 0.770 for Q1 weekends to 0.941 for Q3 weekends. Figure 3 below  

Figure 3. Daily Profit as a Function of Nodal Price Standard Deviation for a 3MW Battery - Q3 Weekdays 

 

In addition, there are also strong, positive-sloping linear correlations between the price range at a given node and the 

expected profitability. Again, this relationship holds across all eight representative days although the strength of the 

relationship varies more than that between profitability and standard deviation. The highest R-squared value between 

range and profitability 0.914 for Q2 weekdays and the lowest is 0.736 for Q3 weekdays.  

Finally, we see no discernable patterns between expected profitability and mean, median, skewness, or kurtosis values 

of prices at a given node. We believe that it makes intuitive sense that statistical measurements of spread are positively 

correlated with higher profits for storage resources that seek to make money via price arbitrage. Larger and more 

frequent differences in prices provide more opportunities for storage resources to buy and sell at high profits.  

Geographic Distribution of Profitable Nodes 

In the MISO, we see clear geographic patterns in node profitability. Figure 4 below ranks all 856 nodes used in the 

Monte Carlo simulation from highest (1) to lowest (856) profitability and maps them to the LRZ in which they lie.  



Figure 4. Location of Profitability-Ranked Nodes in MISO 

 

Immediately, we see that the hundred most profitable nodes are clustered in LRZ 9, LRZ 2, and LRZ 6. Upon further 

inspection of these results, we see that the highly profitable nodes in LRZ 9 correspond to a group of power plants that 

lie on the Mississippi river between Baton Rouge and New Orleans in southwestern Louisiana. Many of these plants 

are coal and gas-fired units located near heavy industrial sites that sit along this stretch of river. As it turns out, this 

area is designated as the Amite South Narrowly Constrained Area (NCA) by the MISO. NCA’s are special designations 

for areas of the grid with frequently binding network constraints and especially volatile prices. The cluster of highly 

profitable nodes in LRZ 2 correspond to the Northern Wisconsin-Upper Michigan (NWUMS) NCA where sparse 

transmission lines can cause similar problems. The cluster of plants in LRZ 6 are coal plants located in the Big River 

Electricity Company territory in Western Kentucky that abets a market interface with the Tennessee Valley Authority 

(TVA). We suspect that volatility at these pricing nodes might be caused by Transmission Line Loading Relief (TLR) 

maneuvers that have been reported to cause congestion in the interface between MISO and TVA (Potomac Economics 

(2020)).  

In addition, we see that LRZ 7 and remaining nodes in LRZ 9 are clustered heavily towards the more profitable end of 

the spectrum. We suspect nodes in LRZ 7 might exhibit higher profitability due to the Lake Erie Loop Flow between 

MISO, PJM Interconnection, the New York ISO, and Ontario ISO (IESO) that regularly impacts Michigan. We suspect 

that market interface issues between the Texan wholesale market (ERCOT) and the Eastern part of Texas/Louisiana 

that lie in MISO might be driving profitability in the LRZ 9.  

  



Profitability by Fuel Type 

From the results both our optimization model 

calculations of expected profits and Monte Carlo 

simulations of annual profits, we see no clear 

relationship between the type of generator technology 

located at a given pricing node and the expected 

profitability of the node. Steam coal power plants are 

scattered widely throughout the MISO footprint although 

they are less frequent in LRZ 10, which is conterminous 

with western and southern Mississippi. The same is true 

for gas-fired power plants with the exception of Northern 

Minnesota, Northwestern Wisconsin, and North Dakota.  

Figure 5 shows the distribution of wind generators in the 

MISO market footprint. In contrast to coal, gas, and 

nuclear generators, wind generators in the MISO are 

heavily clustered in the states of Iowa (LRZ3), southern 

Minnesota (LRZ1) and central Illinois (LRZ4). Figure 5 

also includes the three market regions that, combined, 

contain 71 of the top 100 most profitable nodes from our 

Monte Carlo analysis: the Amite South NCA, North 

WUMS NCA, and Southern Indiana/Western Kentucky 

border between MISO and TVA. Taking into account the 

strong correlation between arbitrage profitability and 

price volatility from our results, the lack of any clear 

pattern between node profitability and fuel type of the 

generator located at the corresponding pricing node 

strongly suggests that extreme price volatility in the 

MISO is driven more so by binding transmission network 

constraints and market interface modelling issues. Given 

the tendency for storage advocates to cite pairing storage 

resources with intermittent renewables, we believe that this is an important result that merits further discussion as this 

pairing may not necessarily offer storage resource investors the highest return for their investment. In the MISO, it 

appears that installing a battery at most wind turbines will lead to sub-optimal returns in comparison to alternative 

nodes.   

Storage Capacity 

We ran a series of sensitivity analyses on our model to test the impact of changing storage capacity on expected 

profitability. Figure 6 depicts the expected daily profitability of a storage resource located at ten representative nodes 

located throughout the MISO footprint. Figure 6 shows expected profits as a function of dispatchable storage capacity. 

For instance, since our model assumes that the storage resource must maintain a minimum of 1 MW of charge, a value 

of “1” on the x-axis on this graph indicates that the resource has a total installed capacity of 2 MW. All optimization 

runs to create these profitabilities assumed a 20 percent round-trip efficiency and the ability to charge or dispatch 1 

MW every hour.  

 

 

Figure 5. Map of Wind Resources in MISO and 

Most Profitable Node Clusters (Circled in red) 

Source: EIA U.S. Energy Mapping System  

https://www.eia.gov/state/maps.php 

https://www.eia.gov/state/maps.php


 

Figure 6. Expected Daily Profit as a Function of Dispatchable Storage Capacity 

 

We see very clearly in Figure 6 that profitability increases as storage capacity but at a decreasing rate. For most nodes, 

profitability appears to largely flatten our when the dispatchable capacity reaches 6 MW and stop increasing entirely 

at 7 MW.  

We believe that this result can be explained by looking more closely at the number of average arbitrage opportunities 

a storage resource can expect to have on a daily basis. Figure 7 shows the hourly coefficient of variation (COV), i.e. 

the standard deviation divided by the mean, for prices at all nodes in the MISO from the entire sample period of 2017-

2020. Because the storage resource is assumed to have a roundtrip efficiency of 80 percent, the red horizontal line 

depicts the minimum COV that a storage resource would need to sell power at a profit if they purchased power at a 0.6 

COV. Similarly, the blue horizontal line depicts the level at which they would need to sell power at a profit if they 

purchased power at a price of 0.7.  

Figure 7. Coefficient of Variation for All Hourly Real Time Nodal Prices in MISO 

 



We see that there are six price COVs that lie about the blue line and four that lie between the red and blue lines. To 

make a significant profit, the storage resource would want to sell power above the blue line. Since there are six COVs 

that lie above this line, it would make sense that, on average, the storage resource can earn a significant profit during 

six hours of the day. They could make a profit by selling at a point that lies above the red line as well but it would 

mean they had to purchase power at a COV level of 0.6. It therefore makes sense that marginal profitability will 

approach zero as the storage resource’s capacity approaches 7 MW.  

Conclusion 

In this paper, we present an intertemporal profit maximization problem for a storage resource participating in a 

restructured wholesale electricity market with nodal pricing. This storage resource seeks to maximize profits via 

arbitrage in the real time energy market, i.e. by charging when power prices are low and selling power back into the 

grid when prices are high. Prices are assumed to follow a discrete Markov process with seven possible states. To 

capture underlying market dynamics, the price states change from low to high between hours according to a series of 

twenty-four transition probability matrices. The storage resource also faces operational constraints such as storage 

capacity limits, round-trip charge/discharge efficiency, and minimum charge levels. These operational constraints 

impact its decision to charge, discharge, or remain idle when faced with current and expected future price states. 

To empirically test our model, we use hourly real time market prices from the Midcontinent ISO (MISO) to estimate 

the expected profitability and accompanying profitability distributions for a storage resource. These raw data are used 

to create the price levels and transition probability matrices for the profit maximization problem. We sort these data 

into seasons and peak/off-peak days and then calculate expected profitability across 856 unique price nodes in MISO 

. We also run Monte Carlo simulations to calculate the annual expected profitability at these nodes.  

The results of our empirical analysis reveal several trends. First, we see that the expected profitability of a storage 

resource at a given node is highly correlated with the standard deviation and range of the prices at that node. In the 

MISO, we see that the nodes with the highest expected profitability are clustered in geographic regions where 

insufficient transmission network infrastructure leads to frequent congestion issues and volatile prices. The Amite 

South Narrowly Constrained Area (NCA) located in Southwestern Louisiana and the Northern WUMS NCA in the 

Michigan Upper Peninsula accounted for forty-five and nineteen of the top one hundred most profitable nodes 

respectively in the Monte Carlo simulation. In addition, seven of the top one hundred most profitable nodes were 

located in southern Indiana and western Kentucky. These nodes are located close to the market interface between 

MISO and TVA, an area that has had documented interface modeling issues leading to price spikes in MISO. We see 

no patterns between the fuel type of a generator at a given pricing node and profitability for the storage resource. In 

fact, the majority of pricing nodes at wind turbines are located in LRZ1 and LRZ3, both of which contain nodes heavily 

clustered in the bottom half of the profitability distribution. LRZ1 in particular contains sixty-nine of the one hundred 

least profitable nodes in our analysis. This pattern stands in stark contrast to the notion that storage resources can 

achieve their highest profits when coupled with intermittent renewables. Our empirical results instead suggest that the 

most profitable use of storage resources might be to balance market areas that frequently experience network 

congestion and exhibit high price volatility. 

We believe there are a number of exciting avenues for future research that could further shed light on the profitability 

of storage resources. One avenue would be to use a portfolio optimization approach to maximize the profits of a fleet 

of batteries operating in a single market. This would build directly off the evidence presented in this paper that the 

expected profitability of a storage resource is highly correlated with the volatility of the prices where it is located. A 

portfolio of storage resources could allow investors to maximize their expected return while also taking into account 

their appetite for risk. In this paper, we assumed that a storage resource operator would be focused primarily on real 

time nodal prices since they typically exhibit considerably higher price spreads than day ahead market prices. Though 

we are comfortable with our decision to focus on real time prices, it could be worthwhile to investigate how storage 



resources could improve profitability by participating in the day ahead energy market as well. Finally, storage 

resources, and batteries in particular, are slowly becoming more prevalent in ancillary service markets. In the United 

States, batteries already participate in regulation submarkets due to their ability to respond quickly to fluctuations in 

system frequency and help system operators manage power imbalances on the power grid. Important research remains 

to be done to determine how storage resources should operate to maximize profits in these ancillary service markets.  

Appendix A 

Consider a simple binomial decision tree that represents the options available for a storage operator. At each decision 

node, the storage operator has to decide whether to charge or discharge or idle.  

Figure 2 Decision Tree 

 

𝑖, 𝑖 ∈ {0,1,2,3,4,5,6} represents the decision nodes 

The mapping function ℘(𝑖) provides the prior decision node to the decision node 𝑖. For example, ℘(1) = 0, ℘(5) =

2. 

𝑐𝑖 , 𝑐𝑖 ∈ {0,1}, a binary variable represents the decision to charge 

𝑑𝑖 , 𝑑𝑖 ∈ {0,1}, a binary variable represents the decision to discharge 

𝑥𝑖 , 𝑥𝑖 = 𝑑𝑖 − 𝑐𝑖, 𝑥𝑖 ∈ {−1,0,1}, a integer variable represents the decision to discharge (𝑥𝑖 = 1), charge (𝑥𝑖 = −1)  

and stay idle (𝑥𝑖 = 0 ) 

𝑙𝑓, 𝑙𝑓 > 0 represents the loss factor 



𝜑𝑖, 0 ≤  𝜑𝑖 ≤ 1 represents the probability of the decision node 𝑖. For each time period, the probabilities sum to 1. 

For example, 𝜑1 + 𝜑2 = 1; 𝜑3 + 𝜑4 + 𝜑5 + 𝜑6 = 1. 

𝑃𝑖 , represents the expected price at the decision node 𝑖 

𝜑𝑖 ∗ 𝑃𝑖 represents the expected price at the decision node 𝑖 

𝑞𝑖 , 𝑞𝑖 ≥ 1, represents the total charge available in the reservoir at a decision node 𝑖. The total charge at a decision 

node is net of charge and discharge decisions at all nodes leading to the decision node 𝑖.   For example, 𝑞3 = 𝑥0 +

𝑥1 + 𝑥3. 

𝑞𝑚𝑖𝑛  represents minimum capacity and 𝑞𝑚𝑎𝑥  represents maximum capacity of the reservoir. 

The storage operator’s goal is optimally charge and discharge so as to maximize the expected profits. 

𝑆𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  ), represents the maximum profit that storage operator could earn given the expected 

prices, starting level of the reservoir and capacity limits of the reservoir. 

The optimal profit for the full tree, 𝑆𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  ) is obtained by solving the following mixed integer 

problem  

 𝑆𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  ) =  

𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ (𝑑𝑖 − 𝑙𝑓 ∗ 𝑐𝑖)

𝑖

 (A1)  

Subject to 

𝑞0 = 1 (A2)  

 

𝑞𝑖 = 𝑞℘(𝑖) + 𝑥𝑖  (A3)  

 

𝑞𝑚𝑖𝑛 ≤  𝑞𝑖 ≤ 𝑞𝑚𝑎𝑥  
 

(A4)  

 

Alternatively, 𝐿𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  )  is obtained by solving a two-step mixed integer problem. 

In the first step, the conditional optimal profits for sub branch 5 and 6 are obtained. In the second step, the optimal 

profit for residual tree is obtained by using the sub branch conditional optimal profits obtained in the first step.  

The sub branch optimal profit for a given 𝑞𝑆𝐵 , 𝑞𝑆𝐵 ∈ { 𝑞𝜅1, 𝑞𝜅2, 𝑞𝜅3, … 𝑞𝜅𝑛 }, is obtained by solving the following 

mixed integer problem 

𝑆𝐵(𝜑5 ∗ 𝑃5, 𝜑6 ∗ 𝑃6, 𝑞𝑆𝐵 , 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥)   =  

𝑀𝑎𝑥 𝜑5 ∗ 𝑃5 ∗ 𝑥5 +  𝜑6 ∗ 𝑃6 ∗ 𝑥6 (A5)  

 

Subject to  



𝑞𝑆𝐵 + 𝑥5 = 𝑞5 (A6)  

 

𝑞𝑆𝐵 + 𝑥6 = 𝑞6 (A7)  

 

∀ 𝑖 ∈ {5, 6}        𝑞𝑚𝑖𝑛 ≤  𝑞𝑖 ≤ 𝑞𝑚𝑎𝑥  
 

(A8)  

The optimal profit for the residual tree, 𝐿𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  )  is obtained by solving the following mixed 

integer problem. 

𝐿𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  ) = 

𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ 𝑥𝑖

𝑖∉{5,6}

+ ∑ 𝑦𝜅 ∗ 𝑆𝐵(𝜑5 ∗ 𝑃5, 𝜑6 ∗ 𝑃6, 𝑞𝜅 , 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥)

𝑘

 (A9)  

Subject to 

𝑞0 = 1 (A10)  

 

∀ 𝑖 ∉ {5,6}, 𝑞𝑖 = 𝑞℘(𝑖) + 𝑥𝑖  (A11)  

 

∀ 𝑖 ∉ {5,6}, 𝑞𝑚𝑖𝑛 ≤  𝑞𝑖 ≤ 𝑞𝑚𝑎𝑥  
 

(A12)  

 

∑ 𝑦𝜅

𝑘

∗ 𝑞𝜅 = 𝑞2 

 

(A13)  

 

∑ 𝑦𝜅

𝑘

= 1 

 

(A14)  

  

𝑦𝜅 ∈ {0,1} 
 

(A15)  

 

Proposition:  𝑆𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  ) ≡  𝐿𝑇(𝜑𝑖 ∗ 𝑃𝑖 , 𝑞0, 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥  )  

Proof 

Part 1: Objective functions for both formulations are equivalent  

From (9) 



  𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ 𝑥𝑖

𝑖∉{5,6}

+ ∑ 𝑦𝜅 ∗ 𝑆𝐵(𝜑5 ∗ 𝑃5, 𝜑6 ∗ 𝑃6, 𝑞𝜅 , 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥)

𝑘

 (A16)  

 

Following (5),  

 𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ 𝑥𝑖

𝑖∉{5,6}

+ ∑ 𝑦𝜅 ∗ [𝑀𝑎𝑥 𝜑5 ∗ 𝑃5 ∗ 𝑥5 +  𝜑6 ∗ 𝑃6 ∗ 𝑥6 ]

𝑘

 (A17)  

 

Following (14) 

 

Following (14) 

𝑀𝑎𝑥 ∑ 𝜑𝑖 ∗ 𝑃𝑖 ∗ 𝑥𝑖

𝑖∉{5,6}

+ [𝑀𝑎𝑥 𝜑5 ∗ 𝑃5 ∗ 𝑥5 + 𝜑6 ∗ 𝑃6 ∗ 𝑥6] 

(A18)  

 

The above objective function (A18) is identical to the objective function (A1) specified in the full tree formulation. 

 

Part 2: Feasible sets for both formulations are equivalent  

Setting any arbitrarily selected, 𝑦𝑘𝑠 equal to 1, constraints (A13) through (A15) can be expressed as  

𝑞2 + 𝑥5 = 𝑞5 (A19)  

 

𝑞2 + 𝑥6 = 𝑞6 (A20)  

 

Proof: 

Given (A14) and (A15),  

𝑦𝜅1 = 0; 𝑦𝜅2 = 0; … . 𝑦𝜅𝑠 = 1; … 𝑦𝜅𝑛−1 = 0; 𝑦𝜅𝑛 = 0 (A21)  

 

Substituting in (A13), 

1 ∗ 𝑞𝜅1 +  0 ∗ 𝑞𝜅2 + ⋯ 1 ∗ 𝑞𝜅𝑠 + ⋯ 0 ∗ 𝑞𝜅𝑛−1 + 0 ∗ 𝑞𝜅𝑛 = 𝑞2 (A22)  

 

Simplifying further, 

𝑞𝜅𝑠 = 𝑞2 (A23)  



 

Substituting 𝑞𝜅𝑠 for 𝑞𝑆𝐵 in constraints (6) and (7) of the sub problem 

𝑞2 + 𝑥5 = 𝑞5 (A24)  

 

𝑞2 + 𝑥6 = 𝑞6 (A25)  

 

The two constraints (A24) and (A25), combined with the remaining constraints, constraint (A8) of the sub branch 

problem formulation and constraints (A10) through (A12) of the residual problem formulation are identical to 

constraints (A2) through (A4) of the full tree problem formulation.  

Since the objective function and constraints are identical, the formulations are equivalent.   
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