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1 Introduction

The Renewable Fuel Standard (RFS), created under the Energy Policy Act of 2005 and greatly

expanded by the Energy Independence and Security Act of 2007, mandates the use of vari-

ous biofuels in domestic transportation fuel supplies.1 The statute itself includes volumetric

mandates for cellulosic, biomass-based biodiesel, “advanced,” and total renewable fuels through

2022. Obligated parties (fuel refiners and importers) are required to submit specified numbers

of Renewable Identification Numbers (RINs) to comply with the standard. RINs are created

by biorefineries, which link them to barrels of renewable fuels, and are split from those barrels

upon blending. RINs can be traded, allowing obligated parties to comply with RFS mandates

either by blending renewable fuels themselves or buying excess RINs from other parties. The

construction of the RIN market is functionally equivalent to other market-based environmental

regulations, such as pollution permits.

Because regulated firms can comply with the RFS either by blending additional biofuels or

by buying RINs, the basic fundamental value of a RIN (with some complications, described later

in this paper) is the marginal cost to the refining sector of blending an additional unit of biofuel.

Even high RIN prices do not necessarily impact the bottom line of obligated parties if these

costs are easy to pass through to consumers and demand for transportation fuels is inelastic.

Indeed, a large literature establishes that refiners are able to fully (or even more than fully)

pass RFS compliance costs onto consumers (Burkhardt, 2016; Knittel et al., 2017; Pouliot et al.,

2017; Li and Stock, 2019; Lade and Bushnell, 2019). This, however, does not imply that the

RFS has no financial impact US oil refiners whatsoever. Complete pass-through does not replace

the profit margins on refined crude oil that counterfactually would have been sold without the

mandate and may impose infrastructure costs to accommodate ethanol blends, negotiating costs

with biorefineries, and myriad costs of doing business not fully captured in models of cost pass-

through. Knittel and Smith (2015) give a fuller description of ethanol’s impact on oil refining

profitability. The goal of our analysis is to establish how changes in the prices of RFS compliance

credits (RINs) impact the value of the policy’s obligated parties (refiners). To accomplish this, we

implement two different reduced-form methods, which allow us to avoid imposing any particular

causal channel for how the policy might impact firms’ value.

1A complete description of how the RFS works is available in Schnepf and Yacobucci (2013).

2



Feedstock Farm Oil Extraction

Biorefinery Oil Refinery EPA

Fuel Blender

Gas Station

Feedstock Crude

Biofuel w/ RINs Gasoline
RINs

E10, E15, E85

RINs

RVO

Figure 1: Obligated Parties (Oil Refiners) in a Simplified Gasoline Supply Chain

Outside of the academic pass-through literature, some stakeholders in RFS debates express

concerns that larger refiners use the RFS to disadvantage smaller ones. Refiners in the United

States can be split into “merchant” refiners, who do not blend their own fuel and are generally

smaller, and “integrated” refiners, who do. Though refineries are the parties obligated by the

RFS, RINs are not actually separated from biofuels until they are blended with gasoline. All

this can be seen in Figure 1, with integrated refineries owning both “Oil Refinery” and “Fuel

Blender” assets and merchant refiners owning only the former. Not owning blending assets leaves

merchant refiners in the position of having to buy RINs on the market rather than being able

to generate them themselves. Merchant refiners and their advocacy organizations often claim

that being unable to generate RINs puts their operations at a competitive disadvantage and

allows integrated refineries to sell excess RINs for windfall profits (see discussion and footnotes

in Environmental Protection Agency, 2017, p. 21-31). The Environmental Protection Agency

has dismissed such arguments, pointing primarily to economic research on RIN pass-through in

doing so (Environmental Protection Agency, 2017). Research by Babcock et al. (2016) provides

a theoretical explanation for why the RFS should not impact merchant and integrated refiners

differentially.

We directly examine the impact of RIN price fluctuations on the stock prices of obligated

refineries. First, we fit bivariate time series models for every firm × RIN combination. Modeling

each firm separately allows us to investigate heterogeneity among firms. While these models

provide a picture of how RINs and firm stock prices are associated over time, they are subject
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to endogeneity problems—both RINs and refining stocks are structurally related to commodity

prices, fuel demand factors, and other variables. The intent of this paper is not to identify these

structural relationships, and building them into the model is beyond the scope of this research.

Instead, we take advantage of two large, exogenous shocks to RIN prices to identify a more

plausibly causal estimate of how RIN price changes impact refining stocks. Following Lade et al.

(2018), we use unanticipated regulatory announcements that drastically affected the price of

RINs to identify the impact on every firm in our sample, as well as selected subgroups of firms

guided by multivariate results.

We find that when RIN prices rise, the stock prices of refineries with large market capi-

talizations drop with a 3-5 day lag. The effect is statistically significant though economically

small. Medium and small firms, however, exhibit no reaction to RIN price changes. These

results are consistent across both the bivariate time series and event study analyses. Due to the

reduced-form nature of our estimates, we are unable to identify any particular causal mecha-

nism for these results, but we conclude with a list of potential hypotheses worth investigating

in future research. In any case, our findings discredit claims that the RFS enables integrated

refiners to take advantage of merchant refiners and raises doubts about the costs of so-called

RIN “speculation.”

2 Background on the Renewable Fuel Standard

The Renewable Fuel Standard is a nested mandate, meaning that blending higher-level biofuels

also works to meet the mandate requirements at lower levels. RINs coming from corn ethanol

generate D6 RINs, which can serve to fulfill only the lowest level of the mandate. Ethanol

from more “advanced” sources such as sugarcane generates advanced ethanol RINs (D5) and

constitutes a smaller, nested mandate. RINs from biomass-based diesel (D4), cellulosic biofuel

(D3), or cellulosic diesel (D7) fulfill the mandate in their own categories, the advanced mandate,

and the total mandate simultaneously. This nested structure is visualized in Figure 2.

The nested relationship gives rise to a price hierarchy for RINs, which binds empirically at

almost all times (Whistance and Thompson, 2014):

PD6 ≤ PD5 ≤ min{PD4, PD3,D7}

The absence of strictness to that inequality is not merely theoretical. Federal regulation
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Figure 2: Structure of the Nested RFS Mandate
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prevents most consumer fuels (excepting E85 and E15, which contain up to 85% and 15$ ethanol

respectively, are available at a limited number of fueling stations, and can be used only in certain

vehicles) from containing more than 10% ethanol. When national gasoline stocks are saturated

with 10% ethanol, sales of additional ethanol can occur only through comparatively miniscule

E85 and E15 channels. Thus, at mandate levels beyond 10% of nationwide gasoline sales, refiners

must take advantage of the nested mandate structure and sell additional biodiesel to meet their

requirements (Korting et al., 2019). In those market conditions, D6 prices track closely to D4

prices (Irwin, 2014).

Congress intentionally set statutory RFS volume mandates optimistically high. To prevent

undue financial pressures on the transportation fuels industry, Congress explicitly allows the

Environmental Protection Agency (EPA) to review the statutory volumetric standards and

reduce them if compliance would be infeasible. The EPA has found it necessary to invoke that

power numerous times. The following statement, released along with a proposed adjustment of

the 2014-2016 mandates, illuminates the EPA’s role in tempering the statutory requirements:

Due to constraints in the fuel market to accommodate increasing volumes of ethanol,

along with limits on the availability of non-ethanol renewable fuels, the volume tar-

gets specified by Congress in the Clean Air Act for 2014, 2015 and 2016 cannot

be achieved. However, EPA recognizes that the statutory volume targets were in-

tended to be ambitious; Congress set targets that envisioned growth at a pace that

far exceeded historical growth rates. Congress clearly intended the RFS program to

incentivize changes that would be unlikely to occur absent the RFS program. Thus
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while EPA is proposing to use the tools provided by Congress to waive the annual

volumes below the statutory levels, we are proposing standards that are directionally

consistent with Congress’ clear goal of increasing renewable fuel production and use

over time (Environmental Protection Agency, 2015).

In reviewing and adjusting the yearly mandates, the EPA issues a proposed rule, gathers

public comments on that proposal, and then issues a final rule. The final rule is supposed to

be complete by November 30 of the preceding year (e.g., 2015’s final rule should be issued by

November 30, 2014). In the lifespan of the RFS, the EPA has repeatedly missed that deadline

(Bracmort, 2015). Final rules are often made partway through the compliance year and in one

case a final rule was set almost a full year after the compliance year had passed. Research by

Lade et al. (2018) demonstrates that such announcements shock RIN values as well as some

commodity markets and biorefinery firm values, but no currently published research uses the

shocks to identify the RFS’s impact on the industry it actually regulates.

2.1 Industry Impact

While the RFS mandate’s point of compliance generally rests with refiners, the associated costs

can be pushed up or downstream if the industrial organization of consumer fuels markets allows

it. As mentioned in the introduction, a developed literature discusses this very question. Most

papers characterize the RFS as a subsidy to high-ethanol fuels and measure how changes in

the value of the RIN ’subsidy’ percolate to prices of E10 and E85 fuels. The general thrust

of the literature concludes that pass-through is complete (or even more than complete) at the

wholesale level (Burkhardt, 2016; Knittel et al., 2017; Lade and Bushnell, 2019), complete for

E10 at the retail level (Pouliot et al., 2017; Lade and Bushnell, 2019; Li and Stock, 2019),

and less than complete for most E85 (Lade and Bushnell, 2019; Li and Stock, 2019). The

general interpretation of these results is that the RFS is irrelevant to the refiner, costly to most

consumers, and beneficial to consumers of high-ethanol fuel and some E85 retailers.

Understanding pass-through does get us most of the way to understanding how the RFS

affects refiners financially, but pass-through is not the only avenue by which the RFS could

impose compliance costs. Costs associated with biofuel procurement and profit margins on

gasoline sales lost to ethanol are just two additional potential ways the RFS could impose costs

on refiners, even with complete pass-through. The methods undertaken in this paper impose
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no particular cost channel on examining the RFS’s impact, instead electing to allow efficient

financial markets price these anticipated costs. Examining stock price responses to variations in

RIN prices gives a highly reduced-form but generalized and unstructured understanding of how

the RFS impacts refineries.

We also analyze heterogeneities among refinery responses, rather than taking refiners as a

homogeneous group. Existing research on whether the impact of the RFS is heterogeneous

across obligated firms is scant. There are at least a few reasons differences might exist. For

example, firms which own refining capacity in close proximity to ethanol production may react

less negatively to RFS cost hikes. The RIN market is designed much like pollution permits in

market-based environmental policies, so that the theoretical market equilibrium in RINs should

equalize the shadow prices of additional ethanol blending across firms (Montgomery, 1972).

Whether the RIN system effectively accomplishes that is an open empirical question. Findings

by LaRiviere et al. (2017) indicate that the RFS imposed heavier burdens on retail gasoline

consumers distant from ethanol production centers because ethanol’s physical properties make

it more expensive to transport, but this is further downstream than refining and blending.

We also investigate firm size heterogeneities by asking whether larger firms have an easier

time passing-through or otherwise dealing with RFS costs. Built-in exemptions for small refiners

facing economic hardship seem to indicate that the drafters of the RFS policy must have worried

about differential impacts. Beyond minimizing impacts on smaller refineries, exemptions can

also shift the burden of meeting the volumetric mandates to larger refineries if they are issued

before the final rule (Coppess and Irwin, 2017). Exemptions hit a low point in 2015, with only 7

petitions granted representing 3 billion gallons of gasoline, as compared to 29 petitions granted

representing over 13 billion gallons just two years later (Environmental Protection Agency,

2018). Of course, political connections, easier access to credit, and other factors benefiting large

firms may mean that smaller firms still bear the brunt of the regulation.

Large firms also tend to have integrated downstream operations, allowing them to blend

their own ethanol to generate RINs rather than being required to buy them from separated

downstream blenders. As discussed in the introduction, this is the basis for a perennial complaint

by small refineries, who argue that integrated operations profit from their ability to generate

and sell their excess RINs.

All sorts of heterogeneities in firm operations are of interest to regulatory agencies because
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differences in cost structures could counter-intuitively incite lower-cost firms to support the law

as a new, artificial source of comparative advantage (Salop and Scheffman, 1983). My reduced-

form estimates of how firms respond to positive price changes in RFS compliance costs can lend

credence to or discredit some of these theories.

2.2 2015 RIN Shocks

As mentioned previously, the EPA sometimes misses regulatory announcement deadlines, re-

sulting in major regulatory announcements that occur mid-compliance year. In 2013, the EPA

released the final rule on August 6, leaked a draft proposal for 2014 on October 11, and re-

leased 2014’s official proposed rule on November 15. Lade et al. (2018) measures how 2013’s

mid-year announcements influenced RIN prices themselves, related commodity markets, and the

stock prices of biorefining firms. They find that those shocks, which drove the prices of all RIN

varieties downward, mainly impacted commodities and firms tied to advanced biofuels, which

they considered to be the marginal compliance fuel. The year 2013 was a volatile time for RIN

markets, and visual inspection of RIN price histories throughout 2013 in Figure 3 reveals that

the announcement dates analyzed by Lade et al. (2018), while significant, are unremarkable

compared to baseline volatility.

Unlike 2013, 2015’s proposed and final rules, which were released on May 29 and November

30, are clearly and unambiguously apparent by visual inspection of Figure 4.2 Surrounding a

proposed rulemaking on May 29, 2015, the price of a D6 RIN dropped from $0.69 one week

before to $0.3775 one week afterwards, a drop of more than 45%. A jump of similar magnitude

surrounded a final rulemaking on November 30, 2015.

In this study, we focus on 2015 because the EPA made two major policy announcements that

we will exploit as structural breaks following Lade et al. (2018). We choose 2015 over 2013, the

primary year analyzed by Lade et al. (2018), for two reasons: First, the announcement breaks

are much clearer in the data; that can be seen by comparing Figures 3 and 4, but note the

change in the extent of the price axis. Second, RIN prices are sufficiently high throughout 2015

to guarantee that the mandate was binding, whereas early 2013 prices were so low that the RFS

2In an online supplement, Lade et al. (2018) repeat the portion of their analysis detailing how policy an-

nouncements affect RIN prices for 2015 event dates. Unlike their 2013 analysis, they do not examine how 2015

announcements affected biofuel stocks or commodity markets.
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Figure 3: Price Histories for 2013 Vintage RINs
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may not have actually been stringent enough to alter refiner behavior (Whistance et al., 2016).

2.3 Identification of RFS Industry Impact

This paper employs two methodologies to study the impact of the Renewable Fuel Standard on

the refining industry. First, we use multivariate time series methods to quantify the response

of refining firm values to shocks in RIN price series. In particular, for every Firm × RIN

combination, we estimate impulse response functions using vector auto-regressions and vector

error correction models. These allow us to determine the dynamic response of the value of

refining firms to shocks in the value of RIN prices. This portion of our analysis builds on past

literature using time series methods to unravel how RINs transmit to wholesale and consumer

fuels (Knittel et al., 2017) and biofuel-related commodities (Whistance and Thompson, 2014;

Whistance et al., 2016). Second, we implement an event study methodology similar to that

used by Lade et al. (2018). Even if endogeneity complicates measurement of direct industry

impact using conventional multivariate time series methods, we anticipate that the large shocks

constituting nearly half of RIN prices should induce measurable impacts on refining firms if

indeed there is an impact. The event study methodology also side-steps nonlinearities in the
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Figure 4: Price History for 2015 Vintage RINs

2015 2016

0
.4

0
.6

0
.8

1
.0

Date

P
ri

ce

M
ay

 2
9

N
ov

em
be

r 
30

D6

D5

D4

Event Dates

RIN-stock system that may complicate the bivariate models (Serra et al., 2011).

Both methodologies are reduced-form. By examining stock prices rather than specific prod-

uct prices, we should be able to identify the impact of any channel whereby a larger RFS mandate

influences the net values of refining firms in the short-run. The downside of this approach is that

we cannot validate any particular channel of causality. Nevertheless, establishing the existence

or non-existence of an effect in and of itself offers insights as to whether cost pass-through is an

adequate stopping point for research seeking to understand how regulated industries respond to

the RFS and other fuel blend regulations.

3 Data

As described in the introduction, RINs are compliance credits that refiners obligated by the

RFS can use to meet their biofuel utilization mandates. Because multiple, nested categories

exist within the RFS mandate, there are four commonly traded types of RINs, as shown in

Figure 2.

The mandate for D3 RINs is consistently minuscule, and markets for those RINs are com-
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mensurately quite thin. Therefore, we restrict our analysis to D6, D5, and D4 RINs. RIN series

also differ by their year of creation; apart from some flexibility allowing limited inter-year bank-

ing and borrowing of RIN stocks, RINs are mostly used to comply with the mandate for the

year in which they were generated. Thus, we limit our analysis to RINs of a single compliance

year.3 As discussed in Section 2.2, we analyze data from 2015. Because of some pre-year trading

and the fact that RINs are not actually submitted for compliance until a few months after year

end, our data does extend a little beyond a single calendar year.

All data is daily, excluding weekend and other financial market closures such as holidays.

Data for RIN series come from the Oil Price Information Service (OPIS), a company that

provides pricing for numerous petroleum products and is a frequent supplier of RIN data for

economic researchers. Stock prices for nearly all firms are adjusted prices from Yahoo! Finance

(accessed via the quantmod package in R). Stocks delisted since 2015 are not available on Yahoo!

Finance and are instead sourced from Bloomberg. While these prices are not adjusted, none of

those firms underwent stock splits or reverse-splits in the study period, so this should be of little

consequence.

3.1 Firm Characteristics

This study encompasses all publicly traded firms with at least 200,000 barrels per day of refining

capacity as of January 1, 2015, plus Western Refining (Energy Information Administration,

2015). We sort firms along two dimensions: size and exposure to RFS regulatory costs as of the

beginning of 2015. We use market capitalization as a relevant measure of firm size (Fama and

French, 1992) and the percentage of a firm’s refining capacity in PADD 2 and Alaska as our

measure of exposure (or, rather, non-exposure).4

PADDs are collections of states by which many government-issued petroleum data sources

are aggregated. The Midwest, encompassed by PADD 2, contains the vast majority of ethanol

refining capacity because refinery location decisions are driven primarily by access to feedstocks

(Lambert et al., 2008). Because ethanol cannot be transported using existing pipeline infras-

3The majority of the literature examining RIN prices do not restrict their analyses to a single compliance year.

It is not always clear how this literature stitches together price series for RINs belonging to difference compliance

years, especially when RINs for multiple compliance years are sold contemporaneously.
4PADD stands for Petroleum Administration for Defense Districts. Using refining capacity in PADDs 2, 3,

and Alaska or, inversely, using refining capacity in PADDs 1 and 5 minus Alaska, hardly changes the groupings.
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tructure, it is plausible to think that the RFS puts refineries located near biorefineries at a

comparative advantage. Geographic disparity in the impacts of the RFS have already been doc-

umented for retail gasoline prices (LaRiviere et al., 2017) and pass-through of RIN prices by rack

sellers at fuel terminals (Pouliot et al., 2017). Alaskan refining capacity is also included in this

measure because Alaska is exempted from the RFS. We sort firms into one of nine bins, one for

each element of the cross product of three market capitalization and three RFS exposure bins,

as shown in Table 1. The cutoffs were chosen somewhat arbitrarily to result in balanced bins,

but, as the next paragraph further explains, the cutoffs do run parallel to important qualitative

differences between firms.

Firms characterized as large (market capitalizations in excess of $100B) are also the US firms

generally considered to be large, integrated refineries: BP, Shell, Chevron, and ExxonMobil.

In mid-2015, an analysis released by Valero Energy Corporation argued that those firms were

already separating RINs in excess of their own RFS obligations, yielding them “windfall profits,”

because their sales of branded gasoline made up large percentages of their refinery production

(Valero Energy Corporation, 2015). Patterns of price response among these energy firms could

lend evidence for or against those conjectures. The line between small and medium refining

firms also separates relatively smaller nationwide operations from merely regional companies.

Table 1: Firm Characteristics with Ticker Symbols

100% Exposed <100% & >70% Exposed <70% Exposed

Large: Shell (RDS.A)

>$100B Chevron (CVX) Exxon Mobil (XOM) British Petroleum (BP)

Total (TOT)

Medium: Valero (VLO)
Marathon (MPC)

< $100B, > $10B Phillips 66 (PSX)

Small: Carlyle Group (CG)
Andeavor (ANDV) HollyFrontier (HFC)

<$10B Western Refining (WNR)
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3.2 Stationarity Tests

Both methods of our analysis require stationary data inputs, so we begin by testing for sta-

tionarity in our data. Tests for stationarity are known to be biased towards conclusions of

non-stationarity in the presence of structural breaks (Perron, 1989). However, despite evidence

indicating the presence of structural breaks in RIN price series (Mason and Wilmot, 2016; Lade

et al., 2018), no prior research to our knowledge considers structural breaks in tests of RIN

price stationarity, including RFS research specifically related to large breaks, such as Lade et al.

(2018).

Most popular structural break tests allow for endogenous breakpoint selection, reflecting

that most structural break research requires first identifying the exact location of the breakage.

We have no need for that—we know the precise dates of the breaks ex ante—and running those

tests would sacrifice power unnecessarily. Lee and Strazicich (2003) depart from that norm and

offer a stationarity test (hereafter the LS test) that allows for up to two exogenously defined

structural breaks.5

The LS test allows for breaks in both mean and trend, using a vector of structural break

variables for breaks occurring at t = T1 and t = T2: Zt = [DU1,t, DU2,t, DT1,t, DT2,t]
′, where

DUi,t = 1 for t ≥ Ti + 1 and zero otherwise and DTi,t = t− Ti for t ≥ Ti + 1 and zero otherwise

for i = 1, 2. The LS two-break unit root test is estimated by the equation

∆yt = δ′∆Zt + φS̃t−1 + ut, (1)

where yt is the variable whose stationarity is being tested; ∆ is the difference operator; S̃t =

yt − ψ̃x − Ztδ̃ for t ≥ 2; δ̃ are coefficients recovered from a regression of ∆yt on ∆Zt (i.e.,

∆yt = δ′∆Zt + et); ψ̃x = y1 − Z1δ̃; and ut satisfies the normality conditions defined by Phillips

and Perron (1988, p. 336). The test statistic for the unit root null hypothesis is the t-statistic on

the parameter estimate for φ, and significance is checked using critical values for an exogenous

2-break unit root test reported in Lee and Strazicich (2003).6

For testing stationarity of our non-RIN series, the LS test conveniently exhibits nice size and

power properties even when the actual data generating process contains no breaks. Results of

5An endogenous version of the same test is also described by Lee and Strazicich (2003) and is the test most

frequently associated with the paper.
6Lee and Strazicich (2003) only report critical values for tests with a sample size of 100, whereas our sample

size is 357. This will result in the test being underpowered.
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the LS test are reported in Table 2 alongside the typical Augmented Dickey-Fuller (ADF) and

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, which do not account for structural breaks.

The three tests conclude unanimously that every RIN and stock price series is non-stationary.

4 Multivariate Time Series Analysis

To understand the relationship between RIN prices and refining firm values, we fit bivariate time

series models for each RIN × Firm pair in our data. For cointegrated series, we estimate vector

error correction models (VECM), otherwise we estimate vector autoregressive models (VAR) in

differences to account for the aforementioned non-stationarity of our data series. Cointegration

offers a systematic methodology to deal with non-stationary data in a multivariate context.

Specifically, if a pair of non-stationary series are cointegrated, then their linear combination

produces a stationary series (Engle and Granger, 1987). After fitting the VAR and VECM

models, we analyze the significance of lagged values of RIN prices on the stock values of refining

firms. Using those results, we visualize the effect of exogenous shocks to RIN prices on refinery

values using impulse response functions.

4.1 Cointegration Tests

To select an appropriate bivariate time series model for a pair of non-stationary series, we first

need to establish whether they are cointegrated (Engle and Granger, 1987). While cointegration

tests are affected by structural breaks, structural breaks have little impact on the size or power of

Johansen’s cointegration test (Campos et al., 1996). For that reason, we elect to use Johansen’s

maximum eigenvalue and trace tests without modification (Johansen, 1991) to evaluate the

relationship between each pairwise combination of RIN series and firms.7 Table 3 reports the

results of these tests.

The tests for cointegration indicate that there is some cointegrating relationships between

RIN prices and refinery stock prices. The only two significant cointegrating relationships between

both the maximum eigenvalue and trace tests are biomass-based biodiesel RINs and Exxon Mobil

(XOM) and Chevron (CVX) stock prices. Both Chevron and Exxon Mobil are large companies

7Johansen et al. (2000) introduce a modification to the canonical cointegration test that explicitly allows for

structural breaks. Future refinements to this section may utilize that methodology.
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Table 2: Summary Statistics and Stationarity Tests

Summary Statistics Stationarity Tests

Mean St. Dev Obs. ADF KPSS LS

Null Non-stationary Stationary Non-stationary

D6 0.599 0.155 357 -1.557 1.425*** -1.931

D5 0.721 0.119 357 -1.630 1.420*** -1.019

D4 0.759 0.134 357 -1.491 1.777*** -0.255

VLO 53.780 5.633 357 -2.421 3.164*** -1.230

MPC 42.283 5.931 357 -2.395 2.173*** -1.117

XOM 72.530 4.362 357 -1.004 1.674*** -3.204

PSX 71.721 5.792 357 -2.940 3.688*** -1.163

CVX 82.563 8.145 357 -1.046 2.526*** -2.219

BP 28.244 3.072 357 -2.212 4.593*** -1.033

HFC 35.932 5.337 357 -1.429 1.438*** -2.250

RDS.A 43.017 4.934 357 -2.308 5.253*** -2.790

CG 16.077 3.596 357 -1.646 5.500*** -0.494

TOT 39.943 2.310 357 -2.905 1.598*** -2.730

ANDV 90.745 11.316 357 -2.119 1.396*** -2.042

WNR 39.370 7.515 357 -1.793 3.760*** -1.784

Note: Stationarity test column headers are acronyms for the Augmented Dickey-Fuller,

Kwiatkowski-Phillips-Schmidt-Shin, and Lee-Strazicich stationarity tests. The Lee-Strazicich test allows for the presence

of two structural breaks without being biased towards non-stationarity (Lee and Strazicich, 2003). D6, D5, and D4 are

RIN varieties, all other variables are stock tickers corresponding to firms as in Table 1. Significance at alpha levels of 0.1,

0.05, and 0.01 are reported with *, **, and ***, respectively.
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Table 3: Cointegration Tests

Maximum Eigenvalue Trace

Firm D6 D5 D4 D6 D5 D4

VLO 8.892 8.961 9.549 12.524 11.781 12.005

MPC 7.674 4.508 3.984 9.265 6.330 5.844

XOM 6.709 14.762* 19.877** 8.378 16.020 22.400**

PSX 9.901 10.607 10.719 14.258 15.047 14.014

CVX 6.628 14.909* 18.066** 8.311 16.990 20.659**

BP 3.477 3.665 4.821 5.910 5.551 6.971

HFC 15.759** 7.838 6.408 16.815 8.646 7.243

RDS.A 4.424 5.410 4.929 6.779 7.661 6.891

CG 8.016 4.898 4.721 9.941 6.399 5.901

TOT 9.546 12.623 13.839* 13.099 15.174 16.523

ANDV 10.986 8.514 8.182 13.629 10.540 9.960

WNR 6.037 3.999 3.261 6.677 4.685 3.916

Note: Maximum eigenvalue and trace tests are Johansen’s (1991) two methodologies of testing for cointegration. D6, D5,

and D4 are RIN varieties, row names are stock tickers corresponding to firms as in Table 1. Significance at alpha levels of

0.1, 0.05, and 0.01 are reported with *, **, and ***, respectively.
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with market capitalizations above $100 billion and relatively high “exposure” to the RFS, as

defined in Section 3.1. Chevron lacks any refining capacity whatsoever in Alaska and PADD 2,

and only 12% of Chevron’s capacity is located there.

However, many other firms categorized as highly exposed to the RFS still lack cointegrating

relationships with RINs. HollyFrontier Corporation (HFC), whose stock is cointegrated with D6

RINs according to the maximum eigenvalue test, is a small company with relatively little RFS

exposure.

4.2 VAR and VECM Modeling

With cointegration results in hand, we model every Firm × RIN pair using either a reduced-form

bivariate VAR model in differences (for non-cointegrated series) or a bivariate VECM model (for

series that are cointegrated at a significance level of 0.05 in either test). Following Sims (1980),

the VARs are specified in differences and have the following form:

∆FIRMt = c1 +

m∑
l=1

(φl1,1∆FIRMt−l + φl1,2∆RINt−l) + e1,t

∆RINt = c2 +

m∑
l=1

(φl2,1∆FIRMt−l + φl2,2∆RINt−l) + e2,t,

(2)

where ∆FIRMt and ∆RINt are differenced values for a RIN and firm stock price at time

t respectively; ci is a regression constant for regression i ∈ {1, 2}; m is the VAR lag length

determined based on the Akaike Information Criterion (AIC); each φli,j is an autoregressive

coefficient for the lth lag of either ∆FIRMt or ∆RINt; and ei,t is the VAR error term for

i ∈ {1, 2}. In particular, we are interested in the statistical significance of φl1,2, the conditional

effect of ∆RINt−l on ∆FIRMt, at all lags against the null hypothesis of φl1,2 = 0. Significance

of one or more lags would indicate that there is a feedback relationship between the two series,

and hence RIN price changes are associated with subsequent firm stock price changes.

Following Johansen (1991), we use VECM models for the cointegrated series, which are

expressed as:

∆FIRMt = c1 + π1,1FIRMt−1 + π1,2RINt−1 +
m∑
l=1

(φl1,1∆FIRMt−l + φl1,2∆RINt−l) + e1,t

∆RINt = c2 + π2,1FIRMt−1 + π2,2RINt−1 +
m∑
l=1

(φl2,1∆FIRMt−l + φl2,2∆RINt−l) + e2,t

(3)
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The VECM specification is similar to the above VAR model except for the inclusion of the

error correction terms (the undifferenced single-lag values of the component series, i.e. ∆FIRMt

and ∆RINt), which captures the long-run equilibrium relationship between the two series. The

error correction term allows multivariate estimation of two series with a common stochastic trend

that otherwise would cause omitted variable bias. Significance of the error correction terms

merely validates that a simple VAR model that did not account for the series’ cointegration

would be flawed. Again, for the purposes of this research, the values of φl1,2 at all lags are the

parameters whose significance is of interest.

These models illuminate interactions between RIN markets and firm stock prices. Because

the relationship of interest is the impact of the RFS on refining firms, the analysis and results

reported below will focus on the differenced RIN lag parameters and error correction terms in

the equation modeling movements in firm stock prices, i.e. the first equations in Equations 2 and

3. Tables 4, 5, and 6 report parameter estimates and significance levels for the autoregressive

coefficients φl1,2, regression constants, and, when applicable, an error correction term coefficient

for 36 total regressions covering every Firm × RIN pair.

Also reported in the aforementioned tables are observation counts (varying slightly between

models depending on lag lengths) and test statistics for three tests of model assumptions. In-

cluded among these three are the Ljung-Box test for autocorrelation among the residuals and

the Jarque-Bera and Shapiro-Wilk tests for normality of the error term.

4.3 Results

The results from bivariate time series analysis suggest that the impacts of RIN price movements

are not homogeneous across firms. In fact, most small- and medium-size firms values’ are not

impacted by the lagged values of RIN prices. By contrast, large firms show negative reactions

to RIN price movements after a few lags. This is especially evident in results from D5 bivariate

modeling in Table 5, where Chevron (CVX), British Petroleum (BP), Shell (RDS.A), and Total

(TOT) all have significant negative fourth lag terms for D5 RINs. Exxon Mobil (XOM), the

only remaining large market cap firm in the data, is also negatively associated with D5 RINs,

but at the fifth lag. This firm size pattern is not an artifact of selecting lag length by AIC;

forcing all bivariate models to include six lags does not result in any more significant fourth lag

terms in the D5 models.
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Table 4: Bivariate Time Series Model with D6 RINs

VLO MPC XOM PSX CVX BP HFC RDS.A CG TOT ANDV WNR

Constant (c1) 0.025 -0.008 0.007 0.028 -0.001 -0.005 2.485*** -0.021 -0.011 0.001 0.010 -0.039

EC Term (π1,2) -1.558***

Lag 1 (φ1
1,2) -2.336 -0.662 -1.615 -1.821 -1.188 -0.864 1.681 -0.587 -0.299 -1.093 5.508 -2.566

Lag 2 (φ2
1,2) 2.349 -1.883 0.421 1.365 1.136 0.946 4.088* 1.122 0.682 -5.718 1.529

Lag 3 (φ3
1,2) 0.884 -2.156 -2.469* -4.902**

Lag 4 (φ4
1,2) -4.842*

Observations 354 354 352 354 353 353 355 353 354 354 354 354

Ljung-Box 0.002 0.002 0.064 0.000 0.111 0.108 0.001 0.148 0.012 0.015 0.008 0.000

Jarque-Bera 129.692*** 36.575*** 23.626*** 23.241*** 2.719 26.951*** 26.656*** 3.127 16.531*** 3.084 175.717*** 5.096*

Shapiro-Wilk 0.962*** 0.981*** 0.984*** 0.986*** 0.990** 0.980*** 0.981*** 0.996 0.986*** 0.995 0.964*** 0.995

Note: Column headers are stock tickers corresponding to firms as in Table 1. Each column reports results from either a

VAR or VECM model as described in Equations 2 and 3. VECM models include an error correction (EC) term (π1,2).

Optimal lag order for either model is determined based on AIC. Significance at alpha levels of 0.1, 0.05, and 0.01 are

reported with *, **, and ***, respectively.

Table 5: Bivariate Time Series Model Results with D5 RINs

VLO MPC XOM PSX CVX BP HFC RDS.A CG TOT ANDV WNR

Constant (c1) 0.025 -0.009 0.004 0.029 -0.005 -0.005 -0.019 -0.024 -0.013 0.003 0.010 -0.038

EC Term (π1,2)

Lag 1 (φ1
1,2) -1.417 -1.627 1.508 -2.779 1.233 0.243 0.125 1.432 0.937 -0.839 2.825 -1.970

Lag 2 (φ2
1,2) 0.790 -0.520 -2.788 1.340 -2.178 -2.102 -1.583 -1.205 0.713 -0.437 −2.083 0.385

Lag 3 (φ3
1,2) -0.411 -3.352 -0.620 -1.936 -0.766 -2.909

Lag 4 (φ4
1,2) -4.302 -9.040** -4.126*** -7.595*** -5.047***

Lag 5 (φ5
1,2) -4.705*

Lag 6 (φ6
1,2) 3.624

Observations 354 354 350 354 352 352 354 352 353 352 354 354

Ljung-Box 0.001 0 0 0 0.053 0.004 0.001 0.005 0.025 0 0.003 0.001

Jarque-Bera 129.568*** 42.073*** 24.033*** 23.747*** 1.571 20.588*** 28.044*** 0.818 14.22*** 0.475 170.158*** 5.075*

Shapiro-Wilk 0.963*** 0.98*** 0.984*** 0.986*** 0.992** 0.984*** 0.981*** 0.997 0.988*** 0.997 0.965*** 0.994

Note: Column headers are stock tickers corresponding to firms as in Table 1. Each column reports results from either a

VAR or VECM model as described in Equations 2 and 3. VECM models include an error correction (EC) term (π1,2).

Optimal lag order for either model is determined based on AIC. Significance at alpha levels of 0.1, 0.05, and 0.01 are

reported with *, **, and ***, respectively.
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Table 6: Bivariate Time Series Model Results with D4 RINs

VLO MPC XOM PSX CVX BP HFC RDS.A CG TOT ANDV WNR

Constant (c1) 0.025 -0.008 1.246 0.029 1.163 -0.004 -0.019 -0.024 -0.010 0.001 0.012 -0.038

EC Term (π1,2) -0.029 -0.275

Lag 1 (φ1
1,2) -4.469 -2.723 -1.065 -5.874 -1.833 -0.363 -2.590 -0.580 -1.096 -1.885 2.311 -3.943

Lag 2 (φ2
1,2) 1.894 -1.110 3.122 3.556 -0.141 0.113 -0.444 3.335 0.688 3.720 -5.413 -0.298

Lag 3 (φ3
1,2) -1.157 -5.226 -3.746 -5.41**

Lag 4 (φ4
1,2) -3.751 -6.417 -6.528***

Lag 5 (φ5
1,2) -6.766

Lag 6 (φ6
1,2) -0.547

Lag 7 (φ7
1,2) 8.044*

Lag 8 (φ8
1,2) -7.370

Lag 9 (φ9
1,2) 4.175

Lag 10 (φ10
1,2) 10.561**

Observations 354 354 352 354 346 354 354 352 354 353 354 354

Ljung-Box 0 0 0.029 0 0.045 0.008 0.001 0 0.008 0.127 0.004 0.001

Jarque-Bera 131.37*** 41.336*** 23.55*** 24.843*** 1.039 32.193*** 28.844*** 0.382 22.297*** 1.773 170.472*** 5.553*

Shapiro-Wilk 0.962*** 0.98*** 0.984*** 0.986*** 0.994 0.979*** 0.981*** 0.999 0.985*** 0.996 0.965*** 0.994

Note: Column headers are stock tickers corresponding to firms as in Table 1. Each column reports results from either a

VAR or VECM model as described in Equations 2 and 3. VECM models include an error correction (EC) term (π1,2).

Optimal lag order for either model is determined based on AIC. Significance at alpha levels of 0.1, 0.05, and 0.01 are

reported with *, **, and ***, respectively.
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Results across the D6 and D4 models are largely consistent with the D5 results, with no

significant lags among small and medium firms, and significant parameters among most of the

large firms after a few lags. In the D6 results, Shell (RDS.A), British Petroleum (BP), and

Exxon Mobil (XOM) all have negative third or fourth lag terms, though Exxon Mobil and

British Petroleum’s are only marginally significant. Total (TOT) and Shell experience significant

negative responses in the D4 models, and Chevron (CVX) and Exxon Mobil have negative

responses of similar magnitudes at the same lag lengths, though these are not statistically

significant. Chevron’s D4 model exhibits significant responses in the other direction at even

later lags, but these are erratic and likely spurious. Though the overlap between model results

is not perfect, it is striking that across all RIN types, there are significant negative responses

at lags three and four among large firms only. The consistency of sign and timing among these

responses suggest an underlying pattern.

Figure 5 reports a subset of the orthogonal impulse response functions (IRFs) for refinery

stock responses to exogenous shocks in D5 RINs. Results from the shocks applied are in terms

of the differenced stock values and are accompanied by their respective error band. Based on the

IRFs, it is clear that a shock to D5 RINs generally produces a significant decrease in the value

large refineries’ stocks (left panel of Figure 5). Specifically, a unit increase in the cost of D5

RINs is associated with negative stock price movements, hitting a minimum between 4-5 days

after the shock with single-day losses between 5 and 20 cents at that time for Chevron, Exxon

Mobil, and British Petroleum. After these significant lags, point estimates vary tightly around

zero before converging towards a long-run equilibrium. Though the economic significance of

these estimates is small (cumulative losses below a dollar for stocks worth over $40), patterns

of statistical significance are consistent. For small and medium size firms (right panel of Figure

5), there is no real pattern of responses to RIN prices, convergence happens more quickly, and

error bands preclude statistical significance by a wide margin.

The fact that our most significant results come from the D5 models comport with results

reported by Lade et al. (2018), who find that advanced biofuels were the marginal compliance fuel

and that advanced biofuel firms and commodities reacted most severely to 2013’s shocks. Use of

biodiesel and advanced ethanol as marginal compliance fuels is driven by the fact that the RFS

is a nested mandate (allowing more advanced fuels to meet conventional mandates as well) and

that conventional ethanol blends are limited by regulations on maximum ethanol concentrations,
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Figure 5: Refinery Stock Response to a D5 RIN Shock, Selected Large Firms (Left) and

Small/Medium Firms (Right)
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which creates the “blend wall,” the point past which refiners cannot mix additional ethanol into

most consumer fuel blends.

Some readers may question the choice of a bivariate model, given that numerous other

financial series influence the fundamental value of both RINs and refining stocks. We offer a

few brief responses to this objection. First, our data is limited, and each additional covariate

eliminates disproportionately more degrees of freedom in VAR and VECM models. Second, the

non-linear relationship between commodities and intermediate products and RINs or firm values

further complicates modeling decisions and eats away at degrees of freedom. Third, whatever

limitations the exclusion of these covariates imposes on the interpretation of our model results

are much less of a concern for the event study modeling, which largely validates the result of the

bivariate models. Nonetheless, we do repeat our analysis including a continuous front-month

future price for ethanol as a third variable. The addition of this third variable penalizes the AIC

enough that lag selection generally does not extend to the fourth lag, but when we coerce the

lag length to match the optimum chosen in the bivariate case, almost the exact same parameters

are significant and their signs are the same.

Our Ljung-Box test statistics fail to reject the null of serial independence for every bivariate

model. The Jarque-Bera and Shapiro-Wilk test statistics, however, suggest substantial non-

normality among some of our error terms. We consider this a minor issue, given the lack of

serial dependance, reasonably large sample size, and the fact that many of our most notable

results (such as the D5 and D4 models of Shell and Total) come from models that do not exhibit

normality issues.

Before discussing the results of these models further, we conduct the event study analysis to

see whether results from an alternative specification corroborate these findings.

5 Event Study Analysis

While multivariate time series models are suitable for characterizing everyday interactions be-

tween variables, event study models effectively characterize short-run, one-off responses to large

market shocks. Regulatory changes that precipitate massive swings in compliance credit values

offer such a market shock. Event studies of compliance credit shocks can be decomposed to study

regulation’s distributional effects, as in Bushnell et al. (2013), who counterintuitively show that

stock prices of carbon-intensive firms actually fell in response to a slump in EU carbon prices.
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In the context of the RFS, Lade et al. (2018) apply event studies to 2013 shocks to examine the

policy’s effect on commodity markets and biorefining firms.

Similar to Lade et al. (2018), the specification of our event study model takes the following

form:

∆ ln(Yi,t) = β0 +

p∑
i=1

βit
i +

s∑
i=1

m∑
i=0

γs,m1(t ∈ {T+m}) + Θ′∆ ln(Xt) + λMoY + λDoW + ei,t, (4)

where ∆ ln(Yi,t) is the log-differenced value of a refiner i’s stock at time t; β0 is a regression

constant; the remaining βi’s are parameters on time controls of polynomial order p; γs,m are

parameters on dummies 1(t ∈ {T +m}) for the mth lag after each event in T; s is the number

of distinct events in T; Θ is a vector of parameters on log-differenced “normal return” controls

∆ ln(Xt); λ’s are month-of-year (MoY) and day-of-week (DoW) fixed effects; and ei,t is the

disturbance.

Subjective modeling decisions were made to mirror Lade et al. (2018) as closely as possible.

Specifically, we use the same polynomial of time controls, the same fixed effects, and the same

normal return control: the RUS3000 index. Our one deviation is the length of lags we consider;

given that our bivariate time series models suggested there may be some significant responses

after the fourth lag, we set m = 6. The model is estimated on the entire sample of firm values

jointly, then separately for each bin of firms by market capitalization.

The results from event study analysis are reported in Table 7. As in Lade et al. (2018), p-

values are based on sample quantile tests for significance designed to accommodate event studies

with few firms, as discussed in Gelbach et al. (2013).8 The basic idea behind this test is to use

the empirical cdf of non-event date residuals as the distribution for hypothesis testing, since

event date parameters are identified off of variation within a single day.

Patterns of statistical significance in the event studies closely mirror results from the bivariate

time series models. It is apparent that the first event does not register for any firms in the event

studies. From Figure 4, the first event date seems to affect D6 RINs most dramatically. The

effects on D5 and D4 RINs, however, are smaller and seemingly opposite to one another. If

biodiesel and advanced ethanol really are the marginal compliance fuels under the RFS, as Lade

et al. (2018) reveals and our bivariate time series results confirm, the patterns in the RINs

following the first event should not be expected to generate significant responses in firm value.

8More information on the test in the context of difference-in-differences modeling is available in Conley and

Taber (2011).
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Table 7: Results from Event Studies

Large Firms Medium Firms Small Firms All Firms

Event 1

Lag 0 (γ1,0) 0.004 0.013 0.009 0.008

Lag 1 (γ1,1) -0.002 -0.009 -0.010 -0.006

Lag 2 (γ1,2) 0.013 -0.012 -0.020 -0.004

Lag 3 (γ1,3) -0.003 -0.020 -0.016 -0.012

Lag 4 (γ1,4) 0.000 -0.011 -0.004 -0.004

Lag 5 (γ1,5) 0.003 0.003 0.006 0.004

Lag 6 (γ1,6) 0.011 0.000 0.005 0.006

Event 2

Lag 0 (γ2,0) 0.011 -0.006 -0.007 0.001

Lag 1 (γ2,1) -0.012 -0.001 0.006 -0.003

Lag 2 (γ2,2) -0.016 -0.003 0.000 -0.008

Lag 3 (γ2,3) 0.000 -0.017 -0.008 -0.007

Lag 4 (γ2,4) -0.032** -0.005 -0.017 -0.020

Lag 5 (γ2,5) -0.025* -0.013 0.002 -0.013

Lag 6 (γ2,6) -0.009 −0.001 -0.007 -0.006

Number of Firms 5 3 4 12

Observations 1780 1068 1424 4272

Note: Each column reports selected parameter estimates and significance levels for an estimation of Equation 4 on a

subset of firms. See Table 1 to examine the firms in each size bin. Hypothesis testing is conducted using the sample

quantile test described in Gelbach et al. (2013). Significance at alpha levels of 0.1, 0.05, and 0.01 are reported with *, **,

and ***, respectively.
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In contrast, Figure 4 shows that the second event has a much clearer and consistently positive

price impact on all RINs. As in the bivariate time series models, firms with small and medium

market capitalizations do not significantly react to the event, and that lack of response is reflected

in the pooled regression as well. But firms with large market capitalizations do experience losses

within the same time frame described by the bivariate time series.

The general finding of both the bivariate time series models and the event study is that large,

integrated refineries lose value 3-5 days after an increase in RIN prices. Small and medium firms

exhibit no such losses, and there is no pattern of geographical heterogeneity in price responses

whatsoever.

6 Discussion

Our empirical findings do not perfectly support any prevailing narrative about the effects of

the RFS. While the lack of price response among small- and medium-size firms is in line with

the conclusions of the pass-through literature, our discovery of a negative price response among

large, integrated refineries is novel and not predicted by existing research on the RFS. Though

this finding is interesting in and of itself, the reduced-form nature of our analysis does not allow

us to pinpoint any one theoretical explanation for this result, which is the admitted limitation

of this style of analysis. It is important to note that our results do not necessarily mean that

large firms are not fully passing through RIN costs. In fact, a unique inability of larger firms

to pass through RIN costs is theoretically unfounded and seems unlikely. Below, we provide a

number of other candidate explanations.

First, it is notable that each of the large firms in our sample are also the firms with substantial

investments in assets downstream of refining. If the RFS hurts the value of downstream assets

without affecting the value of refining assets, compliance cost hikes would only affect the firms in

our sample that own both. My results could also be a consequence of inefficient internal transfer

pricing (Hirshleifer, 1956). If blending and refining occur under two separate profit-maximizing

divisions and internal transfer prices are set inappropriately, a firm could lose profit in moving

RINs from its blending to its refining division (see Figure 1).

Another possibility is that larger firms simply have a harder time complying with the RFS.

Small refinery exemptions could play a role in this; the EPA is allowed to exempt refineries for

whom complying with RFS mandates would cause serious economic hardship. Who receives
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these waivers is not public information (except when firms voluntarily elect to announce it), but

exemptions as a whole were at a low point in 2015. Moreover, because these exemptions are

issued at the refinery rather than the firm level, it is not clear that they should shield only small

and medium firms from price impacts. Larger firms could also have a harder time procuring

adequate quantities of biofuels. Biorefineries are known to be affected by diseconomies of scale

in feedstock procurement because of transportation costs (Nguyen and Prince, 1996), and noto-

riously expensive biofuel transportation may generate a similar problem. At extremes, regional

blend walls could act as constraints on firm’s ability to generate RINs, creating nonlinearities in

compliance costs for firms with otherwise low marginal blending costs.

Because there are only a small number of refining firms in the US and fewer still that

we characterize as large, there is the lingering possibility that our results could be driven by

peculiarities of just a few firms. If large firms generally held the belief that the EPA was going to

reduce the mandate by more than they actually did, these firms could have been in a RIN-short

position at the time of the regulatory announcements.

Untangling these possibilities will require structural models and, in many cases, proprietary

data. Though these explanations each have their flaws, the effect that they must jointly describe,

while significant, is economically small. Even without a full theoretical understanding of why

large, integrated firms lose value while others don’t, our results can still inform policy insofar as

they thoroughly discredit the claim that integrated refiners take advantage of merchant refiners

in the RIN market. This claim, which motivated policy proposals like transferring the point of

RFS obligation from refiners to blenders, simply does not hold empirical water.

7 Conclusion

The Renewable Fuel Standard requires massive amount of biofuels to be blended into domestic

fuel supplies, and the point of obligation for that blending rests mainly on oil refineries. A devel-

oped literature concludes that refineries are capable of passing through the costs of purchasing

RINs, but pass-through is only one potential channel by which the RFS may affect the stock

prices of obligated firms.

We use bivariate time series modeling and an established event study methodology to measure

the price response of obligated firms to RIN price movements. We find a complete lack of price

response among all firms except large companies with integrated downstream operations. This
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result is both counterintuitive and unexplained by the current RFS literature but is robust

between both of our estimation techniques. The result discredits the idea that the Renewable

Fuel Standard allows integrated refiners to reap substantial profits at the expense of merchant

refiners that lack in-house blending and retail operations. The reduced-form nature of our

analyses precludes us from being able to specify a causal mechanism, but we propose a number

of potential hypotheses that could explain these results as a starting point for future research.
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