
   

Abstract 

Power sector deep decarbonisation challenge the current energy system to integrate a wider range of low-, zero-, and 

negative-carbon electricity supply technologies. Multiple layers, segments, and networks of the time-dependent and 

geospatially distributed resources, processes, and consumers represents the complex interactions of electricity supply 

chain processes. Suitable methods and tools are necessary to derive relevant insights and analysis about the energy 

system to support the strategic plan energy sector expansion and transition in the region. This paper presents the 

necessary aspects to consider when modelling regional electricity supply chain system and points out the challenges 

in the context of deep decarbonisation. 

The key aspects and challenges of energy system modelling are derived from literature review. Select energy system 

modelling frameworks are presented, and the extent to which they consider these aspects and how they tackle 

challenges are discussed. 

The results identifies key aspects of energy system modelling for the assessment of regional electricity supply chain 

capacity in the context of deep decarbonisation (scope and coverage, system boundaries, level of complexity, 

spatiotemporal resolutions, model formulation, data, and assessment criteria). Each of the studied modelling 

frameworks are capable to model generic or specific type of energy production, storage, and distribution network 

capacities with various level of complexities and scales. There are challenges pertaining to energy system modelling: 

(1) addressing space and time; (2) balancing model complexity and tractability; (3) integrating social, resource, and 

environment dimensions; and (4) resolving uncertainty, transparency, and reproducibility. Spatiotemporal resolutions 

are the major specific challenge considering the complex investment and operational constraints related to resource 

adequacy, access, suitability, and service reliability. Scale of the model increases when including additional system 

boundaries, i.e., more detailed conditions of how the complex system interacts. Computational capacity needs to be 

expanded to include large-scale resource transport and storage on top of generation capacity expansion problem, 

otherwise simplification of system complexities needs to be addressed. Assessment area expands with including 

externalities related to energy system development (socio-economy, resource, and environment). The accuracy of the 

results is also dependent on data quality and can be improved with a more transparent and collaborative process. In 

discussing these challenges, possible areas for future research are presented and recommendations are made to ensure 

the continued relevance for energy systems modelling in deriving strategic insights to support policy-making process 

in the region. 

There is still a broad range of opportunities for researchers to contribute to the development of future energy system 

modelling. Focus on the spatiotemporal uncertainties of renewable resources and the spatial implications of 

infrastructure deployment are paramount in assessing the costs, potentials, and impacts of expanding the energy supply 

chain. To summarise, the appropriate or relevance of energy system modelling needs to be reviewed critically for their 

suitability and trade-offs in tackling region-specific challenges. The approach presented here is one contribution to 

improve current methods of modelling and analysis of energy system by adding the key aspects for an improved 

strategic decision support in regional energy planning. 

Overview 

Deep decarbonisation of the power sector plays a key role in reducing total greenhouse gas (GHG) emissions 

dramatically to meet climate stabilisation goals (Kriegler et al. 2014). A common strategy is to avoid, reduce or remove 

carbon emissions from electricity generation and use low-carbon, carbon-free, or negative-carbon electricity to help 

decarbonise residual emissions from other hard-to-reduce sectors (transportation, building, industry) (Bataille et al. 

2016). 

The power sector, once a predictable and slow-moving industry, is now a complex system undergoing rapid 

transformation. Access to affordable and reliable electricity is a key driver of economic growth in modern economies 

(National Research Council 1986). Countries are in various stages of reforming and transforming their power sectors 

to better incorporate modern technologies, assure reliability and affordability, reduce harmful air emissions, meet a 
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wide range of environmental goals, and achieve critical developmental objectives. Charting a path towards power 

sector deep decarbonisation is a complex task, considering the wide-ranging portfolio of technological solutions and 

respective challenges. 

Energy system models provide the integrating framework that assists energy policy and industrial decision makers at 

different levels (global, regional, local) in assessing different strategies and possible outcomes (Strachan, Fais, and 

Daly 2016). Note that the main goal of modelling was ‘not to compute precise but to gain insight into any complex 

system’. Wide range of uncertainties, assumptions, exclusions, and simplifications limit the model capability in 

determining the exact outcome (Huntington, Weyant, and Sweeney 1982; Hamming 2012). 

Considering the modelled system boundaries and complex interactions are theoretically confirmed, a ‘good-fit’ model 

can capture the behaviour of the system in various scenarios acceptably similar to what is expected in real condition. 

Thus, modelling is suitable for scenario analysis as to help substantiate questions related to systems’ capacity 

deployment and operation (Chermack et al. 2001). This help analysts to understand the increasingly complex sector 

and develop scenarios of possible development pathways. Formalizing the knowledge about the complex interactions 

in the energy sector and framework of thinking about the insights and implications related to how the modelled system 

behaves. Ultimately, supporting decision makers to explicitly state their views on the direction of the energy sector 

development aimed to achieve given strategic goals. 

In this article, a comprehensive overview of spatial-explicit energy system modelling for the assessment of regional 

electricity supply chain capacity planning towards power sector deep-decarbonisation and summary of the key 

modelling aspects and challenges are presented. The “Motivation” section is followed by the “Methodology” 

section—where necessary descriptions of the review approach are provided. In the “Modelling aspects” section 

presents the key aspects of energy system modelling to consider in the context of power sector deep decarbonisation, 

and several current approach to address these aspects. Subsequently, in the “Modelling challenges” section presents 

the discussion of current and possible future issues related to modelling and assessment. The “Conclusions” section 

summarises and closes this review. 

Motivation 

Deep decarbonisation of the power sector comprises of electrification strategies to the masses, shift to higher efficiency 

plants and shift to lower emitting fuels (i.e., coal and oil to natural gas), large-scale integration of renewable energy 

sources (RES) electricity, coupling of carbon capture, (transport) and storage (CSS) technologies, as well as carbon 

dioxide removal (CDR) in the form of bioenergy coupled with CCS (BECCS) and direct-air capture (DACCS). This 

challenges the current energy planning to integrate a wider set of networks of interconnected energy and CCS 

processes with a diverse set of low-, zero-, and negative-carbon technologies. This calls for new types of energy system 

models that incorporate a multiverse of energy carriers, conversion, storage, and distribution technologies and wide-

area networks of geospatially distributed processes with finer system complexity and spatial detail. Moreover, the 

intermittent nature of renewable energy sources (RES) and time-dependent demand profile require strategic analysis 

of supply-demand matching in detailed short-term operations, with the resulting need for more temporal detail. 

These models must also consider a wider range of assessment related to the affordability, security, acceptability, and 

sustainability that largely influence the feasibility of different deep decarbonisation strategies in the region. And to 

ensure a high impact of modelling results, improved transparency of modelling assumptions and methodologies are 

necessary to improve public scrutiny, in line with the principles of open science, free market, and international 

cooperation. 

This review focuses on spatiotemporal-explicit energy system modelling framework for four five reasons: 

1. Variability, uncertainty, and location-specificity of RES. 

2. Extensive electrification and transmission expansion options. 

3. Need to factor in the transportation costs of fuel-feedstock and the geospatial distribution of resources. 

4. The need to cost-effectively capture, transport, and store CO2 at scale requires a detailed analysis of CCS 

infrastructure deployment for wide area CO2 source-sink matching. 

5. Region specific protection and conservation values influence the quality and access to energy resources and 

suitability of infrastructure deployment. 

Methods 

The aim of this review is to give a comprehensive overview and to discuss the key aspects and challenges of energy 

system modelling for regional power sector deep-decarbonisation. The key aspects and challenges of energy system 

modelling are derived from literature review (see Table 1). Select frameworks of energy system modelling and 

analysis are presented, and the extent to which they consider the key aspects and how they tackle challenges are 

analysed. 



Table 1 | Relevant literatures 

Publication Focus 

(Kriechbaum, Scheiber, and Kienberger 2018) “Grid-based multi-energy systems—
modelling, assessment, open source modelling frameworks and challenges”  

(Mancarella 2014) “(multi-energy systems): An overview of concepts and evaluation 
models” 

(Lopes et al. 2016) “Modelling of integrated multi-energy systems: drivers, 
requirements, and opportunities”  

Grid-based multi-energy system 
concepts and modelling 

(Nunes, Causer, and Ciolkosz 2020) “Biomass for energy: A review on supply chain 
management models” 

Biomass supply chain model 

(Krishnan et al. 2016) “Co-optimization of electricity transmission and generation 
resources for planning and policy analysis: review of concepts and modeling 
approaches” 

(Syranidis, Robinius, and Stolten 2018) “Control techniques and the modeling of 
electrical power flow across transmission networks” 

(Samsatli and Samsatli 2015) “A general spatio-temporal model of energy systems 
with a detailed account of transport and storage” 

Generation and transmission co-
optimisation model 

(Kuby, Bielicki, and Middleton 2011) “Optimal Spatial Deployment of CO2 Capture 
and Storage Given a Price on Carbon” 

(Middleton and Bielicki 2009) “A scalable infrastructure model for carbon capture 
and storage: SimCCS” 

Carbon capture, (transport) and 
storage (CCS) infrastructure model 

(Kling et al. 2017) “Integrated Assessment Models of the Food, Energy, and Water 
Nexus: A Review and an Outline of Research Needs” 

(Grace C. Wu 2020) “Spatial Planning of Low-Carbon Transitions” 

Integrated assessment of energy 
system externalities 

(Wiese et al. 2018) “A qualitative evaluation approach for energy system modelling 
frameworks” 

Evaluation of energy system 
modelling frameworks 

 

The above list of literature review help determines the key aspects and challenges for modelling the electricity supply 

chain in the context of deep decarbonisation. For the evaluation of such energy systems and deep decarbonisation 

pathways, suitable assessment criteria are provided. The review analyses each framework’s modelling approach and 

the extent to which the necessary aspects are considered. 

Modelling aspects 

To gain useful results from the modelling exercise, it is crucial to model the values that are relevant to the problem 

(Pfenninger, Hawkes, and Keirstead 2014). In the following sections, several important aspects of energy system 

modelling that need to be considered within the context of deep decarbonisation will be discussed. 

Scope and coverage 

Deep decarbonisation of power sector can be achieved through deployment and operation of low-, zero-, and negative-

carbon electricity supply technologies, which configuration brings a steep decline to total CO2 emissions overtime. In 

the context of regional long-term power sector planning, the development of spatiotemporal-explicit energy system 

model focuses on the long-term capacity investment planning with considering the short-term dynamics and 

operational constraints implying to the adequacy, reliability, and security of supply deliveries (Yuan and Ashayeri 

2009). The bottom-up planning model comprises of sets of decisions under both capacity investment and operation 

variables related to how much, where, and what type of technology to deploy (invest) and energy commodity to 

produce, store or distribute; all to secure adequate, reliable, and cost-effective electricity supplies to demand regions 

(Prina et al. 2020). This requires consideration of the short and long term dynamics of supply and demand, as well as 

technological, regulatory, economic and social constraints (Collins et al. 2017). Both capacity and operation decisions 

influence the potential costs and benefits, ultimately, the value of the system. 

The model should cover at least a region that comprises of various sub-regions interconnected with various channels 

of distribution, which constitutes the network of electricity supply chain from feedstock-transport, production, storage 

to transmission-distribution. Long-term capacity planning model usually considers a time horizon of 30-50 years, 



considering the economic lifetime of technology investment and major structural changes (e.g., socio-economic 

transformation, market restructure). Note that envisioning the deep decarbonisation pathways in line with the Paris 

Agreement requires a time-horizon up to the end of 21st century. This also include the net-zero targets by early 2nd 

half of the 21st century. Moreover, short-term operation model accounts for the feasible operation of the planned 

capacity to deliver adequate and reliable supply. 

System boundaries 

The system boundary must be carefully defined to comprehensively assess the power sector, focusing on various deep 

decarbonisation strategies and respective challenges. For power sector, all energy carriers related to input feedstock 

must be considered in assessing the input-mix of power generation (e.g. biomass, fossil-fuels, RES) as well as co-

generations or co-products (e.g. heat or steam) (Mancarella 2014). The power sector has grown complex overtime 

with the expanding low-, zero-, negative-carbon electricity supply technologies. Various types and layers of energy 

processes are interconnected along the electricity supply chain. Starting from feedstock and transport, generation, 

storage, and transmission-distribution; creating value of the region’s power sector in fulfilling consumer demand for 

electricity (Nagurney and Matsypura 2007). Considering the availability of CCS technologies, the boundary of the 

system expands to include CO2 capture, transport, and storage technologies (d’Amore and Bezzo 2020). This enables 

a comprehensive assessment of carbon-negative electricity in an energy supply chain perspective. Figure 1 represents 

the power sector coupled with CCS technologies and the physical flow of energies and CO2 through stages of an 

interconnected processes (activities) in segments of power sector. 

 

Figure 1 | Schematic of the energy system related to the power sector and coupling with carbon capture and storage (CCS). The power sector 

includes the stages primary energy feedstock and transport, conversion, storage, and distribution of final energy. CCS coupling at electricity 

generation facility. The arrows represent the physical flow of energy and CO2 through stages of an interconnected processes (activities) along the 

electricity supply chain. 

Level of complexity 

Conversion and transfers of energy are bound to the law of physics (thermodynamics). Representation of the physical 

flows of energy along the electricity supply chain can be described in the model with different levels of complexities. 

For instance, whether or not to consider part-load efficiencies (Kim 2004), simple transport or AC/DC power flows 

model, electricity storage cycling, CO2 pressure drop in transport, and other physics properties that significantly 

influence how the energy system behaves, ultimately the costs and configurations. 

The different levels of complexity can be classified into three categories: black-box, grey-box, and white-box model 

representations. Black-box models are highly aggregated, databased input-output models without a representation of 

the underlying physical principles. Whitebox models offer higher degrees of detail and are based on physical principles 

to calculate load flows and conversion efficiencies. Grey-box models use simplified physical representations, and their 

aggregation level and degree of detail is in between that of a white-box model and a black-box model. Increasing the 

level of detail leads to increased computational effort and may decrease model tractability. 



Figure 2 mapped out various types of models or cases in different spatial coverage and level of detail. 

 

Figure 2 | Classification of existing energy system models according to their level of detail and spatial coverage. I: large-scale grid studies 
relying on simplified models, II: simple tools for quick assessments of small-scale energy systems, III: building and city district energy system 

design studies with simplified models, IV: on-site energy system studies with additional features, V: mixed-integer linear programming with part-

load efficiencies and VI: mixed-integer non-linear programming with complex models. Electricity supply chain modelling for power sector deep 

decarbonisation is in the dark-blue box. Adapted from (Kriechbaum, Scheiber, and Kienberger 2018). 

Spatiotemporal resolutions 

In the context of electricity supply chain, power sector energy system models should consider spatial and temporal 

dimensions because energy supply and demand often occur in different locations and in different times. To connect 

demand with supply, energy transfer infrastructure is necessary. Moreover, to match supply and demand at any time, 

careful short-term operation of generation, storage, and distribution portfolios are necessary. 

Large-scale integration of RES is challenged by the variable, uncertain, and location-specific nature of RES. Timely 

load-matching of different RES and demand profiles requires flexible storage and auxiliary capacities to back up 

renewables production when RES availability are low, or when forecasted-generation have been corrected overtime. 

Integration of large-scale RES further requires long-distance transmissions to transfer large amount of renewables 

production that are often found in regions afar from demand centres. Fuel-feedstock and CO2 source-sink matching 

also require detailed spatial analysis, considering the extensive transport routes and network expansions. 

Large-scale global energy system models use aggregated spatial and temporal resolutions to the level of countries 

(regions of countries) and sub-annual time-slice resolutions. This approach is to account for cross border trade and 

temporal-fluctuation of energy supply and demand loads at international (inter-regional) levels. Spatial-explicitness 

of information related to the modelled system can be set at different spatial size or area of modelled locations (e.g., 

national, district, community levels, or square-grids. Meanwhile, temporal-explicitness can be set at different periods 

of time representing significant changes in different years, seasons, hours, minutes, seconds, and in shorter periods.  

Figure 3 mapped out various types of models or cases in different spatial and temporal resolutions. 

 



Figure 3 | Spatial and temporal resolutions in energy system models. Electricity supply chain modelling for power sector deep decarbonisation is 

in the dark-blue box. Adapted from (Lopes et al. 2016; Kriechbaum, Scheiber, and Kienberger 2018). 

Model formulation 

Based on the approach to describe the problem, there are five groups of energy system models: (1) Simulation model 

that predicts or forecasts how the energy system might evolve; (2) Optimisation model that provide scenarios of how 

the energy system could evolve; (3) Back-casting model that provide scenarios of how the energy system should 

evolve, given the future state; (4) Partial-equilibrium model that assess policy and technology interventions through 

the analysis of changes in behaviour of supply, demand, and prices in a whole economy with several or many 

interacting markets, and the interaction of demand and supply will result in an overall general equilibrium; and (5) 

Agent-based model that consider the full-functioning system as a collection of autonomous decision-making entities 

called agents, and each agent individually assesses its situation and makes decisions on the basis of a set of rules. 

Feedstock-transport, energy conversion, storage, and distribution processes can be described in a continuous function 

of linear and non-linear behaviour (Palensky, Widl, and Elsheikh 2014). To create mathematically tractable models 

for integrated simulation or optimisation problems, the equations must be brought to a common mathematical problem 

formulation. The most commonly used are linear programming (LP), mixed-integer linear programming (MILP), 

mixed integer non-linear programming (MINLP) and dynamic programming (DP) (Beeck 1999). In LP, all 

relationships are expressed in fully linearised terms with constant coefficients. MILP is an extension of LP as it allows 

a greater detail in formulating technical properties and relations. It adds decision variables and non-convex relations 

which allow, for instance, the on/off mode for individual units and lumpy investments. Moreover, MINLP takes into 

account non-linear objective functions and constraints meaning that it most closely approximates real world systems 

(Qudrat-Ullah 2016). However, this adds more layer of complexity since the identification of the global optimum 

among the local optima in non-linear problems requires greater computational effort (Wagner and Wittmann 2014). 

DP is a method to find the optimum growth path. The problem is divided into several simple sub-problems for which 

the optimum solution is calculated and then combined to a global solution. This method was applied for example on 

distributed generation and distribution system expansion planning (Gönen and Foote 1982; Khalesi, Rezaei, and 

Haghifam 2011)  or the optimal operation of a distributed energy system and networks (Tashiro, Tamura, and Yasuda 

2011). 

Based on the approach to address uncertainties, models can be classified into two: (1) deterministic model uses best-

estimates for input parameters and not consider the probability distribution, thus model results are determined by the 

exact input parameters; and (2) probabilistic model that considers the probability distribution of potential outcomes 

by allowing random variation in one or more inputs over time. 

Data 

Finer spatial and temporal resolutions of the model requires appropriate values of both the parameters and independent 

variables (Lopes et al. 2016). This vast amount of data required for high resolution bottom-up models challenges the 

modellers. The necessary data is often not available because it is either not measured, commercially confidential, 

relates to the future, highly uncertain, or bad quality. 

Assessment criteria 

Choosing the appropriate assessment criterion and indicators are critical to evaluate the feasibility of power sector 

development and related deep decarbonisation strategies. The most common criteria are technical, economic, social 

or resource-environment. Qualitative and quantitative criteria do exist, but only quantitative criteria can be used for 

the mathematical formulation of model. The assessment and performance indicators can derive from an absolute or 

relative value, and a single- or multi-objective approach. 

1. Technical assessment compares the energy efficiencies by comparing energy output to energy input, 

following the first law of thermodynamics. Assessed for individual components or the whole system over a 

certain period. To assess the gains of efficiency improvements, a wide range of scenarios and system 

configurations are compared to one another. This also includes the reliability assessment in evaluating the 

system technical ability or capacity to secure electricity supply. 

2. Economic assessment evaluates the costs of deploying and operating the system. For long-term planning 

purpose the time value of money is considered using discounted cash flows. 

3. Socio-technic assessment evaluates the acceptability of technology deployment around local communities, 

as well as the socio-economic impacts of energy systems development.  

4. Resource assessment evaluates the use of resources throughout the electricity supply chain. For instance, 

the use of clean water resources for thermal generating units, the use of land for sitting of power supply 

technologies, and more. 

5. Environment assessment evaluates the impacts of energy systems deployment on ecosystem services. This 

can be measured as in GHG emissions and removals, local pollutants, and more. 



Modelling challenges 

This section describes the challenges in energy system modelling for regional power electricity supply chain in the 

context of deep decarbonisation. 

Addressing space and time 

Models with a high spatiotemporal resolution may require too much computational effort to be solved in an acceptable 

timeframe. Although a coarse resolution requires less computational effort, it can lead to inaccurate results. This is 

due its averaging character that may filter out the extreme points when designing the system. For instance, using 

coarser resolution may not capture the significant of short-term dynamics of resources, flexible operations, and 

infrastructure sitting conditions that have significant effect in influencing the deployment of energy infrastructure. 

However, aggregation of data can improve model tractability and to account for unmeasured data (Frew and Jacobson 

2016). This can be done by clustering information related to input parameters and independent variables at coarser 

spatiotemporal resolutions, which is considered a good fit to the scope of analysis. It is important to note that different 

spatiotemporal resolutions may lead to deviating results. Figure 4 illustrates the clustered spatiotemporal information, 

from different processes in a spatial unit, interconnected to neighbouring spatial units and in various time-periods 

(temporal units). 

 

 

Figure 4 | Illustrative spatial and temporal representations of energy system models. 

Selection of spatiotemporal resolutions should consider the extremes where decisions may shift. For instance, to 

consider differences in distance that may significantly change transport routes, or differences in time that may 

significantly change the loads of supply-demand. 

How a location is represented in the model should well reflect the distinctive features in terms of energy supply and 

demand to other locations. In addition, spatial resolutions of interconnected energy processes or clusters of processes 

should consider the significance of distance and suitability for deploying transport infrastructure, thus having 

significant effect on the energy flows, system costs and feasibility. For instance, 10 to 100 km2 grid-cells are set to be 

the spatial units, considering transmission losses and investment costs input data are measured per 10 km and 100 km 

distances. When network infrastructure is already well developed, a saturated market with close-to-average access 

quality and costs can be analysed in coarser spatial resolutions or clusters. However, when network infrastructure is 

not yet developed, higher spatial resolutions are required to analyse the potentials and impacts of expanding the 

network or routes to feedstock-transport, electricity transmission-distribution, and CO2 transport. 

How time is represented in the model should capture the long-term dynamics of capacity deployment and short-term 

dynamics of operation. This is a prerequisite to ensure a feasible deployment and operation of the modelled capacities. 

A multi-period timeline of annual investment analysis can reduce the redundant variables of investment periods, 

considering that macro conditions may changes and have influence on investment decisions every 5 to 10 years. 

Moreover, using hours-cluster can improve model tractability through grouping of the values from similar time-

periods. To comprehensively assess the feasible operation of securing electricity supply in the region, short-term 

variations in the power system need to be considered in long-term planning models (Collins et al. 2017).  

Balancing scale, complexity, and tractability 

The power sector is a large and complex system. The question then arises whether energy systems models are too 

compact of representation; whether they may over or under-look some important aspects of the systems in analysis by 

making trade-offs in resolution or by using simplified assumptions.  Energy systems become more complex and 

interconnected as they grow more decentralised, reliant on more diverse energy sources and decarbonisation 

technologies, and increasingly networked across borders. The issue of complexity is linked to the scale of model. 



Usually, a model is either designed to follow the evolution of an energy system in the long term, with coarse resolution, 

or to analyse the planning or operation of a system over a shorter period with fine resolution. “Scale”, in this context, 

means the relative size of the boundary of an analysed or modelled system, so a large-scale model covers an entire 

continental region with coarse resolution, while a small-scale model covers a single location with high resolution. 

Integrating information across these different scales with their appropriate resolution is still a challenge due to 

associated computational demands. 

To improve tractability model formulation can adjusted to simplify problem representation by using constant 

coefficients and aggregated values in a coarser spatiotemporal resolution. Another way is to decompose the problem 

into multiple stages. Forward-looking planning use dynamic recursive model to account for future changes that are 

impacted by successive implementation of decision variables in the previous period (J. Van Den Bosch and Honderd 

1985). 

Multi-dimensions feasibility assessment 

Recognition of co-benefits and adverse side-effects of energy system development and related deep decarbonisation 

strategies are critical to ensure project feasibility. Different technologies or strategies may have distinctly different 

benefits-risks profiles (Luderer et al. 2019). Climate Change Mitigation (UNFCCC 2015) and Sustainable 

Development Goals (SDGs) (IAEG-SDGs 2017) provide the integrating framework for assessing the feasibility of 

energy technology options with considering multi-dimension of interactions between technology, resources, society, 

and environment. These complex interactions influence the extent of energy technology options to be considered as 

affordable, secure, accessible, acceptable, and sustainable. 

 

Figure 5 | Integrated energy system model and multi-dimensional feasibility assessment criteria. Adapted from (Lopes et al. 2016; Kriechbaum, 

Scheiber, and Kienberger 2018). 

Models using top-down approach try to provide a holistic perspective of the wider socio-economy (this includes 

economic growth, employment, trade), resource, and environment, but only consider the energy sector in a simplified 

and aggregated manner (Kling et al. 2017). In comparison, bottom-up models incorporate rich technological detail 

and use an economically driven approach for evaluating technology investment (Prina et al. 2020). This allows them 

to provide more detailed outlooks on future supply and demand and possible technology utilisation. Coupling or 

linking technology-rich bottom-up models and economy-wide top-down models can integrate large set of externalities 

to be considered without significantly increase computational effort.  

Resolving uncertainty, transparency, and reproducibility 

Uncertainty in models is being tackled in various ways. One way is to extend existing large-scale models by including 

uncertainty or probability distribution via stochastic modelling. For instance, probabilistic approaches, possibilistic 

approaches, interval programming, and robust optimisation (Aien, Hajebrahimi, and Fotuhi-Firuzabad 

2016)). Another way is to use new models designed from the ground up to address the challenge. 

It is common to construct scenarios that contain sets of assumption for the inputs to the model. These values are chosen 

to represent range of estimates deemed to be acceptable, or to test the limits of future decision space. However, 

hindsight can reveal major errors with the choices made inevitably influenced by opinions around the time of analysis 

(Trutnevyte et al. 2016). 



Data aggregation and downscaling are necessary when data at given resolutions are not available, instead is available 

in coarser or in finer spatiotemporal resolutions. For instance, downscaling energy drivers from global scenarios to 

regional levels using tailored methodologies (van Vuuren, Lucas, and Hilderink 2007). Or aggregating wind potential 

from finer to coarser resolution, to improve model tractability when considering wider spatial coverage. 

Finally, by making model and analyses more transparent and reproducible, modelers are supporting a more 

collaborative process towards informed discussion on the uncertainties and assumptions inherent in complex energy 

systems models through. Open data, open source, and open access can improve transparency and access of energy 

system modelling (Pfenninger et al. 2018; Kriechbaum, Scheiber, and Kienberger 2018). Open-source 

modelling framework covers the input data processing, model formulation, software selection, results, and post-

processing. An open and transparent modelling framework can help scientific community to collaborate, thus 

increasing the reproducibility, and ultimately, brings higher impacts of modelling activity. 

Conclusions 

This paper provides an overview of the current research and challenges of modelling the energy system for power 

sector deep decarbonization. Key modelling aspects and challenges that need careful attention in model development 

of modelling grid-based energy carrier systems have been discussed. 

Suitable methods and tools are necessary to derive relevant insights and analysis about the energy system to support 

the strategic plan of expanding and transitioning the power sector. To provide a robust and efficient future electricity 

supply in the region, strategic assessment using energy system model should incorporate the complex interaction 

between various energy carriers and processes, as well as represent load flows in the extensive energy networks. 

Moreover, to account for supply adequacy, reliability, and security of the system, the model should consider higher 

level of detail related to energy physics and spatiotemporal resolution. Model formulation and data need to be adjusted 

to best substantiate the problem in question. 

The challenges discussed show that there are opportunities for future research in improving the modelling and 

assessment techniques. Coupling of short-term operation model with long-term capacity planning model are important 

to assess the operating feasibility of the planned capacities. This also becomes challenging, with demanding level of 

detail and spatiotemporal resolution. Moreover, accounting for externalities will increase model complexity. 

Techniques of downscaling and aggregation are necessary to fill in the information gaps in different spatiotemporal 

resolutions, and ‘credible’ assumptions are helpful to maintain model tractability when data is not available nor when 

the problem is too complex. Soft-link bottom-up with top-down energy economics models can provide a more tractable 

integrated energy system model in assessing multi-dimension feasibility. Open data, open source, open access supports 

mass collaboration and can help improve modelling and analysis with diffusion of best-practices and know-hows and 

access to input data and model results for analysis. 
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