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Abstract

This paper studies how subsidies for solar systems can lead to second-degree

moral hazard– the impulse of installers to increase prices and/or reduce labor input

when customers receive subsidies. Employing an instrumental variable strategy

using plausibly exogenous variation in the size of subsidy levels to address concerns

about self-selection of installers into specific subsidy levels, I quantify the impact

of subsidy levels on total costs and electricity output of solar systems in California.

The results are consistent with hypothesized drivers of second-degree moral hazard.

First, larger subsidy levels are associated with a cost increase when customers

receive unconditional upfront subsidies as compared to output-based subsidies.

Second, stricter verification rules reduce costs. Third, the association of lager

subsidy levels and increased costs is particularly pronounced when third-parties

own the solar system and thus receive the subsidy. Finally, costs are larger for

government customers and lower for non-profit customers.
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1 Introduction

Many countries use generous subsidy programs to accelerate the adoption of green

technologies. To maximize the social and environmental value of each of the tens of

billions USD spent on subsidy programs in the US and other countries (International

Energy Agency, 2016), subsidy programs should be cost-effective. One key challenge

to cost-effectiveness is that markets for energy-transforming technologies are subject

to informational asymmetries, as customers often lack the expertise to assess which

technology is cost-effective and what work steps are needed to install it. Therefore,

professional installers have incentives to exploit their informational advantage, leading

to supply-side inefficiencies typical for credence goods, which include overcharging for

services or technological components and bad workmanship (Giraudet et al., 2018;

Giraudet, 2020; Lanz and Reins, 2021).

The literature on credence goods suggests that third-party reimbursements may

cause second-degree moral hazard and thereby increase supply-side inefficiencies

(Balafoutas et al., 2017).1 Because subsidies reduce the cost for customers,

installers may be more inclined to charge for services which have not been provided,

recommend unnecessarily expensive technologies or decrease the quality of labor input

(Kerschbamer et al., 2016; Huck et al., 2016; Balafoutas et al., 2017, 2020). The

credence component of energy-transforming technologies in combination with the

enormous amounts of subsidies spent to foster their adoption therefore has important

implications for the cost-effectiveness and design of subsidy programs.

1 In the context of energy-transforming technologies such as solar systems, first-degree (or demand-side
moral hazard) implies that customers install solar systems only because part of the financial burden
is taken over by a subsidy. The reduction of the financial burden associated with installing energy-
transforming technologies is an often cited reason for promoting their adoption via subsidies (Allcott
and Greenstone, 2012) and has the consequence that subsidies may not be targeted to maximize
adoption (see related discussion in Allcott et al., 2015; Globus-Harris, 2020). For a discussion on
demand- and supply side moral-hazard in the context of energy-efficient retrofits, see for example
Giraudet et al. (2018).
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In this paper I study how subsidies trigger second-degree moral hazard and hence

increase supply-side inefficiencies in markets for solar systems. For this purpose, I use

data from the California Solar Initiative (CSI) which is the largest solar subsidy program

in California. Idiosyncratic characteristics of the CSI data on subsidized solar systems

make it particularly relevant for this research. First, installing solar systems consists

of a complex arrangement of different technological components and working steps

(Giraudet et al., 2018; Gillingham et al., 2016) which many customers deliberately

leave to professional installers. Moreover customers face difficulties to verify whether a

system is installed and priced appropriately because the definition of a counter-factual

relative to which the electricity output and price is measured is difficult (Giraudet,

2020; Lanz and Reins, 2021). As such, the informational asymmetries between (even

technically adept) customers and installers are rather large and solar installers may

exploit the scope for supply-side inefficiencies created by the credence nature of solar

systems.

The second interesting feature of the CSI program is that it offers regional and

chronological variation of subsidies enabling me to identify how the cost and electricity

output of solar systems depend on the magnitude of received subsidies. Specifically,

the CSI provides subsidies to customers in three different energy supply companies (or

investor-owned utilities, IOU) following the aim to generate a total of 1940 megawatts

(mW) capacity installed in new solar systems. The subsidy level available to customers

is categorized in ten predetermined steps where the transition from one subsidy level

step to the next is determined by the of cumulative capacity of mW installed within an

IOU.

In the empirical analysis, I quantify the impact of subsidy levels on installation costs

and electricity output, using variations of subsidy levels afforded by the design of the

CSI program. Following Pless and van Benthem (2019), I estimate linear models using
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a rich set of fixed effects (FE). Specifically, I employ fixed effects along four axes: i)

installer FE to capture time-invariant installer specific characteristics such as their wage

and their location, ii) month of installation FE to capture national demand shocks and

general time trends for hardware costs, iii) IOU and county FE to capture regional

differences in demand and competition among installers and iv) make and model of

modules and inverters to control for unobserved differences in the installed technology,

such as their quality.

I make use of an instrumental variable strategy to address potential concerns about

the endogeneity of actually implemented subsidy levels. The actually received subsidy

levels differ from predetermined subsidy levels for some systems and I cannot rule

out that installers were able to influence actually received subsidy levels, thereby self-

selecting into specific subsidy levels. In particular, some solar systems receive weighted

averages of up to 4 different subsidy level steps in contrast to sharp and monotonic

decreases of subsidy levels as determined by the CSI design.

To address this concern, I exploit plausibly exogenous variation of predetermined

subsidy levels to instrument actually received subsidy levels. In this context, the validity

of this instrument rests on two assumptions. First, the predetermined subsidy levels

need to be correlated to the actually implemented subsidy levels. This assumption

is likely to hold because the predetermined subsidy steps are the predominant factor

determining received subsidy levels and the differences between predetermined and

actually received subsidy levels is small.

Second, the exclusion restriction implies that the ex ante-determined subsidy level

steps do not affect the cost and electricity output of solar systems other than through the

actually received subsidy levels. Again, this assumption is likely to hold as even large

installers could not influence the total capacity installed within an IOU. I further include

the above set of fixed effects in the first stage and thereby control for any between
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installer, between month, between IOU and county and between technology factors

that potentially link subsidy steps to the cost and/or electricity output of systems.

I study heterogeneity of supply-side inefficiencies along four dimensions that

have been highlighted as important factors driving second-degree moral hazard (see

Balafoutas et al., 2017, for a related discussion). As the first dimension I study in

how far the design of subsidies can mitigate second-degree moral hazard. For this

purpose, I exploit the fact that the CSI provides two different types of subsidies reducing

the installation costs of solar systems. First, unconditional upfront subsidies are a

one time lumpsum payment increasing in the expected electricity output of a system.

Second, output-based subsidies are monthly payments depending on the actual monthly

electricity output. Output-based subsidies thus provide direct financial incentives to

generate and maintain a high electricity output which may spillover and decrease

installation costs (Hecht et al., 2012). As a second dimension, I study increased

verification of installations and their potential to prevent supply-side inefficiencies

(Dulleck and Kerschbamer, 2006; Dulleck et al., 2011). To this end, I exploit a CSI rule

imposing a mandatory field inspection for the first two solar systems installed by each

installer. Third, I study whether second-degree moral hazard is increased if a system

is third-party owned (TPO) and hence installers receive the subsidy. Finally, I study

how supply-side inefficiencies depend on whether a system is owned by a commercial,

residential, non-profit or governmental customer.

The empirical analysis shows evidence suggesting that second-degree moral hazard

is highly relevant in the context of upfront subsidies. I find that a one dollar increase

of upfront subsidies is associated with a statistically significant increase of the system

cost of approximately $ 0.25 per Watt which is equivalent to a three percent increase of

costs at the mean of the sample. Further, I do not find evidence of second-degree moral

hazard related to output-based subsidies.
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To rule out alternative explanations for the association of larger upfront subsidy

levels and increased costs, I provide a set of robustness checks. First, I drop systems

which applied in the vicinity of two weeks before and after a transition to a next subsidy

step to rule out that customers anticipating this transition and therefore speeding up

the application process drive the results (Hughes and Podolefsky, 2015; Pless and

van Benthem, 2019). Reassuringly the main conclusions hold when excluding these

observations. I second check the robustness of the results to cases where customers with

a particularly poor environment for electricity output have opted in the CSI program

early, because the investment only amortizes if customers receive large subsidy levels.

Afterwards, I employ propensity score matching to compare systems with identical

technical components differing in the subsidy level received. Finally, I show that the

results are robust to different specifications controlling for time-varying factors.

The results also show significant heterogeneity of supply-side inefficiencies and

second-degree moral hazard concerning verification, subsidy recipients and ownership.

First, I find that mandatory field inspections reduce the system costs of upfront

systems, suggesting that stricter verification of an installer’s work limits supply-side

inefficiencies (Dulleck et al., 2011). Furthermore, I present evidence that TPO systems

are particularly prone to second-degree moral hazard, confirming earlier findings

documenting over-reported costs of TPO systems (Podolefsky, 2013). Finally, the results

indicate that supply-side inefficiencies are increased when installers face government

customers, and limited when installers face non-profit customers as compared to

commercial customers.

The findings in this paper contribute to two different kinds of research avenues. The

first is a literature assessing the optimal subsidy design to increase adoption and cost-

effectiveness of subsidy programs. Existing results show that customers significantly

discount future subsidy payments and upfront subsidies are a cheaper way to foster the
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adoption of solar systems than output-based subsidies (Burr, 2016; Feger et al., 2017;

De Groote and Verboven, 2019). These studies do however not account for second-

degree moral hazard associated with upfront subsidies and my analysis suggests that

related costs need to be accounted for when calculating their cost-effectiveness. Further,

the evidence of second-degree moral hazard is in line with results from Borenstein

(2017) who finds that installers charge higher prices if customers have larger benefits

when from investing in solar systems. The association between larger upfront subsidies

and increased system costs can therefore contribute to explaining price variations which

are unexplained by observable system characteristics as discussed in Gillingham et al.

(2016). The results also relate to pricing differentials in TPO systems (Davidson and

Steinberg, 2013; Podolefsky, 2013) and suggest that second-degree moral hazard is

particularly pronounced for TPO systems. Finally, second-degree moral hazard provides

a parallel explanation for the over-shifting of subsidies found in Pless and van Benthem

(2019) as installers may share increased profits with the respective customer.

Second, this paper documents that stylized findings from other credence goods

markets are relevant for the market of energy-transforming technologies (Giraudet,

2020; Lanz and Reins, 2021). This paper is the first to document evidence of second-

degree moral hazard in the context of energy-transforming technologies. In line with

earlier discussions on the potential of strict verification to reduce opportunistic behavior

(Dulleck and Kerschbamer, 2006; Dulleck et al., 2011; Balafoutas et al., 2013), I find

that mandatory field inspections can reduce cost the cost of solar systems. The results

in this paper further confirm heterogeneity of supply-side inefficiencies depending on

who bears its costs as supply-side inefficiencies are larger for governmental and lower

for non-profit customers (Balafoutas et al., 2013; Gottschalk et al., 2020).

This paper proceeds as follows: in Section 2 I discuss the credence nature of energy-

transforming technologies, second-degree moral hazard and resulting consequences for
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the costs and electricity output of solar systems. Section 3 describes the CSI program.

In Section 4, I summarize the data and explain the identification strategy. I present

associated results in Section 5 and conclude in Section 6.

2 Solar systems, supply-side inefficiencies and second-

degree moral hazard

I illustrate the implications of the credence nature of solar systems building on the

framework of Dulleck and Kerschbamer (2006). For simplicity, I assume that there exist

two types of solar systems: either those with high quality technological components qh

and those with lower quality technological components ql. The generated electricity of

system i, Vi(qi, li) increases in both, the quality of technology as well as in the quality of

labor exerted during the installation li, which I assume to be between [0, 1] and li = 1

indicates perfect installation while li = 0 indicates a poor installation.

The installer faces a cost for installing a system which increases in both, the cost of

technology as well the cost for labor (i.e. ci(qi, li)) and customers pay a price for the

system which is increasing in its cost pi(ci). The installer’s benefit from putting up a

solar system hence equals the difference of the price and costs of provided hardware

and labor πi = pi(ci)− c(qi, li). The customer’s benefits from investing in a solar system

can be expressed as πc = Vi(qi, li)− pi(ci) + si. In this equation si denotes the lumpsum

subsidy level customers of upfront systems receive. If customers receive output-based

subsidies instead, the subsidy level is multiplied with the electricity output of the system

(i.e. si · Vi(qi, li).)

Asymmetric information on qi and li (see Giraudet et al., 2018, for a similar

assumption) implies that an installer may reduce labor input to save costs which must

not necessarily be reflected in a lower prices, because the customer has difficulties to
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verify work steps and therefore cannot perfectly observe qi and li. If an installer knows

that his work will not be verified and if he only cares about his own profits, he thus

has the incentive to lower labor input to a minimum and increase the prices charged

to a maximum. Such departures from the optimal labor input and fair market prices

reflect supply-side inefficiencies which can be summarized under σ ∈ [0, 1] where σ = 1

indicates full supply-side inefficiencies where the installer provides a poor installation

(li = 0) and charges a maximal price. If the installer provides a perfect installation

and charges a fair market price, there are no supply-side inefficiencies (i.e. σ = 0).

Supply-side inefficiencies (σ > 0) in turn cause a lower Vi(qi, li) and/or a higher p(ci).

Next, evidence in markets for credence goods suggests that increased verification

measures imposed to detecting and punishing supply-side inefficiencies may change the

installer’s behavior (Dulleck and Kerschbamer, 2006; Dulleck et al., 2011; Balafoutas

et al., 2013). Let γ denote the probability of detecting supply-side inefficiencies σ and

t denote related punishment. Intuitively, larger verification of the installer’s work may

work as a threat to lose financial and/or reputation status. The larger γ and t, the larger

the expected disutility from supply-side inefficiencies.

Moreover, it has been shown that agents in markets for credence goods care for

the customer’s benefits, suggesting that installers have some form of social preferences

represented by λ (see for example Kerschbamer et al., 2017; Kandul et al., 2020).

Looking at the active market for solar systems, it seems plausible that a large

heterogeneity in λ exists, implying that many installers care for the customer’s benefits

and therefore provide flawless services (see for example Kerschbamer et al., 2017). At

the same time, differences in the customer owning the system may affect λ. When

installers think about who bears the consequences of supply-side inefficiencies, they

may for example want to reduce the burden for residential customers who they

personally know (i.e when. λ is large) compared to more abstract entities with
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several stakeholders and financiers such as governmental and commercial customers

(see Balafoutas et al., 2017, for a discussion of how social distance may affect the

behavior of installers).

Adding these insights to the framework of Dulleck and Kerschbamer (2006), the

objective of the installer can be written as follows:

πi = p(qi, li)− c(qi, li)− γtσ + λ(Vi(qi, li)− p(qi, li) + si). (1)

The literature on credence goods further suggests that an installer may alter his

behavior conditional on the magnitude of the subsidy. For solar systems, Davidson and

Steinberg (2013) and Podolefsky (2013) have documented that some TPO installers

inflate the cost of residential solar systems to reap larger federal investment tax credits.

Several installers have been accused of over reporting the cost of systems as much

as 10 percent of the fair market value, resulting in 25 millions of excess investment

tax credits (ITC) and federal investigations of the accused installers.2 In this simple

framework, such second-degree moral hazard implies that an increase in the subsidy

si reduces financial burden for customers and installers may therefore react by further

reducing labor input which leads to reduced electricity output or increasing prices.

Note that I study two different kinds of subsidies which are either paid upfront as

a lumpsum (si) or are based on actual electricity output and paid per kWh generated

(si · Vi(qi, li)). Output-based subsidies are therefore increasing in electricity output,

providing a direct financial incentive for high quality installations. This may affect the

labor input of an installer and may also spillover to his pricing behavior (Holmstrom

and Milgrom, 1991).

2 The investment tax credit, is a 30 percent tax credit which was granted to all solar residential and
commercial systems installed in the US from 2006-2019. It has been reduced to 26 percent in 2020
and is projected to decrease further in the coming years.
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3 The California Solar Initiative program

The California Solar Initiative (CSI) program provides a useful setup where

predetermined subsidy levels are assigned to different customers, enabling me to

analyze the associated relation with costs and electricity output of such systems. This

section starts with a general description of the program. Afterwards, I describe which

features of the CSI are exploited to study heterogeneity of supply-side inefficiencies

and second-degree moral hazard related to different subsidy types, increased measures

of verification and differences in the ownership. Finally, I describe the main outcome

variables of the empirical section: cost and electricity output.

3.1 Program description

The CSI subsidy program rolled out in 2007 using a budget of $2.167 million for the

goal to install 1940 mW within 10 years. All customer segments could apply for the

program including residential, commercial, government and non-profit customers. The

subsidy level available to customers is determined by the cumulative capacity of already

installed systems within the IOU of the customer. Once a certain threshold of cumulative

mW in an IOU is passed, the subsidy level decreases. In particular, the CSI provides

subsidies to customers in investor-owned utility territories of Pacific Gas and Electric

Company (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric

(SDG&E). Table 1 provides an overview of the subsidy levels as per the design of the

CSI. After the first 50 mW in each IOU have been attributed under another program

(Lilly and Simons, 2006), passing the predetermined threshold of mW installed leads to

a sharp and monotonic decline of subsidy levels in the IOU.

The actual implementation of subsidy levels however differed from the theoretical

design. Figure 1 provides an overview of the implemented subsidy levels across IOUs
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Table 1: CSI subsidy levels

Upfront ($ per Watt) Output-based ($ per kWh)

mW Step MW in step Residential/
Commercial

Gov’t/
Nonprofit

Residential/
Commercial

Gov’t/
Nonprofit

1 50 n/a n/a n/a n/a
2 70 2.5 3.25 0.39 0.5
3 100 2.2 2.95 0.34 0.46
4 130 1.9 2.65 0.26 0.37
5 160 1.55 2.3 0.22 0.32
6 190 1.1 1.85 0.15 0.26
7 215 0.65 1.4 0.09 0.19
8 250 0.35 1.1 0.05 0.15
9 285 0.25 0.9 0.03 0.12
10 350 0.2 0.7 0.025 0.088

Notes: Table 4 of California Public Utilities Commision (2017)

and time. In the left panel, I show the evolution of upfront subsidies and in the right

panel, I show the evolution of output-based subsidies. One can see that for example in

January 2010, many different upfront subsidy levels were attributed to different solar

systems in all IOUs. Contrasting the unique subsidy levels in each MW step, some

systems receive weighted averages of up to four different predetermined subsidy levels.

In addition, subsidy levels do not monotonically decline in time, but some systems which

have applied in the same IOU at later point in time receive a higher subsidy rate.3 A

similar picture emerges for output-based subsidies in the right panel.

While the subsidy levels attributed to systems is predetermined by the mW step,

the CSI multiplies this subsidy level with either a measure for the expected or actual

electricity output depending on whether customers receive upfront or output-based

subsidies. Therefore, the total amount of subsidies depends on the system size as this is

related an increased expected and actual electricity output. Accordingly, installers can

increase the total subsidy amount a customer receives by installing extensive systems.

In such situations, installers can offset part of the financial consequences of second-

3 The CSI handbook does not provide an explanation for these observations which contrast the
theoretical design of the CSI. Presumably, the fact that some systems receive a weighted average
of several subsidy levels could be either due to cancellation of systems and freed capacity under step
already exhausted or an adjustment of CSI subsidies if systems receive other benefits (Hughes and
Podolefsky, 2015).
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Figure 1: Evolution of subsidy levels
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degree moral hazard by maximizing the subsidy transfer to the customer.

To avoid the installation of unreasonably sized systems the CSI imposed rather

strict limitations to substantiate a system’s size and ensure that a system is sized such

that it optimally serves the customers needs. First, a system should primarily offset

the applicants own energy consumption, meaning that the annual expected electricity

output must not be larger than the sum of energy consumption within last twelve

months. Second, no applicant may receive a total amount of subsidies exceeding the

total cost of the system. Third, there is a cost cap for applications implying that the cost

per Watt may not be larger than the 12 month rolling average of the cost per Watt of

other systems plus one dollar.

Studying the distribution of systems around two arbitrary thresholds provide

information whether installers strategically influence the size of systems. First, systems

smaller than five kW were not required to hand in a substantiation of the system size

when applying for the CSI. Second, systems smaller than ten kW did not have to pay

an application fee.4 Figure A1 in Appendix A presents the size distribution of upfront

systems in the range between zero and 30 kW in the left panel and between four and

twelve kW in the right panel. There are not disproportionately many systems sized just

below five or ten kW, affirming that the system size is determined by the customer’s

needs rather than strategic considerations.

3.2 Upfront and output-based subsidies

To study how subsidies affect second-degree moral hazard, I exploit the fact that the

CSI offered two different subsidy types. The "Expected Performance Based Buyout" (or

upfront subsidy) is intended for residential and small business customers installing a

4 For other system sizes the application fee starts from 1250 USD for systems up to 50kW and amounts
to 20000 USD for systems 500-1000 kW. Note that this fee is refunded once the system is installed.
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system with less than 30 kW and take the form of a lumpsum transfer depending on

the expected electricity output of the system. Customers installing a system sized larger

than 30kW were obliged to apply for "Performance Based Incentives" (or output-based

subsidy) which take the form of a fixed rate of $ per actual kWh generated by the system

for five years.5 Note that customers installing a system with more than 10kW could

opt to apply for a output-based subsidy. As discussed in Appendix A, the subsidy type

is predominantly determined by the system size rather than strategic considerations,

alleviating concerns about strategic self-selection into subsidy types.

While the general idea behind the implementation of upfront and output-based

subsidies are the same, some subtle differences in their design have important

implications for the analysis of second-degree moral hazard. First, output-based

subsidies provide a direct financial incentive to generate and maintain a high electricity

output. Installers who care for the outcome of their customer (i.e. λ 6= 0 in

Equation 1) should respond with higher quality installations. Whether these incentives

further spillover to unincentivized outcomes, such as the price charged for the system,

has received a lot of attention (Holmstrom and Milgrom, 1991; Jenkins Jr et al.,

1998). More recent evidence suggests that spillovers can improve the outcome of

unincentivized tasks when they are performed simultaneously (Hecht et al., 2012)

suggesting that in this context, output-based subsidies could also reduce the price of

installations.

Also payment and verification procedures differ for both types of subsidies. First,

output-based subsidies are paid over several months while the upfront subsidy is a one

time lumpsum transfer. De Groote and Verboven (2019) find that future payments of

output-based systems are profoundly discounted, suggesting that the net present value

5 Not all output-based systems report electricity output data for five years after installation. When the
CSI budget faded out, system not having completed the five-year reporting timeline received a buyout
determined on the actual electricity output up to this time.
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of output-based subsidies is smaller.6 Second, the electricity output of output-based

systems needs to be reported to the CSI by a performance data provider, which is an

entity ensuring that the reported data on electricity output is accurate. Also the output

metering technology of solar systems receiving an output-based subsidy systems needs

to provide an accuracy of measuring of +- two percent compared to +- five percent

for upfront systems.7 These differences between upfront and output-based subsidies

suggest that output-based subsidies could be more robust to supply-side inefficiencies

and second-degree moral hazard.

3.3 Increased verification

The first two solar systems installed by each installer are subject to an onsite field

inspection which serves the goal to detect differences between the onsite technical

calibrations of the system and those stated in the application form.8 Mandatory

field inspections include checking that equipment is installed as documented in the

application (i.e. quantity and make of modules and inverters, a systems tilt, azimuth,

shading and standoff height) as well as whether the system is operational and its

electricity output is reasonable. Finally, if subsidy payments resulting from onsite

inspections and those calculated in the application form documentation differ by more

than 10 percent, the solar system and its installer can be dismissed from the program.

6 Similarly, focusing theory suggests that principals overweight concentrated upfront payments
compared to dispersed output-based payments (Kőszegi and Szeidl, 2012; Dertwinkel-Kalt et al.,
2019). Related evidence suggests that the differences in the concentration of payments could render
the perception of total output-based subsidies smaller.

7 Further, all output-based systems (as well as upfront systems larger than 10kW) are obliged to provide
proof of project milestone documenting initial installation steps and reassuring that the system is
installed as outlined during the application. In addition, such systems need to contract services of a
output monitoring and reporting service, to ensure that 15 minute time interval data can be provided
to the program administrator.

8 The program administrator has the right to audit additional systems according to his own assessment.
These audits are either performed online, via telephone or onsite.
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This rule increases the probability γ of detecting supply-side inefficiencies and

installers face commercial consequences after detection (i.e. t > 0). In turn installers

may limit supply-side inefficiencies in order to prevent financial and reputational

consequences in case of detection (cp. Balafoutas et al., 2013; Giraudet et al., 2018, who

find that increased verification reduces increased costs and supply-side inefficiencies are

specifically pronounced in domains defined as hard to observe). Assessing differences

in supply-side inefficiencies between the first two and all other systems installed by the

same installer, reveals how increased verification contributes to more performing solar

systems.

3.4 Subsidy recipients

Instead of buying a solar system, both upfront and output-based customers in California

can choose to lease a solar system from a third party (Podolefsky, 2013; Pless and van

Benthem, 2019).9 In this case, TPO installers pay the installation costs and receive the

final subsidy (i.e. they directly appropriate si Equation 1). The objective function of

an installer suggests that this is equivalent to an increase in the subsidy which should

thus lead to an increase of second-degree moral hazard. At the same time it seems

straightforward that TPO installers who bear the upfront installation cost of a system

want to minimize it. In contrast, it has been shown that TPO firms have inflated the

costs of residential solar systems (Davidson and Steinberg, 2013; Podolefsky, 2013).

Pless and van Benthem (2019) somewhat surprisingly find a more than complete pass-

9 If customer choose to lease a system, they can decide between a pure leasing contract or a power
purchase agreement (PPA). In a pure leasing contract, the customer pays a monthly leasing rate to
the third party and owns the electricity output. In a PPA contract, the customer pays monthly rate for
his electricity consumption and the third party owns the electricity output. The contract types mostly
differ with respect to who is entitled to the benefit of excess output fed into the system. Under either
contract type, the third party pays for the installation and maintenance of the system and customer
hence do not bear the upfront costs (see Davidson et al., 2015, for a detailed discussion of pure lease
and PPA contracts). In the dataset, I can identify the systems owned by a third party but I cannot
identify whether they have a leasing or PPA contract.
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through of upfront subsidies to residential customers of TPO systems and attribute this

effect to imperfect competition on the market for TPO systems in combination with

a sufficiently convex demand curve. This finding suggests that increased costs were

not passed on to customers in form higher leasing rates. The second-degree moral

hazard problem of installers provides a parallel explanation for more than complete

pass-through as TPO installers who may increase the total amount of subsidies then

split increased profits from supply-side inefficiencies with customers (see Gillingham

et al., 2016, for a similar reasoning).

Differences between HO and TPO systems during the application procedure further

suggest that HO systems are subject to stricter verification measures. HO systems need

to hand in an executed agreement to purchase and install the solar system documenting

the scope of work, the total agreed price as well as the quantity, make and model

of solar system components to be installed. While TPO system must hand in legally

binding contracts documenting the scope of work, terms and prices, they do not have to

determine the make and model of solar system during installation. Lower verification

measures in combination with evidence on cost inflation of TPO systems hence suggest

that TPO systems are particularly prone to supply-side inefficiencies and second-degree

moral hazard.

3.5 Type of ownership

Furthermore, installers in the sample face commercial, residential, non-profit and

governmental customers. This enables me to study differences behind the entities

owning solar systems which differ with respect to financial resources and social distance

(i.e. heterogeneity in λ). Following Balafoutas et al. (2017), installers may be more

inclined to increase costs when customers are perceived as wealthier and the financial

consequences are borne by an anonymous entity compared to a residential customer
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with whom interaction is more direct and personal.

Evidence on distributional preferences of agents in markets for credence goods

suggests that supply-side inefficiencies are reduced when they have larger financial

consequences for the customer (Kandul et al., 2020). If installers perceive non-profit

and residential customers as less financially endowed and therefore have a higher

valuation for their benefits (i.e. a larger λ) compared to commercial and government

customers, one would observe differences in supply-side inefficiencies and second-

degree moral hazard depending whether customers can be attributed to the commercial,

government, non-profit or residential sector.

3.6 Measures of cost and electricity output

To document supply-side inefficiencies and second-degree moral hazard in the context

of solar systems this paper first analyses the costs solar systems under different subsidy

levels. In line with technical conventions, the total system costs are divided by its

size. In particular, the CSI rating is used to determine the cost per Watt as this

measure reflects the system’s real world electricity generating potential (see Podolefsky,

2013; Hughes and Podolefsky, 2015; Dong et al., 2018; Pless and van Benthem, 2019,

for a similar procedure).10 The CSI data provides the total eligible project cost for

each system, which include costs for the technological components, construction and

installation costs, engineering and design costs, interconnection cost as well as warranty

10 We note that the CSI data reports three different measures of a system’s size. The nameplate
measures the electricity generating potential under standard test conditions. The CEC-AC rating
is based on more realistic assumptions on the location of the system such as wind speed and ambient
temperature. The CSI rating equals the CEC-AC rating multiplied by the design factor of the system
which reflects the particular generation potential of a system’s environment such as shading and
orientation.
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and maintenance costs.11 While the costs for technological components may be easily

verifiable, the idiosyncratic environment of each system demands specific installation

and maintenance work-steps where installers likely have some range to exploit with

regard to pricing.

The second variable of interest where supply-side inefficiencies in form of reduced

labor input are likely to manifest themselves is the electricity output of solar systems.

Again, the monthly electricity output is divided by the CSI rating of the system’s size

(see Wang and Sueyoshi, 2017, for a discussion). This measure hence can hence be

interpreted as the conversion efficiency of the system and indicates how much electricity

is actually generated per Watt of installed hardware. The CSI data provides monthly

data on the electricity output of output-based systems installed between 2006 and

2016.12 Reasons for a lower electricity output per Watt include exogenous factors

like cloudy or hot weather and also extreme weather conditions which cause damage

to the systems. Because I analyze a large set of systems over an average time of

30 months, these exogenous factors can be viewed as hitting each solar system with

similar probability (note that the identification strategy used in this paper controls for

regional weather and climate differences by including county fixed effects). Besides

these exogenous factors endogenous factors such as the workmanship of the installer,

particularly the configuration quality of inverters and modules are crucial determinants

of a solar system’s electricity output (Spertino and Corona, 2013).

11 Adjusting the total costs for the ITC is akin to a linear transformation, as all systems installed during
the sample period receive a 30 percent tax credit. Consequently, this procedure would not affect the
results. See Pless and van Benthem (2019) for further information.

12 The CSI does not provide output data for upfront systems.
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4 Data and empirical strategy

I first provide a summary of the data in Section 4.1 and then present the identification

strategy to investigate supply-side inefficiencies and second-degree moral hazard in

Section 4.2.

4.1 Data summary

The information on the applicants of each solar system provides a rich set of system

characteristics. Table 2 presents summary statistics of the data for each year of the

sample time (2007 to 2016).13 The evolution of system characteristics for systems

receiving upfront subsidies is shown in the upper Panel A, for systems receiving output-

based subsidies in the lower Panel B.

The first three rows of each panel show the mean, minimum and maximum subsidy

level in a given year. In line with Figure 1, both upfront and output-based subsidy levels

considerably vary within each year. The next two rows of each panel show the average

cost per Watt and in total. As the fixed costs for the installation of solar systems are

distributed over the system size, the cost per Watt for smaller upfront systems tends

to be larger (see also Gillingham et al., 2016, for a detailed discussion). Importantly,

the cost per Watt as well as the total cost is declining over time for both subsidy types.

This trend is in line with a decrease of hardware costs in recent years. Because the CSI

subsidy levels also decrease over time, controlling for changes in time-varying factors

affecting the cost and electricity output of solar systems is crucial when estimating

13 Note that I drop solar systems which have not been installed at the time of the data access. Also,
systems without entries for the subsidy level, total cost or date of reservation were dropped in the
data. Further, when CSI incentives in an IOU phased out, all output-based systems who have not
yet completed their five year reporting timeline received a lump sum buyout. For such systems, the
expected electricity output for the remaining months was calculated and gratified with the subsidy
level. I drop these observations as these do not represent real electricity output but predicted
electricity output.
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Table 2: Summary statistics

Panel A: Upfront subsidy

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Mean subsidy level ($/W) 2.40 2.02 1.58 1.03 0.60 0.30 0.21 0.20 0.21 0.22
Min subsidy level ($/W) 0.90 0.20 0.65 0.89 0.20 0.07 0.07 0.05 0.08 0.15
Max subsidy level ($/W) 3.25 2.65 2.30 2.30 1.55 1.10 1.10 0.90 0.70 0.70

Mean cost per Watt ($/W) 8.2 8.3 7.8 7.1 6.6 5.4 4.9 4.5 4.4 4.3
Mean total cost in 1000 $ 51.5 46.6 44.2 39.0 35.1 32.2 31.0 29.9 32.7 33.3

Mean size in kW 6.4 5.7 6.1 5.8 5.6 6.1 6.5 6.8 7.8 8.1
Mean number of modules 34 30 30 27 25 24 25 25 28 29
Mean number of inverters 1 1 2 4 5 6 8 8 11 9
Mean previous systems 122 462 608 995 1557 3010 4722 5331 3540 5417
First two=1 9.0 4.4 5.4 3.6 1.9 1.0 1.1 0.9 1.8 1.6
Mean designfactor 0.95 0.94 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.96

TPO=1 7.1 14.4 14.4 30.9 53.1 71.9 66.7 57.6 40.4 35.6

Commercial 2.8 2.8 1.2 1.8 1.0 0.9 0.8 2.2 4.4 10.6
Government 0.6 0.6 1.1 0.4 0.8 0.6 0.1 0.1 0.0 0.7
Non-profit 1.1 0.7 0.5 0.5 0.3 0.2 0.2 0.9 3.2 2.5
Residential 95.5 96.0 96.6 97.3 98.6 98.9 98.9 96.8 92.4 86.3

Observations (141,792) 6,477 9,701 13,334 18,994 21,692 31,691 30,416 5,677 498 160

Panel B: Output-based subsidy

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Mean subsidy level ($/kWh) 0.35 0.28 0.24 0.15 0.09 0.06 0.06 0.05 0.05 0.04
Min subsidy level ($/kWh) 0.23 0.16 0.09 0.04 0.02 0.01 0.01 0.00 0.02 0.01
Max subsidy level ($/kWh) 0.49 0.39 0.34 0.32 0.26 0.26 0.14 0.11 0.11 0.09

Mean cost per Watt ($/W) 7.8 7.6 6.8 5.5 5.0 4.4 3.9 3.4 3.2 2.9
Mean total cost in 1000 $ 2107.3 1523.4 1433.1 1556.6 1196.9 1013.7 813.8 1220.5 1215.0 1055.4

Mean electricity output (mWh) 39.2 28.3 32.5 40.7 36.1 33.1 30.2 48.3 59.6 47.6
Mean conversion efficiency (kWh/W) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12

Mean size in kW 295.2 213.6 245.6 302.3 265.7 253.0 235.0 379.0 478.2 403.0
Mean number of modules 1471 1046 1195 1258 1046 919 819 1260 1978 1257
Mean number of inverters 2 3 3 18 5 14 34 39 17 26
Mean previous systems 34 150 229 640 1758 1624 2166 3036 763 4473
First two=1 10.4 6.4 7.3 7.4 4.6 3.9 3.9 4.3 5.0 3.5
Mean designfactor 1.03 1.02 1.00 0.98 0.97 0.95 0.96 0.99 0.99 0.98

TPO=1 51.4 33.1 21.0 37.6 28.2 31.5 39.7 36.2 15.1 30.6

Commercial 55.6 37.7 33.0 30.9 39.1 41.0 39.5 53.1 63.9 64.7
Government 15.3 21.5 23.4 54.4 44.3 47.8 44.0 34.9 21.9 24.7
Non-profit 2.9 6.1 4.9 6.4 8.5 7.9 14.2 10.6 14.3 10.6
Residential 26.9 34.7 38.7 8.3 8.1 3.3 2.3 1.5 0.00 0.00

Observations (4,474) 385 324 385 1,017 503 546 570 538 119 85

Notes: Averages over year by subsidy type. I do not report summary statistics for 2006 and 2017 because there were only a few applications in these years.

second-degree moral hazard.

The absolute electricity output and electricity output per Watt of output-based

systems is then shown in Panel B. The absolute electricity output closely follows

the system size. At the same time, the electricity output per Watt remains rather

constant, suggesting that there were no major changes of exogenous influences (i.e.

solar radiance, ambient temperature etc.) or endogenous factors (i.e. the setup and

configuration of technical components) on the conversion efficiency during the sample
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period.

Next, the size in Watt shows no specific time trend for both types of subsidies.

While the number of modules seems to be rather constant, the number of inverters

installed in each system is increasing over time. This is in line with the trend that the

peak kW (i.e. the maximum kWh generated per module) has increased over time and

fewer modules are necessary to reach a given level of electricity output. The next row

shows the number of systems installed by an installer which serves as an indicator for

his experience (Bollinger and Gillingham, 2019). This measure is higher for upfront

systems compared to output-based systems. This is in line with the increased overall

number of upfront systems. Afterwards, the fraction of systems subject to a mandatory

field inspection is shown. The decreasing trend of this variable implies that there are

not many new installers joining the market during the sample time.14

The designfactor expresses a system’s effective size measured by the ratio of

expected output of the proposed system to expected output of a baseline system.

It accounts for idiosyncratic characteristics of the system such as the orientation,

azimuth, shading. While the designfactor of systems does not show a specific pattern of

change over time, output-based systems have a slightly larger designfactor than upfront

systems. This can be attributed to slight differences in calculating the designfactor for

upfront and output-based systems (California Public Utilities Commision, 2017, Section

2.2.5). The regressions in the empirical analysis, are run separately for both subsidy

types, implying that these differences do not affect the estimation.

Next, the share of TPO systems receiving upfront subsidies is increasing during

the sample period, which corresponds to the increasing penetration of TPO firms in

14 For both subsidy types a drop of the previously installed systems in 2015 can be observed. As there
are much less observations for this year, this suggests that some new installers joined the program in
2015 and thereby decreased the average number of previous systems installed. This is in line with
the peak of first two systems installed in this year.
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residential markets observed in Pless and van Benthem (2019). The share of TPO

contracts among output-based based subsidies is initially larger, and then remains rather

constant during the sample period.

In the next four rows the distribution of ownership for both subsidy types is

presented. While upfront systems are predominantly owned by residential customers,

output-based systems are mostly installed by commercial and government customers.

This is in line with the intended allocation of upfront subsidies to smaller customers.

4.2 Identification strategy

To estimate the association of subsidy levels and cost/electricity output per Watt, I

employ the following regression specification which is adapted from Pless and van

Benthem (2019) and is applied to the data on upfront and output-based systems

separately:

Yi = α + βisi + ϕu + δk + ωc + ςf +Xiφ+ µt + εi (2)

where Yi denotes the cost or electricity output per Watt for system i, si the subsidy

level for system i. I further employ IOU ϕu and county fixed effects δk to control for

regional and local time invariant factors such as local competition among installers

which could affect the cost of systems (Gillingham et al., 2016). Importantly, I make

use of installer fixed effects ωc to eliminate potential bias due to heterogeneity of costs

at the installer level such as wages or travel costs of installers. ςf indicates the make

and model f of modules and inverters installed in system i and by employing them, I

control for time invariant characteristics of the installed technology, such as its quality.

εi denotes a random error term. Standard errors are clustered at the zip code level
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and thereby correct for potential correlation of data errors within regional CSI offices

(Podolefsky, 2013; Pless and van Benthem, 2019).

Xi is a vector of control variables which includes the number of modules and

inverters as well as a measure of the experience of installers calculated by how many

systems installer c installed previous to system i (see Bollinger and Gillingham, 2019;

Gillingham et al., 2016, for a discussion of the effects of learning by doing). I further

add a variable indicating the age of the solar system in years when applying specification

2 to the monthly data on electricity output to control for wear and tear of systems over

time.

Finally, µt is a dummy variable for the month t in which system i was installed to

control for monthly changes of general cost trends such as technological progress. When

I run specification 2 on the monthly data of electricity output, µt is a dummy variable

for the month t of the electricity output of system i to account for seasonal differences.

There is, however, a potential issue with specification 2 because the actual received

subsidy levels differed from the predetermined subsidy levels for some observations

for reasons which were not explained in the CSI program (California Public Utilities

Commision, 2017). I can thus not rule out that installers are to influence the subsidy

level and therefore self-select into specific subsidy levels. To address this concern, I

exploit plausibly exogenous variation of the predetermined subsidy level as part of an

instrumental variable strategy. In the first stage, I instrument the actually received

subsidy level with the predetermined subsidy level depending on the cumulative mW

installed within an IOU (see Table 1). Because the actual allocation of subsidy levels

was mostly in line with the predetermined schedule, predetermined subsidy levels are

a good predictor of actually received subsidy levels.

Further, the exclusion restriction requires that the instrument affects the cost and

electricity output of systems only through the subsidy level. Again, this assumption
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is plausible as even large installers did not have the market power to influence the

total capacity installed within a IOU, preventing them from influencing the transition

process from one subsidy level step to another. Importantly, the exclusion restriction is

conditional on a set of control variables and I include the above mentioned fixed effects

in the first stage. I thereby control for any between installer, between month, between

IOU and county and between technology factors that potentially link subsidy steps to

the cost and/or electricity output of systems. These notably include installers who only

apply for CSI subsidies under earlier steps when subsidy levels are larger, regional

differences in demand factors determining the transition speed to next subsidy steps

or co-movement of subsidy steps and declining hardware costs due to technological

progress.

Formally, the received subsidy level (see Figure 1) is instrumented with the

predetermined subsidy level depending on the cumulative mW installed as presented

in Table 1:

Zi = predetermined si (3)

Consequently, the first stage regression can be written as:

si = η + θZi + ϑu + ιk + κt + ξc + %f +Xiτ + νi. (4)

Using this instrumental variable approach, the second stage estimate β accounts

for potential endogeneity of the actually received subsidy levels. The estimate is

further based on within month, within IOU, within county, within installer and

within technology variation of subsidy levels. Controlling for additional factors which
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potentially influence the costs and electricity output per Watt, I interpret β as the causal

relation between a one dollar subsidy increase and associated changes of the cost and

electricity output per Watt of solar systems.

I complement this identification with a set of robustness checks. First, Hughes and

Podolefsky (2015) as well as Pless and van Benthem (2019) note that customers could

to some extent anticipate subsidy step transition dates and therefore speed up the

application process to receive higher subsidy levels. I therefore follow Hughes and

Podolefsky (2015) and Pless and van Benthem (2019) and drop systems which applied

in the vicinity of two weeks before and after a subsidy level drop. I then apply the

instrumental variable strategy this subset of data.15

Second, one could argue that customers with a particularly poor environment for

solar electricity generation have opted in the CSI program early, because only high

subsidy levels make the investment for such customers profitable (see Globus-Harris,

2020; Gilbert et al., 2019, for a related discussion of additionality effects). These

systems may then be associated with larger installation costs and lower electricity

output while receiving larger subsidies. Note that the design factor provides an

adequate measure for a systems electricity output potential and it does not show a

specific co-movement with the subsidy level (see Table 2). Further, I use the CSI rating

to calculate the dependent variables and this rating takes into account differences

in the design factor (see Section 4.1). To rule out the above explained scenario as

an alternative explanation for the effect, I rerun the 2SLS specification in equation

2, calculating the the cost per Watt under standard test conditions (i.e. a system’s

nameplate) and explicitly control for the design factor.

15 The possibility that customers are able to decide on which side of the threshold for a subsidy step
in combination with the irregularities concerning the actually received subsidies impedes me from
using a regression discontinuity design. The instrumental variable strategy however mimics the first
stage regressions which one would have performed to determine abrupt subsidy level changes in the
vicinity of threshold for a transition to a next subsidy step.
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Third, customers who self-install their system have straightforward incentives to

maximize electricity output of a system while minimizing its costs (see Section 2).

Consequently, self-installed systems should not be prone to second-degree moral hazard.

To study this hypothesis, I apply the 2SLS specification to the subset of self-installed

systems.

Fourth, I report an estimate of propensity score matching, thereby providing an

alternative strategy to address the potential concern that the assignment of the subsidy

level is correlated to other determinants of a system’s cost. I define systems receiving

a subsidy levels larger above the median as treated (i.e. Di = 1). The estimate is

based on nearest neighbor matching, implying that a treated system is matched with

an untreated system on the same observable characteristics including the make and

model of modules and inverters and the installation date (i.e. both systems installed

in the same quarter of a year). I estimate the treatment effect on the treated (ATT)

as ∆TT = E[Yit(1) − Yit(0) | Di = 1], where Yit(1) denotes the potential cost outcome

of system i at quarter t if treated and Yit(0) denotes the potential cost outcome if not

treated. The ATT hence provides information in how far the cost per Watt of identical

systems depends on the subsidy level its customer receives.

Finally, the identification of second-degree moral hazard crucially hinges on

controlling for technological progress and other time-varying factors that affect the cost

and electricity output of solar systems. I therefore re-estimate the 2SLS specification

2 adding linear, quadratic and cubic time trends instead of employing monthly fixed

effects.

I then study whether the association between subsidy levels and costs/ electricity

output is affected by increased verification of the installer’s work, the recipient of

subsidies and the ownership of systems. For this purpose, I interact the subsidy level

si in specification 2 with a variable indicating whether i) a system is among the first
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two installed and therefore subject to a mandatory field inspection, ii) the system is

owned by a third-party who receives the subsidies, and iii) the system is owned by a

commercial, government, non-profit or residential customer. This procedure requires

that I instrument each interaction term with the predetermined subsidy level interacted

with the category of the indicator variables, resulting in several first stage regressions.

To ease the interpretation of the interaction terms, I further center the subsidy level

variable around its mean. Hence, interaction terms can be interpreted as the association

of subsidy levels and cost/ electricity output at the mean subsidy level of the sample.

5 Empirical results

I start this section by presenting the impact of subsidy levels on the cost and electricity

output of solar systems. The framework in Section 2 further implies that i) installers

may limit supply-side inefficiencies if they more likely to be detected, ii) second-degree

moral hazard may be more pronounced if installers receive the subsidy and iii) installers

care about who bears how much of the financial consequences of their opportunistic

actions. I study these hypotheses and present estimation results showing heterogeneous

effects related to increased verification measures (Section 5.3.1), the subsidy recipient

(Section 5.3.2) and ownership of solar systems (Section 5.3.3).

5.1 Subsidy levels and costs of solar systems

Table 3 shows regression results for Equation 2 when the outcome is cost per Watt of

upfront systems.16 In column (1), I report OLS estimates for the linear model presented

16 Throughout this section, I use the Stata package REGHDFE to estimate linear models with multiple
fixed effects (Correia, 2019). I exclude singleton groups (i.e. groups with only one observation) to
avoid underestimated standard errors which could bias statistical inference (Correia, 2015). Keeping
singleton groups does not affect the qualitative conclusions.
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Table 3: Cost per Watt of upfront systems

All obs. included Drop obs. +- 2 weeks

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

Subsidy level 0.231*** 0.247*** 0.261*** 0.250***
(0.033) (0.038) (0.034) (0.039)

N 136,876 136,876 125,038 125,038
1st-stage partial F-stat. - 52717.1 - 50239.1

Notes: The outcome variable is cost per Watt of upfront systems. All
specifications include fixed effects for the IOU, county, month, installer as well as
for make and models of modules and inverters. Further, all specifications include
controls for the amount of modules and inverters as well as an indicator for the
number of systems a installer has installed before system i. The 1st stage partial
F-statistics for the instrumental variables are derived from first- stage regression
results reported in Appendix B, Table B1. Robust standard errors clustered at
the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 5%, 1% and 0.1% respectively.

in specification 2. In column (2), I report results for the same model estimated with

2-stage least squares (2SLS) where the actually received subsidy level is instrumented

with the predetermined subsidy level as shown in equation 3. In columns (3) and (4) I

repeat this sequence dropping customers who applied within two weeks of subsidy level

drop dates.

In all specifications, the difference in cost per Watt associated with higher subsidy

levels is large and statistically significant. The OLS and 2SLS estimates in columns (1)

and (2) are similar in size and significance, suggesting that endogeneity does not bias

the OLS estimation. Using the predetermined subsidy level as an instrument for the

actually received subsidy level has further significant explanatory power indicated by

large first-stage F-statistics. Dropping observations within two weeks of subsidy step

transitions in columns (3) and (4) does not change the qualitative conclusions.

These results suggest that a one dollar increase of upfront subsidies is associated

with an increase of the system cost of approximately $ 0.25 per Watt. Given an average
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Table 4: Robustness checks for the cost per Watt of upfront systems

Designfactor Self-installed NN matching Linear Quadratic Cubic

(1) (2) (3) (4) (5) (6)

Subsidy level 0.270*** 0.239 0.147*** 0.333*** 0.347*** 0.366***
(0.036) (0.349) (0.017) (0.030) (0.030) (0.029)

N 136,877 1,266 26,412 136,877 136,877 136,877
1st-stage partial F-stat. 52800.1 1411.9 50687.4 51985.8 53594.4

Notes: The outcome variable is cost per Watt of upfront systems. All specifications include fixed effects for the IOU, county,
month, installer as well as for make and models of modules and inverters. In columns 4 to 6, I drop monthly fixed effects
and add a variable indicating the month (either linear, quadratic or cubic) of reservation since the start of the CSI program.
Further, all specifications include controls for the amount of modules and inverters as well as an indicator for the number
of systems a installer has installed before system i. The 1st stage partial F-statistic for the instrumental variable is derived
from first-stage regression results reported in Appendix B, Table B2. Robust standard errors clustered at the zip code level
are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.

cost of 7.6$ per Watt (see Panel A of Table 2), a one dollar subsidy increase would

hence lead to a three percent increase of the system costs at the mean of the sample.

This suggests that larger subsidy levels lead to second-degree moral hazard and thereby

significantly increase the costs of upfront systems.

Robustness checks for these estimates are presented in Table 4. Column (1) presents

estimates when the cost per Watt of systems is calculated using its nameplate and

explicitly controlling for the designfactor; in column (2) I run specification 2 on the

subset of self-installed solar systems; in column (3) I report an estimate of nearest

neighbor (NN) matching; and columns (4) to (6) I replace monthly fixed effects with

liner, quadratic and cubic time-trends.

I find that the association of higher subsidy levels and increased system costs is

unaffected when controlling for additionality effects (column 1), suggesting that the

results are indeed driven by second-degree moral hazard. Furthermore, this association

is insignificant if customers install their own solar systems (column 2). Using propensity

score matching (column 3) confirms the significant association of larger subsidy levels

and increased system costs, reinforcing the confidence that the identification strategy

accounts for potential drivers of system costs. Finally, the association of larger subsidy

levels and increased system costs is even stronger when allowing for linear and non-
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Table 5: Cost per Watt of output-based systems

All obs. included Drop obs. +- 2 weeks

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

Subsidy level 1.499 3.955 0.898 3.934
(1.860) (4.156) (2.023) (4.555)

N 3,711 3,711 3,426 3,426
1st- stage partial F-stat. - 288.5 - 240.6

Notes: The outcome variable is cost per Watt of output- based systems. All
specifications include fixed effects for the IOU, county, month, installer as well
as for make and models of modules and inverters. Further, all specifications
include controls for the amount of modules and inverters as well as an indicator
for the number of systems a installer has installed before system i. The 1st
stage partial F-statistic for the instrumental variable is derived from first-stage
regression results reported in Appendix B, Table B1. Robust standard errors
clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 5%, 1% and 0.1% respectively.

linear time trends of system costs (columns 4 to 6), confirming that the results or not

driven by specific assumptions about the evolution of hardware costs of solar systems.

In Table 5 I redo the same analysis for systems receiving output-based subsidies.

Including the estimates after dropping applications within two weeks of subsidy step

transitions, none of the coefficients are statistically significant, suggesting that larger

subsidy levels do not lead to increased costs when customers receive output-based

subsidies.

A comparison of systems between ten and 30 kW (i.e. those who could choose

between upfront and output-based subsidy types) can inform us whether the association

of larger subsidy levels and increased system costs is purely related to the subsidy type or

also depends on the customers characteristics. As shown in Appendix A, Table A1 I find

no significant association between subsidy levels, subsidy types and systems costs. This

result suggests that still the customer’s characteristics drive supply-side inefficiencies

related to increased costs. I further study how supply-side inefficiencies and second-
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degree moral hazard depend on the customers characteristics in Section 5.3.

5.2 Subsidy levels and electricity output

Table 6 shows regression results where the outcome is electricity output of output-based

systems. The Table is structured as before, that is, I present OLS and 2SLS on the full

data set in columns (1) and (2) and redo this sequence on the subset of data excluding

applications in the vicinity of two weeks of subsidy level transitions in columns (3) and

(4).

The negative coefficients suggest that larger subsidy levels are associated with a

decrease of the electricity output per Watt of output-based systems. However, none of

the coefficients is significantly different from zero at conventional thresholds (p = 0.15

for the 2SLS estimate in column 2). This suggests that direct financial incentives for

a high electricity output in combination with higher verification measures for output-

based subsidies may i) prevent second-degree moral hazard related to the quality of

installation ii) spillover to pricing and thereby limiting second-degree moral hazard

related to costs.

5.3 Heterogeneous effects of second-degree moral hazard

In this section, I first exploit the fact that the first two installations of each installer

are subject to a mandatory field inspection (Section 5.3.1). Differences in supply-side

inefficiencies depending on whether i) subsidies are received by the system-owner or

a third-party are studied in Section 5.3.2 and ii) the system is owned by commercial,

government non-profit or residential customers are studied in Section 5.3.3.17

17 In line with Pless and van Benthem (2019), the results so far show no qualitative differences when
dropping applications within two weeks of subsidy step transition dates, suggesting that customers
anticipating such transitions are less of a concern. I therefore continue the analysis with the full
sample.
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Table 6: Electricity output per Watt of output-based systems

All obs. included Drop obs. +- 2 weeks

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

Subsidy level −0.004 −0.016 −0.006 −0.031
(0.010) (0.024) (0.011) (0.028)

N 206,517 206,517 189,912 189,912
1st- stage partial F-stat. - 285.8 - 215.3

Notes: The outcome variable is electricity output per Watt of output-based
systems. All specifications include fixed effects for the IOU, county, month,
installer as well as for make and models of modules and inverters. Further, all
specifications include controls for the amount of modules and inverters as well as
the age in years of the system. The 1st stage partial F-statistic for the instrumental
variable is derived from first-stage regression results reported in in Appendix B,
Table B1. Robust standard errors clustered at the installer level are reported in
parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1%
respectively.

5.3.1 Results for the first two installations

In Table 7, I present regression results for specification 2 where I interact the subsidy

level with a variable equal to one if the system installed is among the first two systems

installed by an installer. The variable thus indicates if the respective system is subject to

a mandatory field inspection and therefore increased verification of an installer’s work

(see Section 3.3). Column (1) presents results on the cost per Watt of upfront systems

using OLS and column (2) presents results using 2SLS. I repeat this sequence for the

cost of output-based (columns 3 and 4) and for the electricity output of output-based

systems (columns 5 and 6).

The coefficients of First two in columns (1) and (2) are similar in size and suggest

that upfront systems are on average 0.11 USD cheaper (p = 0.014) if they are

among the first two installed by an installer and therefore subject to mandatory field

inspections. Looking at the cost and electricity output per Watt of output-based

systems, heterogeneity related to mandatory field inspections is non-existent as neither
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Table 7: Mandatory field inspections

Cost upfront Cost output-based Electricity output output-based

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.228*** 0.245*** 1.481 3.895 −0.004 −0.016
(0.033) (0.038) (1.865) (4.169) (0.010) (0.024)

First two = 1 −0.106* −0.107* −0.268 −0.285 −0.001 −0.000
(0.043) (0.044) (0.197) (0.201) (0.002) (0.002)

First two = 1 x Subsidy level 0.121 0.122 1.552 2.041 0.008 0.002
(0.062) (0.063) (1.873) (2.280) (0.018) (0.020)

N 136,876 136,876 3,711 3,711 206,517 206,517
1st- stage partial F-stat. - 26697.7; 49463.8 - 144.7; 171.29 - 149.4; 572.0

Notes: The outcome variable is cost per Watt of upfront systems (columns 1 and 2), cost per Watt of output-based systems (columns 3 and
4) and electricity output per Watt of output-based systems (columns 5 and 6). All specifications include fixed effects for the IOU, county,
month, installer as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of
modules and inverters as well as an indicator for the number of systems a installer has installed before system i and the age in years of the
system in columns 5 and 6. The 1st stage partial F-statistics for both instrumental variables is derived from first- stage regression results,
where the second F-statistic is derived from the first-stage of the interacted variable. First-stage results are reported in Appendix B, Table B3.
Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1%
and 0.1% respectively.

the coefficients on Fist two=1, nor the interaction terms are statistically significant.

As discussed in Section 3.2, output-based systems are subject to higher verification,

reducing the potential of mandatory field inspections to change behavior.

5.3.2 Results for subsidy recipients

Table 8 shows regression results for specification 2 where I interact the subsidy level

with a variable indicating if a solar system is owned by a third party other than the

homeowner. Column (1) presents results on the cost per Watt of upfront systems using

OLS and column (2) presents results using 2SLS. This sequence is repeated for the

cost of output-based (columns 3 and 4) and for the electricity output of output-based

systems (columns 5 and 6).

The significant and positive estimate on TPO from column 2 suggest that TPO

systems are on average more expensive than HO systems. In addition, the significant

interaction term TPO x Subsidy level is twice as high as the coefficient of Subsidy level,

implying that the association of larger subsidy levels and increased costs is much more
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Table 8: Third- party owned systems

Cost upfront Cost output-based electricity output output-based

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.136*** 0.150*** −0.035 3.473 −0.008 −0.027
(0.034) (0.040) (3.581) (4.415) (0.011) (0.019)

TPO = 1 0.161*** 0.160*** −0.336 −0.092 −0.000 −0.001
(0.020) (0.020) (0.469) (0.432) (0.001) (0.002)

TPO = 1 x Subsidy level 0.315*** 0.307*** 1.252 3.804 −0.009 −0.009
(0.027) (0.029) (2.539) (4.175) (0.010) (0.014)

N 136,876 136,876 3,711 3,711 206,517 206,517
1st-stage partial F-stat. - 26345.8; 1.7e+5 - 240.2; 410.9 - 207.1; 549.4

Notes: The outcome variable is cost per Watt of upfront systems (columns 1 and 2), cost per Watt of output-based systems (columns
3 and 4) and electricity output per Watt of output-based systems (columns 5 and 6). All specifications include fixed effects for the
IOU, county, month, installer as well as for make and models of modules and inverters. Further, all specifications include controls for
the amount of modules and inverters as well as an indicator for the number of systems a installer has installed before system i and
the age in years of the system in columns 5 and 6. The 1st stage partial F-statistics for both instrumental variables is derived from
first- stage regression results, where the second F-statistic is derived from the first-stage of the interacted variable. First-stage results
are reported in Appendix B, Table B4. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and
∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.

pronounced for systems owned by a third-party compared to home-owned systems.

These results are in line with the previous literature, which has stated that TPO firms

may have incentives to increase overall tax credits and therefore inflate the costs and

size of systems (Podolefsky, 2013). This trend is confirmed in the analysis of Pless and

van Benthem (2019).18 In combination with milder verification procedures for TPO

systems (see Section 3.4), these results suggest that such systems might be particularly

prone to supply-side inefficiencies and second-degree moral hazard. Again I do not

observe any heterogeneity of cost and electricity output of output-based systems with

respect to TPO systems.

18 A similar analysis in the data, which includes non residential systems, confirms this trend to a certain
extent. Replacing the outcome variable in specification 2 with a system’s nameplate rating, I find that
TPO systems are on average 0.12kW larger, p = 0.090.
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5.3.3 Results for ownership

Next I turn to an analysis of heterogeneous effects depending on whether customers

can be categorized as commercial, government, non-profit or residential. Table 9 shows

regression results for specification 2 where I interact the subsidy level with a variable

indicating the category of a customer. Commercial customers are employed as the

reference category and the coefficient Subsidy level therefore has to be interpreted as

the association of subsidy levels and costs/ electricity output per Watt for commercial

customers. Column (1) presents results on the cost per Watt of upfront systems using

OLS and column (2) presents results using 2SLS. I repeat this sequence for the cost of

output-based (columns 3 and 4) and for the electricity output of output-based systems

(columns 5 and 6).

The significant coefficients of Government and Non-Profit in columns (1) and (2)

show that the cost per Watt of governmental customers is on average approximately one

USD larger and the cost per Watt of non-profit customers is on average approximately

0.5 USD lower than that of commercial customers receiving upfront subsidies. Both

observations are in line with installers having different valuations for customer types

(i.e. with heterogeneity of λ in equation 1). The system costs of governmental

customers are ultimately borne by the tax-payer, which may reduce the extent in how far

installers care for the customer’s benefits λ and thus trigger installers to charge higher

prices. Adversely, non-profit organizations are often supported with donations and have

less financial resources which may in turn increase λ and result in cheaper systems (see

also Borenstein, 2017, who find that smaller and poorer households are charged less

for solar systems). Note that the interaction term Non-Profit x Subsidy level is positive

and statistically significant, suggesting that the reduction in cost is in part outweighed

by increased costs when non-profit customers receive larger subsidy levels.

Looking at the 2SLS estimates for output-based systems, I observe no heterogeneity
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Table 9: Customer sector

Cost upfront Cost output-based Electricity output output-based

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.276** 0.184 2.309 −10.577 −0.003 −0.069
(0.095) (0.102) (2.192) (16.817) (0.014) (0.039)

Sector

Government 0.845* 1.039** 0.359 1.047 0.001 0.004
(0.329) (0.402) (0.220) (0.942) (0.001) (0.002)

Non-Profit −0.459*** −0.474*** 0.270 0.760 0.002 0.005*
(0.120) (0.131) (0.418) (0.953) (0.002) (0.002)

Residential 0.052 0.042 0.019 0.264 −0.005 −0.004
(0.058) (0.056) (0.499) (0.678) (0.003) (0.003)

Sector x Subsidy level

Government x Subsidy level 0.144 0.039 −0.160 −1.558 0.005 −0.012
(0.263) (0.323) (1.887) (2.940) (0.013) (0.016)

Non-profit x Subsidy level 0.312* 0.410** −4.370 −6.884 −0.011 −0.002
(0.122) (0.132) (2.762) (4.040) (0.020) (0.023)

Residential x Subsidy level −0.065 0.029 −8.115*** −3.698 −0.011 0.019
(0.083) (0.086) (2.258) (5.780) (0.017) (0.024)

N 136,876 136,876 3,711 3,711 206,517 206,517
1st-stage partial F-stat. - 31145.7; 271.5; - 62.3; 183.2; - 157.6; 171.0;

435.5; 1.5e+05 100.3; 2056.5 139.0; 1516.1

Notes: The outcome variable is cost per Watt of upfront systems (columns 1 and 2), cost per Watt of output-based systems (columns 3 and
4) and electricity output per Watt of output-based systems (columns 5 and 6). All specifications include fixed effects for the IOU, county,
month, installer as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of
modules and inverters as well as an indicator for the number of systems a installer has installed before system i and the age in years of
the system in columns 5 and 6. The 1st stage partial F-statistics for the four instrumental variables is derived from first-stage regression
results, where the second F-statistic is derived from the first-stage of the interacted variable for government customers, the third F-statistic
is derived from the first-stage of the interacted variable for non-profit customers and the fourth F-statistic is derived from the first-stage of
the interacted variable for residential customers. First-stage results are reported in Appendix B, Table B5. Robust standard errors clustered
at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.

of costs (column 4) but for the electricity output per Watt (column 6). The coefficient

of Non-Profit is significant and positive, suggesting that solar systems owned by non-

profit customers have a better ratio of actually produced electricity per installed Watt

than that of commercial customers although this difference is comparably small in size

(p = 0.038). Again, this result can be attributed to heterogeneity in the valuation of

customer benefits and installers may have a higher valuation for the benefits of non-

profit customers (i.e. larger λ) when they are perceived as financially less-endowed

entities.
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6 Discussion and conclusion

In this paper, I studied supply-side inefficiencies and second-degree moral hazard of

installers induced by the credence component of energy-transforming technologies. To

this end, I analyzed data from a solar subsidy program in California and quantified

the relationship of subsidy levels and the cost and electricity output per Watt of solar

systems. Employing an instrumental strategy to account for potential self-selection of

installers into specific subsidy levels and further controlling for a wide range of potential

confounding factors, I find that the cost of upfront solar systems increases if subsidy

levels are higher. Further, I do not find robust evidence of supply-side inefficiencies and

second-degree moral hazard related to output-based subsidies. Finally, the conclusions

are strengthened by the observation that supply-side inefficiencies and second-degree

moral hazard i) are reduced when the installer’s work is subject to increased verification,

ii) are larger for TPO systems and iii) more pronounced for government and less

pronounced for non-profit customers compared to commercial customers.

The results provide novel insights for two different kinds of research avenues. First,

they contribute to the literature evaluating the cost-effectiveness of environmental

subsidy programs and show that such programs need to be robust towards supply-side

inefficiencies and second-degree moral hazard of installers induced by the credence

component of energy-transforming technologies. My empirical analysis suggests that

program administrators should i) account for the cost of second-degree moral hazard

induced by upfront subsidies, ii) impose stricter verification measures on the work of

installers and iii) should take special care of TPO systems as these seem most prone to

supply-side inefficiencies and second-degree moral hazard.

Second, this paper documents that stylized findings from other credence goods

markets are relevant for the market of energy-transforming technologies. This paper is

the first to document evidence of second-degree moral hazard in the context of energy-
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transforming technologies. The results further confirm heterogeneity of supply-side

inefficiencies depending on who bears their costs (Balafoutas et al., 2013; Gottschalk

et al., 2020). It is a promising route for future research to further uncover dimensions

of heterogeneity in supply-side inefficiencies and second-degree moral hazard as well

as related solutions.
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A Within analysis of subsidy types

Figure A1: Size distribution of upfront systems

0
.0

5
.1

.1
5

.2
.2

5

0 10 20 30

0
.0

5
.1

.1
5

.2
.2

5

4 6 8 10 12

Density 5 kW
10 kW

Notes: Distribution of system size of upfront systems. The left panel shows all upfront systems up to 30
kW. The right panel shows the distribution of the subset of system sized four to twelve kW.

Customers installing a system sized between ten and 30 kW could choose to receive
upfront or output-based subsidies. As I argue in this paper, the design of output-
based subsidies make them more robust to supply-side inefficiencies. Strategic self-
selection into either subsidy type could hence bias the results. If for example, installers
would want to maximize the upfront amount of subsidies received, one would observe
disproportionately many (or a bunching of) upfront systems with a size just below the
threshold of 30 kW. Figure A1 shows the distribution of system size of upfront systems.
There is no evidence of bunching at 30kW, suggesting that installers do not choose a
system size so as to maximize the upfront subsidies received. In line, Figure A2 shows a
declining ratio of upfront to output-based systems by system size in the range between
ten and 30 kW. The decline of the ratio strengthens the conclusion that the choice on the
subsidy type indeed depends on the systems size rather than strategic considerations.

I then turn to analyze whether second-degree moral hazard is related to the subsidy
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Figure A2: Ratio of upfront and output-based systems
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Notes: Ratio of upfront to output-based systems by size if system size is between 10 and 30 kW. The bin
size is 1 W, so for example the first band represents the ratio conditional on systems being sized from 10
to 11W.

type or rather the customer’s characteristics. In this section, I only consider systems
installed by installers who are not specialized in setting up either upfront or output-
based systems, pool these systems and run specification 2 interacting the Subsidy level
with a variable equal to one if the system receives upfront subsidies.

Table A1 shows related results where I include systems within ten and 30 kW
(i.e. those who could choose the subsidy type) in columns (1) and (2). Given that
higher upfront subsidies lead to increased costs (see Section 5.1) installers may want to
maximize their gains by installing large upfront systems (see Section 3.2). I therefore
analyze large systems which could choose the subsidy type separately and include
system of more than 20 (25) kW in columns (3) and (4) (5 and 6).

None of the estimates is significantly different from zero suggesting that the cost
per Watt of systems and second-degree moral hazard does not differ by subsidy type.
This result suggests that still the customer’s characteristics (i.e. having smaller systems
and presumably less private information) drive second-degree moral hazard related to
increased costs.
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Table A1: Within regressions

10 to 30 kW 20 to 30 kW 25 to 30 kW

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level −1.541 123.483 2.835 35.096 2.104 90.267
(2.077) (190.272) (3.801) (214.332) (11.553) (108.852)

Upfront 0.024 5.391 0.568 0.298 0.207 −0.437
(0.233) (8.549) (0.304) (1.960) (2.205) (5.691)

Upfront x Subsidy level 1.760 −119.385 −2.869 −33.517 −2.420 −85.865
(2.034) (184.370) (3.618) (203.194) (10.855) (103.582)

# Observations 4,999 4,999 586 586 161 161
1st-stage partial F-stat. - 1487.9; 1455.3 - 359.7; 348.2 - 142.9; 98.3

Notes: The outcome variable is cost per Watt. I pool upfront and output-based systems. All specifications include fixed
effects for the IOU, county, month and installers. Note that columns 3 to 6 do not include fixed effects for make and model
of modules and inverters because the number of clusters is otherwise insufficient to calculate a robust covariance matrix.
Further, I only include installers who install both upfront and output-based systems. I explicitly control for the size of the
system. The 1st stage partial F-statistics for both instrumental variables is derived from first-stage regression results, where
the second F-statistic is derived from the first-stage of the interacted variable. Robust standard errors clustered at the zip
code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.
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B First stage-regression results

Table B1: First stage results for Tables 3, 5 and 6

Table 3 Table 5 Table 6

All obs. Dropped obs. All obs. Dropped obs. All obs. Dropped obs.
(1) (2) (3) (4) (5) (6)

Predetermined si 0.855*** 0.886*** 0.415*** 0.396*** 0.413*** 0.393***
(0.004) (0.004) (0.024) (0.026) (0.024) (0.027)

# Observations 136,876 125,038 3,711 3,426 206,517 189,912

Notes: The outcome variable is the subsidy level of upfront systems in columns (1) and (2) and the subsidy level
of output-based systems in columns (3) to (6). All specifications include fixed effects for the IOU, county, month of
installation, installers as well as make and model of modules and inverters. Robust standard errors clustered at the zip
code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.
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Table B2: First stage results for Table 4

(1) (2) (4) (5) (6)

Predetermined si 0.855*** 0.877*** 0.869*** 0.872*** 0.876***
(0.004) (0.023) (0.004) (0.004) (0.004)

# Observations 136,876 136,876 136,876 136,876 136,876

Notes: The outcome variable is the subsidy level of upfront systems in columns (1) and
(2) and the subsidy level of output-based systems in columns (3) to (5). All specifications
include fixed effects for the IOU, county, month of installation, installers as well as make
and model of modules and inverters. Robust standard errors clustered at the zip code level
are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and
0.1% respectively.
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Table B3: First stage results for Table 7

Cost upfront Cost output-based Electricity output output-based

si First Two x si si First Two x si si First Two x si
(1) (2) (3) (4) (5) (6)

Predetermined si 0.854*** −0.007*** 0.415*** −0.008*** 0.413*** −0.001***
(0.004) (0.001) (0.024) (0.004) (0.024) (0.5e−4)

# Observations 136,876 136,876 3,711 3,711 206,517 206,517

Notes: The outcome variable is the subsidy level of upfront systems in columns (1) and the subsidy level of output-based
systems in columns (3) and (5). In columns (2), (4) and (6) the outcome variable is the respective subsidy level interacted
with a variable indicating whether the system is among the first two installed by an installer. All specifications include fixed
effects for the IOU, county, month of installation, installers as well as make and model of modules and inverters. Robust
standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at
5%, 1% and 0.1% respectively.

49



Table B4: First stage results for Table 8

Cost upfront Cost output-based Electricity output output-based

si TPO x si si TPO x si si TPO x si
(1) (2) (3) (4) (5) (6)

Predetermined si 0.854*** −0.034*** 0.473*** −0.208*** 0.452*** −0.201***
(0.004) (0.002) (0.022) (0.021) (0.022) (0.019)

# Observations 136,876 136,876 3,711 3,711 206,517 206,517

Notes: The outcome variable is the subsidy level of upfront systems in columns (1) and the subsidy level of
output-based systems in columns (3) and (5). In columns (2), (4) and (6) the outcome variable is the respective
subsidy level interacted with a variable indicating whether the system owned by a third-party. All specifications
include fixed effects for the IOU, county, month of installation, installers as well as make and model of modules
and inverters. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗

denote statistical significance at 5%, 1% and 0.1% respectively.
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Table B5: First stage results for Table 9

Cost upfront Cost output-based Electricity output output-based

si Gov x si Np x si Res x si si Gov x si Np x si Res x si si Gov x si Np x si Res x si
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Predetermined si 0.616*** 0.699*** 0.781*** 0.985*** 0.316*** 0.611*** 0.603*** 0.981*** 0.411*** 0.603*** 0.588*** 0.977***
(0.008) (0.023) (0.012) (0.001) (0.040) (0.023) (0.014) (0.012) (0.028) (0.025) (0.027) (0.013)

# Observations 136,876 136,876 136,876 136,876 3,711 3,711 3,711 3,711 206,517 206,517 206,517 206,517

Notes: The outcome variable is the subsidy level of upfront systems in columns (1) and the subsidy level of output-based systems in columns (5) and (9). In columns (2), (6) and
(10) the outcome variable is the respective subsidy level interacted with a variable indicating whether the customer is governmental (Gov). In columns (3), (7) and (11) the outcome
variable is the respective subsidy level interacted with a variable indicating whether the customer is non-profit (Np). In columns 4, 8 and 12 the outcome variable is the respective
subsidy level interacted with a variable indicating whether the customer is residential (Res). All specifications include fixed effects for the IOU, county, month of installation, installers
as well as make and model of modules and inverters. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at
5%, 1% and 0.1% respectively.
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