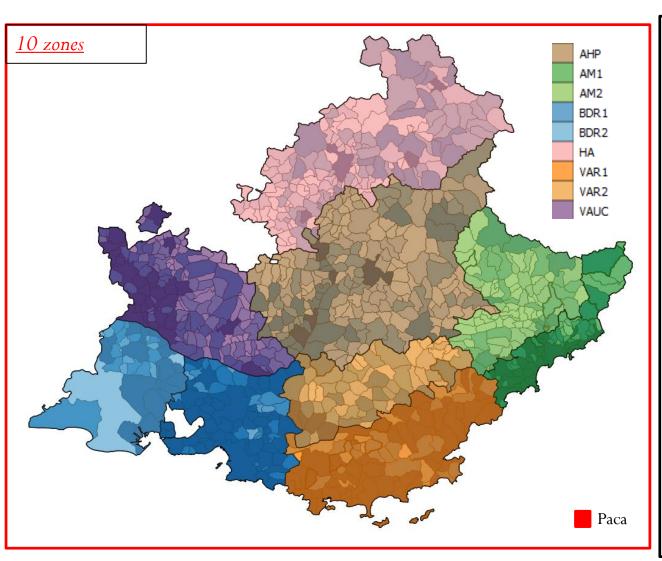
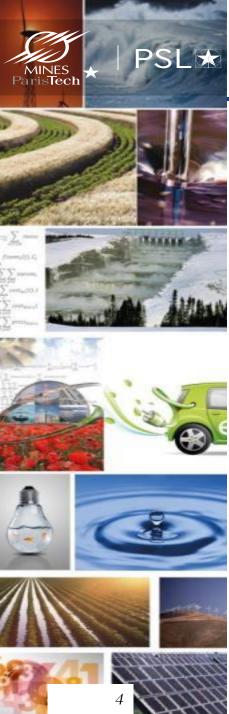


LONG-TERM ANALYSIS OF THE CASE OF THE SOUTH-EST REGION OF FRANCE

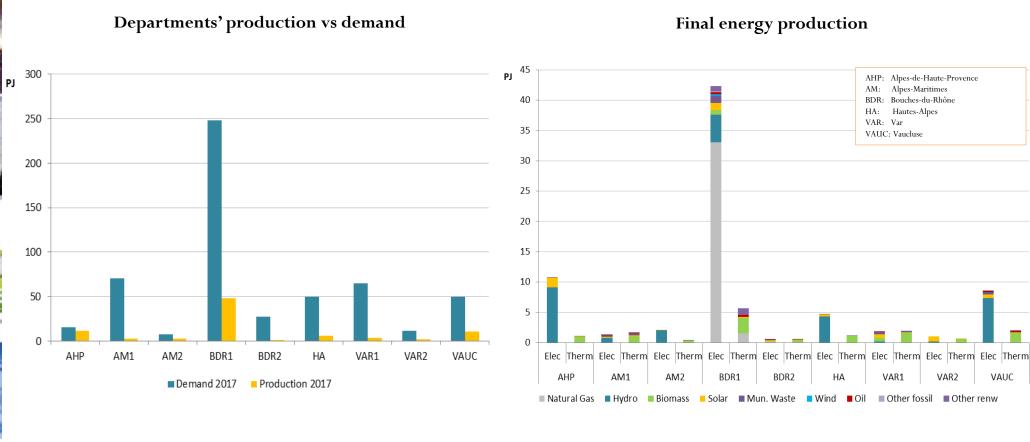

Context

- Objective: Analyze, through a prospective model, the options for low-carbon energy transition and circular economy in the SOUTH PACA region
- Main questions:
 - Integrate circular economy issues into the region's energy system long-term model
 - Evaluate the region's energy-climate policies
 - How to transform the various national guiding documents into regional energy policies?
 - Where and how to develop renewable energy potentials?
 - How the region can contribute to national decarbonisation goals?

Model structure

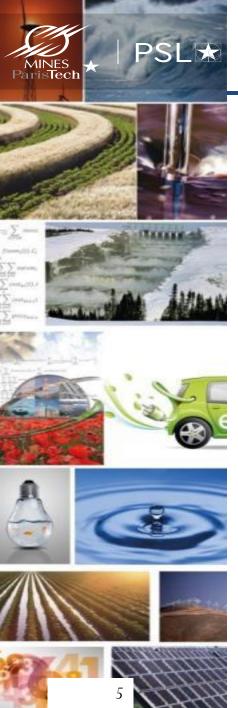


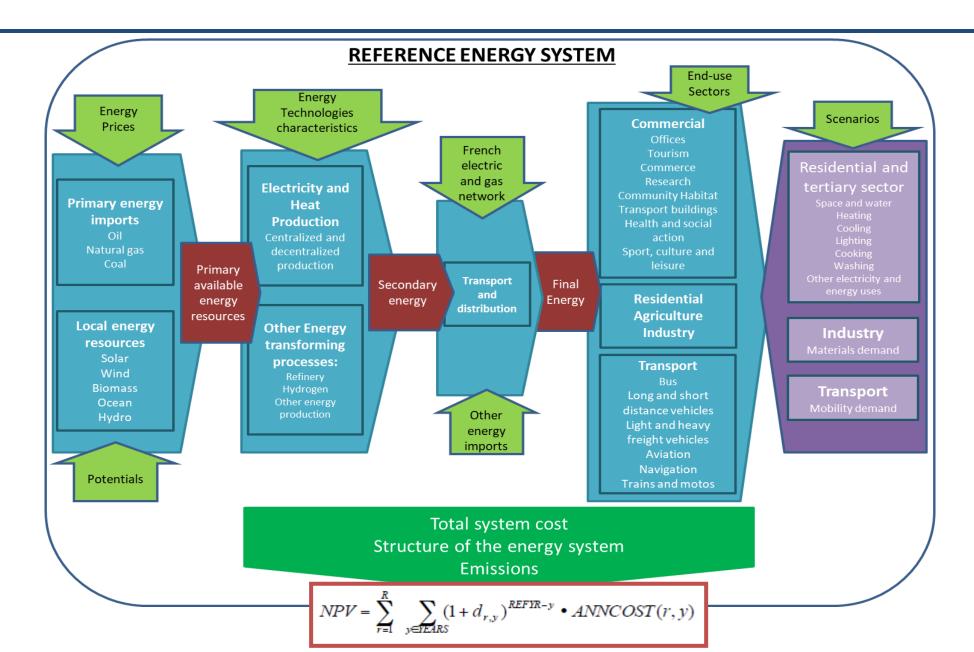
Departments-zones

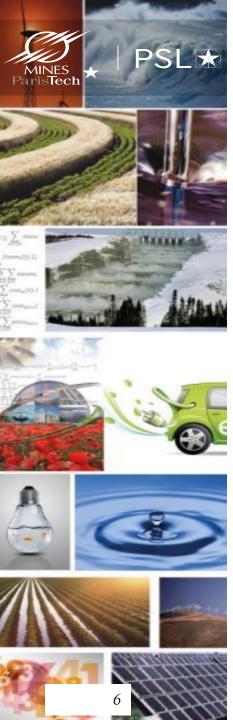

- Electricity production by sector
- Consumption by sector of activity and by type of demand (housing, transport, industry, agriculture)
- Potentials of renewable energies

PACA

- Power and gas networks
- Energy exchange hub
- Aviation consomption
- Transport consumption (not coming from the PACA region: 15% of the consumption of private vehicles; 22% of heavy goods vehicles)
- Refinery

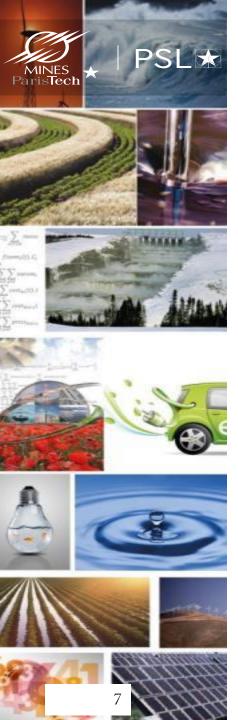

Final energy production by department of the SUD PACA Region in 2017




- Low energy production compared to consumption (17% of the demand)
- Energy production mainly comes from fossil fuels (50%)
- Production concentrated in the BDR1 (54%)

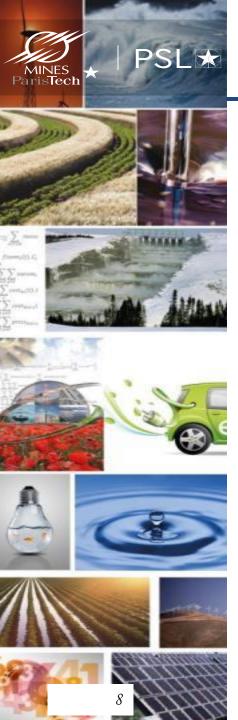
PSL★

TIMES SUD PACA model

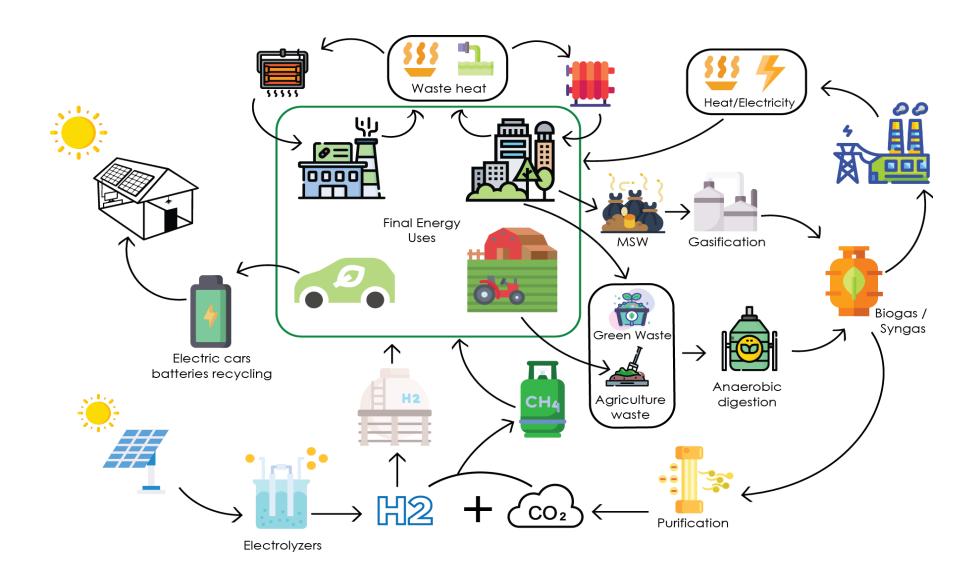


Circular economy

Can be defined as an **economic system** that seeks to contribute to **sustainable** development (cover current needs without compromising those of tomorrow), in particular to dissociate economic growth from environmental degradation and social inequality, by redesigning the way of consuming, of producing, and how the society relates with the environment and to itself, through the optimal application of the 4 R's namely "reduce, reuse, recycle and recover", always seeking to minimize the consumption of resources, and looking towards producing zero waste, with a systemic approach at the moment of its deployment at the micro (companies and households), meso (industrial synergies, regions), macro (country and global) and supply chain level (interaction between the previous levels).

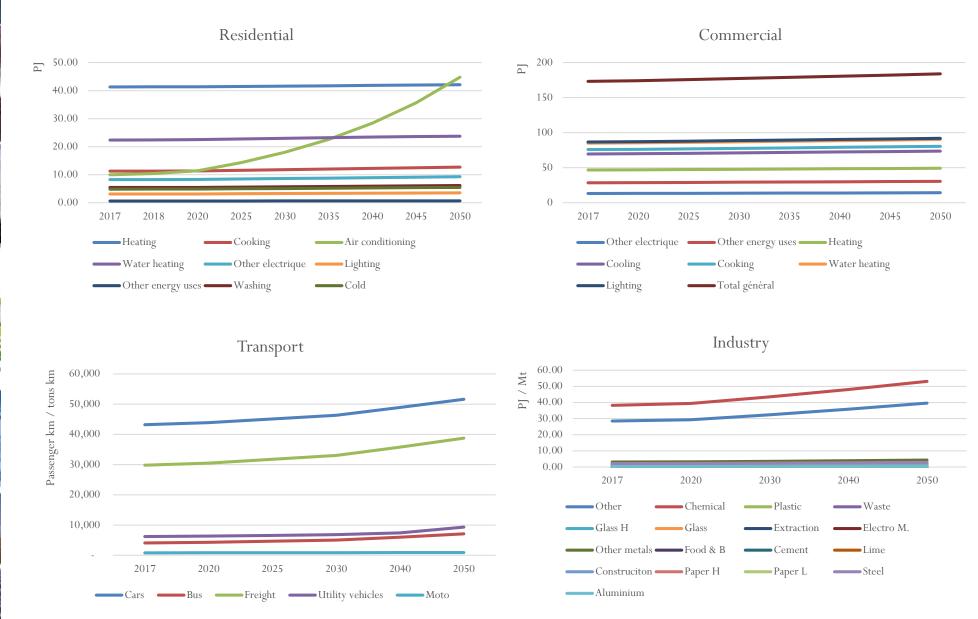


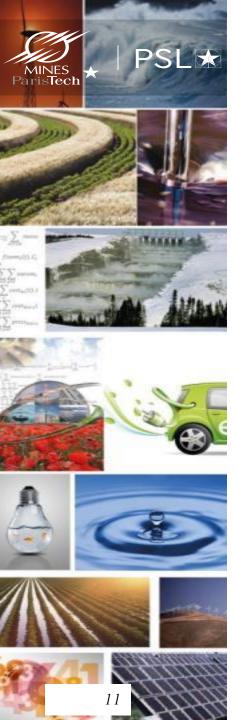
A circular energy system


- Maximize the reuse of resources that otherwise would have been thrown away
- Prioritize the recovery of resources in order to increase the efficiency of the system
- Reduce emissions
- Reuse products by giving them a second life
- Integrate a shift in behavior in terms of how energy is consumed

Roof photovoltaic92.8ADEME & Armines PERSEE, 2015Wind21.48Valorem-Conexia Energy 2010Geothermal136.79BRGM, 2013Hydraulic14.73CEREMA, 2015Agricultural waste9.71Green waste1.36Municipal solid waste13.52Waste water sludge1.52	Type of energy	Potentials (PJ)	Source
industry33.1ADEME, 2017Waste hydrogen1.28ADEME, 2018Ground photovoltaic54.81Cerema Méditerranée, 20Roof photovoltaic92.8ADEME & Armines PERSEE, 2015Wind21.48Valorem-Conexia Energy 2010Geothermal136.79BRGM, 2013Hydraulic14.73CEREMA, 2015Agricultural waste9.71Green waste1.36Municipal solid waste13.52Hélianthe, 2015Waste water sludge1.52	•	2.36	Antea Group, 2011
Ground photovoltaic54.81Cerema Méditerranée, 20Roof photovoltaic92.8ADEME & Armines PERSEE, 2015Wind21.48Valorem-Conexia Energy 2010Geothermal136.79BRGM, 2013Hydraulic14.73CEREMA, 2015Agricultural waste9.71Green waste1.36Municipal solid waste13.52Hélianthe, 2015Waste water sludge1.52		33.1	ADEME, 2017
Roof photovoltaic92.8ADEME & Armines PERSEE, 2015Wind21.48Valorem-Conexia Energy 2010Geothermal136.79BRGM, 2013Hydraulic14.73CEREMA, 2015Agricultural waste9.71Green waste1.36Municipal solid waste13.52Waste water sludge1.52	Waste hydrogen	1.28	ADEME, 2018
Roof photovoltaic92.8PERSEE, 2015Wind21.48Valorem-Conexia Energy 2010Geothermal136.79BRGM, 2013Hydraulic14.73CEREMA, 2015Agricultural waste9.71Green waste1.36Municipal solid waste13.52Hélianthe, 2015Waste water sludge1.52	Ground photovoltaic	54.81	Cerema Méditerranée, 2019
Geothermal 136.79 BRGM, 2013 Hydraulic 14.73 CEREMA, 2015 Agricultural waste 9.71 Green waste 1.36 Municipal solid waste 13.52 Waste water sludge 1.52	Roof photovoltaic	92.8	
Hydraulic 14.73 CEREMA, 2015 Agricultural waste 9.71 Green waste 1.36 Municipal solid waste 13.52 Waste water sludge 1.52	Wind	21.48	Valorem-Conexia Energy, 2010
Agricultural waste 9.71 Green waste 1.36 Municipal solid waste 13.52 Waste water sludge 1.52 Hélianthe, 2015	Geothermal	136.79	BRGM, 2013
Green waste 1.36 Municipal solid waste 13.52 Waste water sludge 1.52 Hélianthe, 2015	Hydraulic	14.73	CEREMA, 2015
Municipal solid waste13.52Hélianthe, 2015Waste water sludge1.52	Agricultural waste	9.71	_
Municipal solid waste 13.52 Waste water sludge 1.52	Green waste	1.36	Háliantha 2015
	Municipal solid waste	13.52	Tienanuie, 2013
Wood 27.73 ADEME 2018	Waste water sludge	1.52	
	Wood	27.73	ADEME, 2018
Total 411.19	Total	411.19	

The perspective of the circular energy system for the SUD PACA region


PSL 🛣


Technological characteristics

					Variable		
	Technologies	Inve	estment c	ost	Cost	FOM	Source
		<u>2020</u>	<u>2030</u>	<u>2050</u>	<u>2025</u>	<u>2025</u>	
	Proton Exchange membrane	1500	950	750		45 (M€/GW)	
El	Alkaline large	625	377		0.06	41.5 (M€/GW)	JRC, 2016
Electrolysers (€/kW)	Alkaline medium	1779	444		0.06	89.9 (M€/GW)	
(C/ KVV)	Alkaline small	1940	512		0.90	136.7 (M€/GW)	
	Hydrogen injection	963	933	467			Doudard, 2019
C :C ···	Centralized - wood/CSR	2453			0.86	122.5182	
Gasification – Prod. H2 (€/kW)	Decentralized - wood/CSR	3814			1.70	76.2042	IDC 2016
110d. 112 (67 KW)	Biomass reforming	519	519		0.18	20.77 (M€/GW)	JRC, 2016
Biogas (€/kW)	Methanization €/MWh				60.00		
	Purification	500	450	405			
	Biogas purification (ℓ/t)				9.00		D 1 1
D: / S	Pyrogasification - wood	3000		2500			Doudard,
Biogas/Syngas	Pyrogasification - CSR (€/MWh)				40.00		2019/Ademe, 2018
	Methaneur	1519.67418	447	263			
	Biomethane injection	354	267	193			
	H2 - Centralized underground	2.7				0.3 (€/kWh)	
	H2 - Centralized tank	13				0.8 (€/kWh)	
Energy storage	H2 - Decentralized tank	7.5				0.4 (€/kWh)	JRC, 2016
(€/kWh)	Battery - Lead-Acid	176		135			JKC, 2010
	Battery - Li-ion	660	224	216			
	Battery - NaNiCl ZEBRA	157		68			

MINES ParisTech


Scenarios - the demand

The scenarios

- Reference: This scenario aims to explore the evolution of the energy system according to trends, which take into account policies established in the region and France before the base year
- Sraddet: How the policies proposed by the SUD PACA region will shift the development of the regional energy system
- Circular economy: Evaluate how integrating a circular economy perspective can shift the development of the energy system of the SUD PACA region

Scenarios - Reference scenario: assumptions for the production sector

This scenario aims to explore the evolution of the energy system according to trends, which take into account policies established in the region and France before the base year

- **Production:** Follows trends from past years
- Electricity from the French electricity grid is reduced by 15% in 2050 (electricity withdrawal trend -3% on average between 2010 and 2017)
- Gas from the gas network can increase by 10% in 2050 (gas consumption 7% higher in 2017 compared to 2007)
- The region can use 21 PJ (20% of gas consumption in 2017) of bio methane from the French gas network in 2050

PJ	Energy	2017	Annual growth	2050
	Biogas	0.84	1.00%	4.90
	Biomass	1.41	0.50%	2.75
city	Wind	0.42	0.00%	0.81
Electricity	Hydro	28.65	0.10%	35.00
glec	Waste	1.53	0.00%	2.30
	Solar	5.51	8.00%	127.97
	Fossil	35.54	0.00%	35.54
	Biomass	9.92	1.00%	14.43
-	Heat pumps	17.00	5%	32.68
Thermal	Heat Network	1.43	2.00%	5.22
E	Solar thermal	0.64	1.00%	0.88
	Fossil	2.32	0.00%	2.32
	Electrique			209.27
	Thermal			57.18

Reference scenario – demand side

- In 2050, building renovation will be developed in 40% for the residential sector, and 30% in the commercial sector
- For the transport sector, natural gas can represent at least 10% of the energy consumption of freight vehicles and buses and 1% for private vehicles
- Personal mobility vehicles can cover 5% of private vehicles mobility demand
- In areas with low consumption, the share of electric vehicles can reach up to 20% of total vehicles in 2050 and it can reach up to 30% for areas with high consumption

P2G PROJECTS					
Y : 1000	1 GW	2020	Electrolysers		
Jupiter 1000	0.02 PJ	2021	Methaners		
HYGREEN	12 MW	2025	Elo atuo lugana		
IT I GREEN	435 MW	2030	Electrolysers		
Valhydate	7500 t/an	2025	Waste hydrogen		
			valorisation		
	7	2030	Hydrogen bus		
HynoVAR	404 kg/j	2030	Hydrogen production		
W 43/WED	0	2025	TT 1		
HyAMMED	8	2025	Hydrogen freight vehicles		

Scenarios – SRADDET: supply assumptions

Objective: Analyze the policies proposed by the SUD PACA region

Production:

- Electricity from the French electricity grid is reduced by 50% in 2050
- Gas from the gas network can increase by 10% in 2050
- The region can use 21 PJ (10% of gas consumption in 2017) of bio methane from the French gas network in 2050
- No new fossil power plants

Energy production

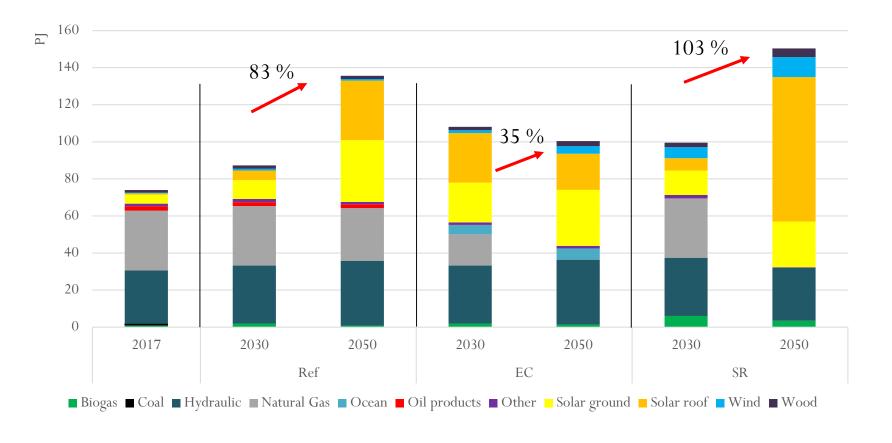
Produ	ction (PJ)	2017	2020	2025	2030	2050
	Biomass	1.41	2.88	4.42	4.42	4.42
	Wind	0.42	0.99	2.21	2.78	5.40
Ela atui aita	Hydro	28.65	29.12	31.02	31.02	33.20
Electricity	Solar (ground)	5.51	6.27	8.90	6.57	29.47
	Solar (rooftop)	-	1.30	6.47	20.47	78.57
	Biomass	9.92	6.67	3.79	4.79	9.38
	Methanization	1.73	1.73	2.19	3.60	7.39
Thermal	Gasification	-	0.00	2.06	3.60	7.60
	Solar (thermal)	0.62	0.62	1.74	2.21	4.47
TOTAL		48.27	49.57	62.80	79.45	179.90

Scenarios - SRADDET: Demand

- In 2050, building renovation will be developed in 100%
- Personal mobility vehicles can cover up to 15% of cars mobility demand, and buses can cover up to 5% private vehicles mobility demand
- In areas with low energy consumption, the share of electric vehicles can reach up to 40% of total vehicles in 2050 and it can reach up to 50% for areas with high consumption
- People by private vehicle will increase to 1.35 from 2030

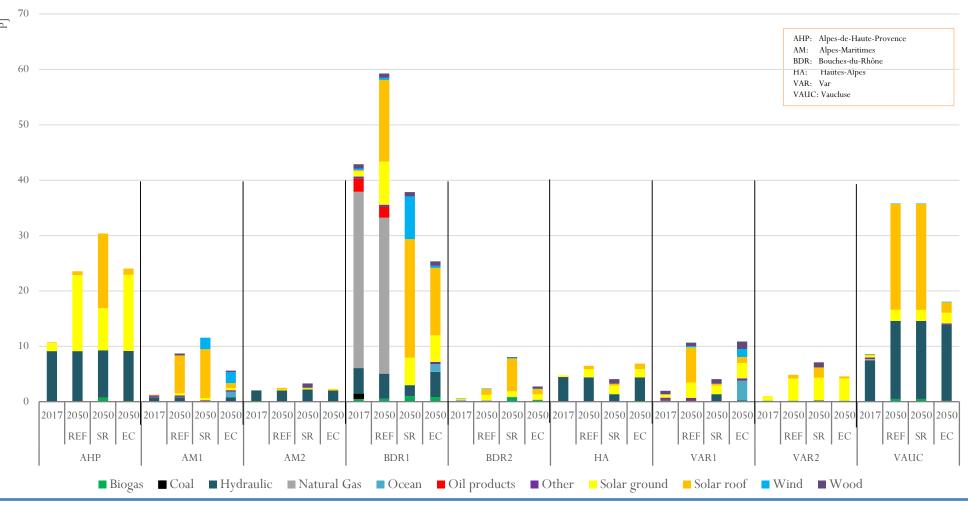
Regional hydrogen plan							
		2027	2032				
Freight transport	units	100	630				
Utilitary vehicles	units	540	2280				
Buses	units	86	260				
H2 production	tH2/year	16000	28800				
Injection into the gas network	tH2/year	3000	5400				

Scenarios – Circular energy system


Objective: Evaluate how integrating a circular economy perspective can shift the development of the energy system of the SUD PACA region

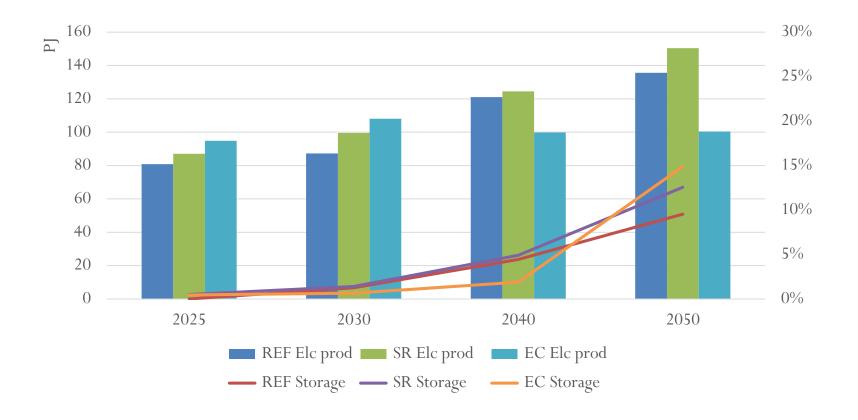
Proposed objectives						
100%		Industrial waste heat				
100%		Waste water heat				
100%		Sludge				
100%	Municipal	, agriculturae and green waste				
100%		Buildings renovation				
15%	CCU					
Personnes par véhicule particulier	1.70 People by car					
Modal shift	Personal mobility vehicles can cover up to 17% of cars mobility demand and buses can cover up to 7% in 2050					
Air heat pumps	15% more than in the reference scenario					
Tidal energy	Tidal energy 3 GW					
Wind 3 times the reference scenario						
No new fossil power plants						

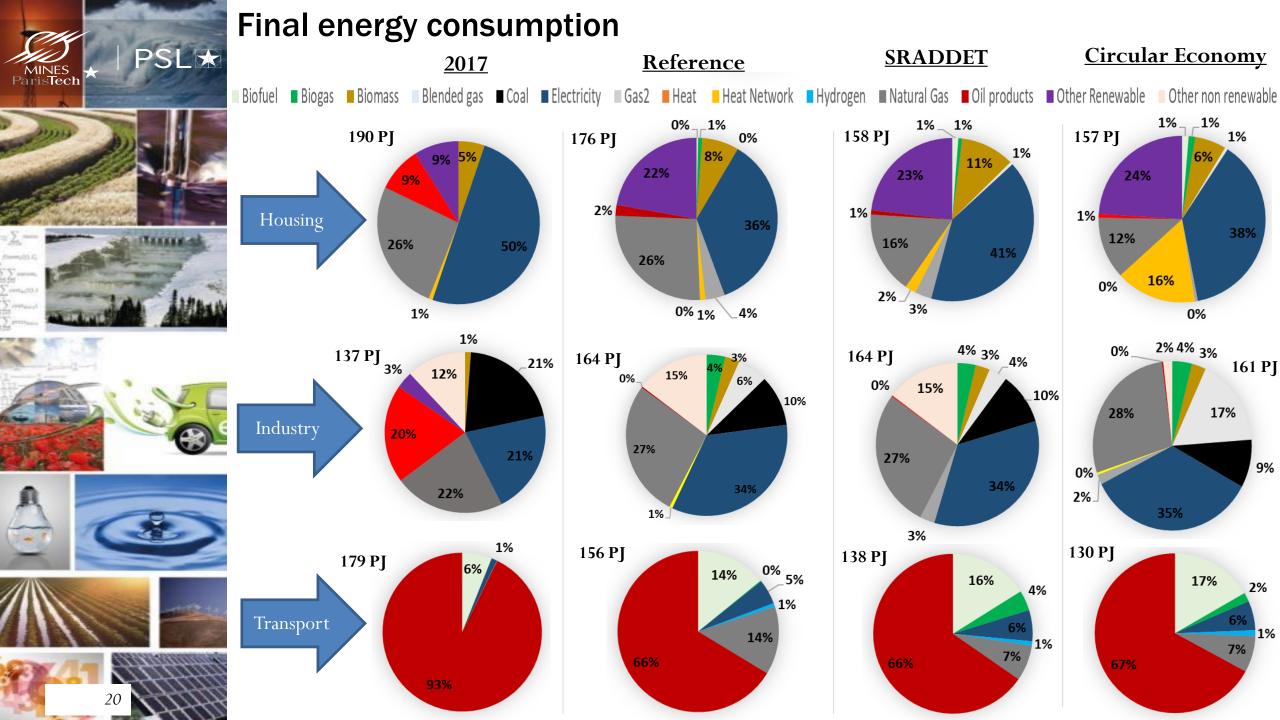
Includes the regional hydrogen plan


PSL

Results – Regional electricity production

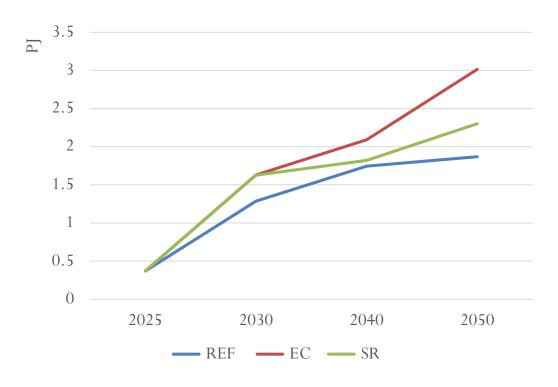
- In 2050 the use of fossil fuels represent 22% of electricity production in the reference scenario, while they account for less than 1% in the SR and CE scenario
- Total power production in 2050 in the CE scenario is the lowest among the studied scenario as it presents a lower electricity demand
- The electricity production achieved in 2050 in the SR scenario complies with a little bit more than 50% of the objectives stablished in the SRADDET


Results – Electricity production by zone


- Electricity production is concentrated in the BDR1 in the reference and SR scenario while it is more distributed among the territories in the CE scenario
- Wind production is developed mainly in the BDR1, while tidal energy is mostly used in the VAR1 zone
- Hydroelectricity is developed mainly in the VAUC zone

PSL*

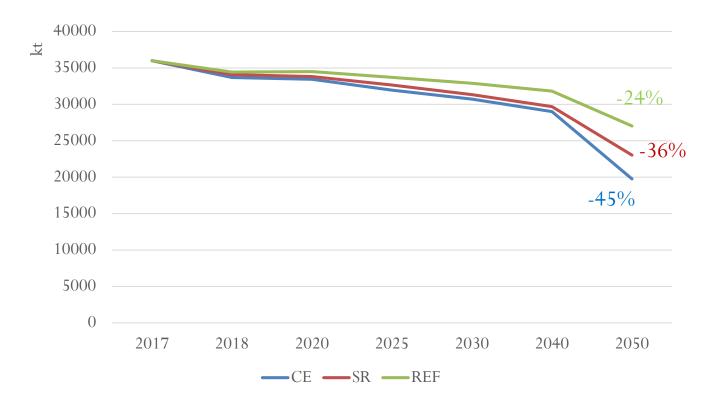
Electricity storage



- Hydro storage and batteries have been used to store electricity
- Hydro storage has been developed mainly in the AHP zone
- Batteries have been used mostly in high consuming ares as they have been used to store electricity from roof photovoltaic panels

PSL*

Hydrogen production



Hydrogen uses in 2050							
REF SR EC							
Transport	Injection	Transport Injection		Transport	Injection		
34%	62%	74%	26%	48%	52%		

- The most important output of hydrogen is reached in the CE scenario due to the gasification of MSW, which is developed mainly in low consumption areas
- The AHP zone is the greatest producer of hydrogen in all scenarios due to the Hygreen project

PSL**★**

Total CO2 emissions

Conclusion

- The region is in the path towards the decarbonization of its energy system, with the decrease of fossil fuels consumption and the development of clean technologies.
- The recovery of waste heat should be prioritize as it has proven to have a great potential to decarbonize the habitat sector, increasing also the efficiency of the whole system.
- The use of batteries to store roof PV production is key to allow a greater development of the technology
- It is required higher efforts to allow the introduction of clean alternative energies into the transport sector. Supporting the development of an hydrogen market seems key to decarbonize this sector.
- Implementing a CE perspective in the development of an energy system can allow greater environmental results.

THANKS FOR YOUR ATTENTION

Carlos ANDRADE

carlos.andrade@mines-paristech.fr

PhD student

MINES ParisTech, PSL Research University, Center for Applied Mathematics
Thesis co-financed by ADEME and the SUD Provence-Alpes-Côte d'Azur Region and in partnership with Schneider Electric

Carlos ANDRADE

MINES ParisTech, PSL Research University Center for Applied Mathematics, Sophia Antipolis